
ROC-profiler and debugger:
An Overview of AMD ROCmTM Tools

ATPESC 2022 – Tools Track

Suyash Tandon, Justin Chang, Julio Maia, Noel Chalmers, Paul T.
Bauman, Nicholas Curtis, Nicholas Malaya, Damon McDougall,

Rene van Oostrum, Noah Wolfe

2 |

Agenda 1. Profiling

2. Debugging

Profiling

4 |

AMD GPU Profiling

ROC-profiler (or simply rocprof) is
the command line front-end for
AMD GPU profiling library

• Repo: https://github.com/ROCm-
Developer-Tools/rocprofiler

rocprof contains the central
components allowing the
collection of application tracing
and counter collection

• Under constant development

*More information can be found in the official ROCm documentation

Provided in the ROCm releases

The output of rocprof can be
visualized using the chrome
browser with chrome tracing or
Perfetto

https://github.com/ROCm-Developer-Tools/rocprofiler
https://docs.amd.com/
https://ui.perfetto.dev/

5 |

Getting started with rocprof

▪ $ /opt/rocm/bin/rocprof -h

To get help:

▪ --timestamp <on|off> : turn on/off gpu kernel timestamps

▪ --basenames <on|off> : turn on/off truncating gpu kernel names (i.e., removing
template parameters and argument types)

▪ -o <output csv file> : Direct counter information to a particular file name

▪ -d <data directory> : Send profiling data to a particular directory

▪ -t <temporary directory> : Change the directory where data files typically created in
/tmp are placed. This allows you to save these temporary files

Useful housekeeping flags:

▪ -i <input.txt|.xml> : specify an input file (note the output files will be named input.*)

▪ --hsa-trace : to trace GPU Kernels, host HSA events and HIP memory copies.

▪ --hip-trace : to trace HIP API calls

▪ --roctx-trace : to trace roctx markers

Flags directing rocprofiler activity:

▪ -m <metric file> : Allows the user to define and collect custom metrics.
See rocprofiler/test/tool/*.xml on GitHub for examples

Advanced usage

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

6 |

Identify “hottest” kernels that consume the most time.

▪ 2 .csv files generated

▪ results.csv : information per each call of kernel

▪ results.stats.csv : statistics grouped by each kernel

/opt/rocm/bin/rocprof --stats --basenames on <app with args>

"Name", "Calls", "TotalDurationNs", "AverageNs", "Percentage"

"LocalLaplacianKernel", 1000, 817737586, 817737, 40.908259879301134

"JacobiIterationKernel", 1000, 699515425, 699515, 34.994060790890174

"NormKernel1", 1001, 454737348, 454283, 22.748756969583884

"HaloLaplacianKernel", 1000, 14561933, 14561, 0.7284773865206329

"NormKernel2", 1001, 12395374, 12382, 0.620092789636225

"__amd_rocclr_fillBufferAligned.kd", 1, 7040, 7040, 0.00035218406794656007

Contents of results.stats.csv

Collecting information about the kernels with rocprof

7 |

Collecting traces
with rocprof

rocprof can collect a variety of
trace event types and generate
timelines in JSON format for use
with chrome-tracing or Perfetto

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device
Memory copies

--hip-trace

CPU HSA Calls --hsa-trace

User code markers --roctx-trace

Multiple modes like --hip-trace
and --has-trace can be combined

https://ui.perfetto.dev/

8 |

This will output a .json file that can
be visualized using the chrome

browser and Perfetto

Go to https://ui.perfetto.dev/ and
then load the .json file

▪ The trace will display HIP calls, copies, hsa
signals, and kernel calls

$ rocprof –-hsa-trace --hip-trace <app with arguments>

Collecting and visualizing application traces with rocprof

https://ui.perfetto.dev/

9 |

Collecting and visualizing application traces with rocprof

Zoom In

Pan rightPan left Zoom
Out

10 |

Collecting and visualizing application traces with rocprof

11 |

Collecting and visualizing application traces with rocprof

12 |

Collecting application traces with user-code markers

▪ MatrixTranspose.cpp example on roctracer GitHub page for sample usage

/opt/rocm/bin/rocprof --hip-trace --roctx-trace <app with args>

roctracer_mark("before HIP LaunchKernel");

...

roctxMark("before hipLaunchKernel");

int rangeId =

roctxRangeStart("hipLaunchKernel range");

...

roctxRangePush("hipLaunchKernel");

hipLaunchKernelGGL(matrixTranspose,…);

roctracer_mark("after HIP LaunchKernel");

roctxMark("after hipLaunchKernel");

Code snippet

https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/test/MatrixTranspose/MatrixTranspose.cpp

13 |

Collecting hardware counters with rocprof

▪ $/opt/rocm/bin/rocprof --list-basic

▪ $/opt/rocm/bin/rocprof --list-derived

Collect a number of hardware counters and derived counters

▪ $/opt/rocm/bin/rocprof -i my_counters.txt <app with args>

▪ $cat my_counters.txt

pmc: Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

pmc: SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize

pmc: L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

...

