%
.
Ld

3

+ + +
¥

<Beau.Paisley@arm.com>
ATPESC2022

Arm Forge

An interoperable toolkit for debugging and profiling

Commercially supported
by Arm

1

N B
Fully Scalable

° o
Very user-friendly

2 Confidential © 2020 Arm Limited

The de-facto standard for HPC development

- Most widely-used debugging and profiling suite in HPC
« Fully supported by Arm on Intel, AMD, Arm, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
- Powerful and in-depth error detection mechanisms (including memory

debugging)
- Sampling-based profiler to identify and understand bottlenecks

- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

DDT Debugger Highlights

Tl =@ ; 1< 5IZE N; i++)

oo | ot | W | Tooges | Topona | s | G fe S SIED, fel

Tracepoini Ouiput

CLATHT = &:

Tracepaini Precesses

i =8

i = SITE M; d++)
B ;

76, ranks
1417222312

60, ranks.

22230

hone 085

vhone 081

mpe T o o W

ks —— 1 kmax Pz

or [j=4a; E ; jred

for Tk =8 ; Kk « SIZE 0; ka+l

TILI13] += RLLITHT * ELRITIT:

a0, ranks

vhore BB) wnaaan

mype "‘_.l 2R3 ool H‘ X8 mod

99, ranks
LIAISIAIDERN
919, ranks
LIAISIRBERN

vhene 081

vhone 085

ks —— 1 max P

mype “"[, AR ool H_ B mad

o4 vakaa: 0
Hew walue: 1OTATO0400

~ Alwayz shaw this window for watchpoints

88, ranks

W8y s

ks =—— 1 kmax pez

Frocess stopped st watchpaint "rank® in mam [wabchmatnx.c:451.

R - Continue || | Puse

| Pause Al |

284, ranks.

The scalable print

alternative

Confidential © 2020 Arm Limited

" (arge

for (8 = A: 4 &« ETFE M dasl

& !stremp(argv[i], "crash")) {

H
s", *(char **)argv[il);

11
= Program Stopped
' Processes 0-3:

Memory error detected in main (hello.c:118):

null pointer dereference or unaligned memory access

Note: the latter may sometimes occur spuriously if gqual
enabled

Tip: Use the stack list and the local variables to explore
current state and identify the source of the error.

E- Continue

Detect read/write
beyond array bounds

'€ hello.c 3

M This file is newer than your program. Please recompile then restart yoi

else
A test=-1;

B void func3()

void* i = (void*) 1;
A while(i++ || 1)
free((void*)i):
A portaniiicy iis of type 'void *'. When using void pointers in calcula

Left click to add a breakpeint on line 50
{

tunaThres tect.

Static analysis warnings
on code errors

Detect stale memory
allocations

arm

9 Step guide: optimizing high performance applications ~ ArM

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

re-—======"="

Iolfo

+" Discover lines of code spending a long
time in 1/0.
+" Trace and debug slow access patterns.

r———=—===="=17 r———========7 L o— e — e ——— e e a
| @ Bugs L |
I +" Correct application. I I +" Measure all performance aspects. I
L o— — — —e—_e—_——e—_———a You can't fix what you can't see.
I «" Prefer real workloads over artificial tests. I

Fr———————

© Workload

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

——_—_1

| © Communication I

L——————————J

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

e — .l

L———————J

| e | r_o - - =—=—==1 r- .- = =

—
| © Cores | | | | @ Verification |

r———————1

| O Memory

I +" Discover synchonization I I +" Understand numerical intensity I % Validate corrections
I +" Reveal lines ufcode_boﬂlenecked I overhead and core utilization. and vectorization Ieyel. and optimal Performance.
by memory access times. I + Synchronization-heavy code and I I +" Hot loops, unvectorized code I I I
I +" Trace allocation and use of hot I implicit barriers are revealed. and GPU performance revealed.

data structures.

L———————J

LN
7

Key:
" ArmPERFORMANCE REPORTS
+ AQrMFORGE

Arm Performance Reports

face/home/HCEECO02/nnm 08/oxp09- Compute
nnm0B/CloverLeaf_OpenMPiclover_leaf

arm i i
PERFORMAMCE }2??;?5(95 phz;n:al. 96 logical cores per node)
REPORTS Per nece
1 process, OMP_NUM_THREADS was 8
arm2 L
Tue Aug 1 2017 14:55:32 (UTC+01) MPI 110
8 seconds

face/home/HCEECO0Z/nnm 08/oxp03-nnm0&/
CloverLeaf_OpenMP

Summary: clover leaf is Compute-bound in this configuration

Compute oo

MPI1 0.0%

I/O 0.0%

Time spent running application code. High values are usually
good.
This is wery high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.

This is very low; this code may benefit from a higher process
count

Time spent in filesystern /0. High values are usually bad.

This is negligible; there's no need to investigate I/O performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU

Metrics section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

MPI

A breakdown of the 0.0% MPI time:

Time in collective calls 0.0%
Time in point-to-point calls 0.0%
Effective process collective rate 0.00 bytes/s

Effective process point-to-point rate 0.00 bytes/s

IfO

A breakdown of the 0.0% I/O time:

Time in reads 0.0% |
Time in writes 0.0% |

Effective process read rate 0.00 bytes/s |
Effective process write rate 0.00 bytes/s |

No time is spent in MPl operations. There's nothing to No time is spent in /0 operations. There's nothing to

optimize here!

optimize here!