▪ A limited number of counters can be collected during a specific pass of code
▪ Each line in the counter file will be collected in one pass

▪ You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

▪ A .csv file will be created by this command containing all the requested counters

Specify counters in a counter file. For example:

14 |

Commonly used counters
• The percentage of ALUs active in a wave. Low VALUUtilization is

likely due to high divergence or a poorly sized gridVALUUtilization

• The percentage of GPUTime the vector ALU instructions are
processed. Can be thought of as something like compute utilizationVALUBusy

• The total kilobytes fetched from global memoryFetchSize

• The total kilobytes written to global memoryWriteSize

• The percentage of fetch, write, atomic, and other instructions that
hit the data in L2 cacheL2CacheHit

• The percentage of GPUTime the memory unit is active. The result
includes the stall timeMemUnitBusy

• The percentage of GPUTime the memory unit is stalledMemUnitStalled

• The percentage of GPUTime the write unit is stalledWriteUnitStalled

• https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-
master/test/tool/metrics.xmlFull list at

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

15 |

Performance counters tips and tricks

▪ Kernel dispatches are serialized to ensure that only one dispatch is ever in flight

▪ It is recommended that no other applications are running that use the GPU when
collecting performance counters

GPU Hardware counters are global

Use “--basenames on” which will report only
kernel names, leaving off kernel arguments.

▪ $rocprof --timestamps on -i my_counters.txt <app with args>

▪ This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs

▪ Closest thing to a kernel duration: EndNs - BeginNs

▪ If you run with --stats the resultant results file will automatically include a column that
calculates kernel duration

▪ Note: the duration is aggregated over repeated calls to the same kernel

How do you time a kernel’s duration?

16 |

Collecting counters and traces

▪ rocprof can collect counters and traces for multiple MPI ranks.

▪ Say you want to profile an application usually called like this:

mpiexec –np <n> <app with args>

▪ Then invoke the profiler by executing:

mpiexec –np <n> rocprof --hip-trace <app with args>

▪ This will produce a single unified CSV file for all ranks

▪ Multi-node profiling currently isn’t supported

on multiple MPI ranks

17 |

Profiling overhead

Simple estimation of profiling
overhead, obtained via wall-
clock timing of entire
application run via Linux ‘time’
utility:

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

liz
e

d
 m

e
a

n
 e

x
e

c
u

ti
o

n
 t
im

e

Debugger

19 |

Intro to ROCgdb

What is ROCgdb, from the tin:

The ROCm Debugger (ROCgdb) is the ROCm source-level debugger for Linux, based on the GNU
Debugger (GDB). It enables heterogenous debugging on the ROCm platform of an x86-based host
architecture along with AMD GPU architectures supported by the AMD Debugger API Library
(ROCdbgapi). The AMD Debugger API Library (ROCdbgapi) is included with the ROCm release.

The current ROCm Debugger (ROCgdb) is an initial prototype that focuses on source line debugging and
does not provide symbolic variable debugging capabilities. The user guide presents features and
commands that may be implemented in future versions.

20 |

Preparing the code for the debugger

For example: -O3

Use any optimization level you like,

export HIP_ENABLE_DEFERRED_LOADING=0

Have ROCm load code objects at initialization:

–ggdb

Add the flags:

export AMD_LOG_LEVEL=3

Optionally print even more useful information on API calls

mpic++ -I/usr/lib/x86_64-linux-gnu/openmpi/include/openmpi –L/usr/lib/x86_64-linux-
gnu/openmpi/include -pthread –O3 –g –ggdb –fPIC –std=c++11 \ –march=native –Wall –
I/opt/rocm/roctracer/include –I"/opt/rocm-4.2.0/hip/include" -
I"/opt/rocm/llvm/bin/../lib/clang/12.0.0" –I/opt/rocm/hsa/include –
I/opt/rocm/roctracer/include –c JacobiSetup.cpp -o JacobiSetup.o

Example of what the compile options may look like…

21 |

What can it do?

Switching between and seeing info about wavefronts

Read/write to hardware registers, global memory, and
LDS/scratch

Breakpoints

Watchpoints

ISA-level debugging, mapping of ISA to source lines

22 |

Using a “GUI” with rocgdb
rocgdb -tui <app> cgdb -d rocgdb <app>

23 |

Setting a breakpoint in host code

Here we setup a breakpoint in the host code. We can inspect the device pointer and its values:

24 |

Setting a breakpoint in device kernel

Invoke ‘b’ or ‘break’ to the device kernel of interest:

25 |

Examine switching context to new thread

What happens when you type ‘step’? Another thread hit the same breakpoint!
GDB will switch context to the new thread:

26 |

Examine switching context to new thread

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/work-group-thread-index

agent-id

Agent Target ID

queue-id

Queue Target ID

dispatch-num

Dispatch Target ID
– how many
kernels have
been launched

wave-id

Wavefront ID –
index of
wavefront of
kernel

(z, y, x)

work-group/block
index

27 |

Examine the ISA with rocgdb using cgdb

Using cgdb, type
ESC -> :set dis -> ENTER

28 |

Switching wavefronts

Use info threads to see the location of both host threads and GPU wavefronts

29 |

Switching wavefronts

Or use thread <tid> to examine one particular thread

30 |

Other tips and tricks with rocgdb

Use export AMD_LOG_LEVEL=3 to print all API calls and more happening

31 |

Other tips and tricks with rocgdb

Use export AMD_LOG_LEVEL=3 to print all API calls and more happening

32 |

Other tips and tricks with rocgdb

Use i th to see a list of all active host threads. Currently viewing thread 1 (default)

33 |

And more…

ROCgdb has several other features and capabilities not covered in this presentation.
See the following for much more:

https://docs.amd.com/bundle/ROCDebugger-User-Guide-v5.2/page/index.html
/opt/rocm-5.2.0/share/doc/rocgdb/rocannotate.pdf
/opt/rocm-5.2.0/share/doc/rocgdb/rocgdb.pdf
/opt/rocm-5.2.0/share/doc/rocgdb/rocrefcard.pdf
/opt/rocm-5.2.0/share/doc/rocgdb/rocstabs.pdf

https://docs.amd.com/bundle/ROCDebugger-User-Guide-v5.2/page/index.html

34 |

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes,

firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the

content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof are trademarks of

Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective

owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