OpenMP Memory

A breakdown of the 29.7% time in OpenMP regions: Per-precess memory usage may alse affect scaling:
Computation g5.6% N Mean process memory usage 312 MiE [N
Synchronization 14.4% 1 Peak process memaory usage 314 MiE I
Physical core utilization 8.3% | Peak node memary usage 2.0% |

System load T.E% |

Physical core utilization is low and some cores may be

The peak node memory usage is very low. Larger problem
sets can be run before scaling to multiple nodes.

unused. Try increasing OMP_NUM_THREADS to improve

performance.

5 © 2019 Arm Limited

No source code needed

Less than 5% runtime overhead

Fully scalable

Run regularly — or in regression tests

Explicit and usable output

arm

MAP Source Code Profiler Highlights

pute 76 %. MPl 24 %. File
Find the peak memory
use

Hide Metrics...

Make sure OpenMP
regions make sense

6 Confidential © 2020 Arm Limited

38 ! late to the party
31 do j=1,28"nprocs; a
32 end if

33

34 = if {pe /= @) then

35 call MPI_SEND(a, si
36 else

37 = do from=1,nprocs-1

38 call MPI_RECV(hb,

EL] do j=1,38; b=sqrt
48 print *,"Answer f
41 end do

42 end if

43 end do

44 [call MPI BARRIER(MPI CO

AE

Improve memory access

Project Files | Main Thread Stacks | Functions
tacks

x ~ MPI Function(s) on line

CallActionsSeparatedConcerns [ir
Call [inlined]
=hemelb:net:IteratedAction::Ce
hemelb::extraction::Property?
=hemelb::extraction::Property
| hemelb:extraction:LocalPj
. 80. PMPI_File_write_at

Remove I/O bottleneck

size, nproc, mat a

A[li*size+k]*B[k*s

nalize():
wfgize. mat ¢, Tile

Restructure for
vectorization

arm

Python Profiling

: Profiled: python3.5 on 2 processes, 1 node, 2 cores (1 per process) Sampled from: Wed Jan 30 2019 18:49:21 (UTC) for 45.1s Hide Metrics...
° d d f h ' Main thread activity
19.0 adds support for Python
| CPU floating-point L0
Call stacks s i :
| 0 = = === 2 tEs— = = ===== = —~ ==~ = == = ===t = ffE=s =
o . . . 102
Time in Interpreter | FOST 0w e
| 11.0 kB/s
0
Memory usage 8.8
78.1 MB
| 0
. . . 176 T
* Works with MPI4PY e T |
O r S WI 3.77 k calls/s . _i'f',‘!-'}gﬁ.?s".‘-,,i«‘“‘",_ i : A i -'?5‘".1’ o J"*"f“'m*‘f'{' N I'.ﬁ_‘.!"iiiiﬁ"!. -,&1‘Fnl"\"*.":-‘?i“'-;"'-i‘"ﬁ; -'l“iu‘f:'fﬁ' iJ"""'Lf" i
U S u a I M A P m et rics | 18:49:21-18:50:06 (45.068s): Main thread compute 42.5 %, MPI 48.4 %, File 1/O 3.8 %, Python interpreter 5.4 % Zoom Ao_I :=)
7 diffusion-fv-2d.py X Time spent on line 74 ®
- «| ' Breakdown of the 38.3% time
0.2% | Eg i1 spent on this line:
. S -0 S . .
Y S d St ! o Executing instructions 0.0%
Ou rce CO e VIeW 72 Calling other functions ~ 91.2%
e i e ik 21 y/ || Executing Python code 2.2%]
. 3837 i kil el it 74 —t[l h1h0—21— n[xl hihi—mxtdfdnftd dx])
Mlxed Ianguage Support |1 ";ln I T A I T :Z :D;;?Dbézcgzzéx}; . T = = L
o it e etbien el n o et :' halo(u, xlow, xhigh, nx, ny, comm, rank, size)
-g- loc_sum =
0 loc_min =
1 loc_max = .max H P1:-
82 glo_min = comm. a_'_:ed 1ce (loc_min, Dp—I-P .MIN) L
3 glo_max = comm.allreduce(loc_max, op=MPI.MAX) hd

[Input/Output] Project Files | Main Thread Stacks | Functions]

Note: Green as operation is on humpy Main Thread Stacks o®

. | Total core time ~ MPI Function(s) on line Source Position [+]
= & python3.5 [1
array’ SO baCked by C rOUtIne’ El "p);tlff?.lzll]ﬂ—f\igzgrpim #!/usr/binfenv python diffusion-fv-2d.py:1
£l main i s.argv(l:]) diffusion-fv-2d.py:169
1 1 bt d array_subtract, array_multiply, array... - (un[xlow:xxhigh,0:-2] - un[xlow:xxhigh,1:-1]) * (dy/dx)) / (dy*dx)) diffusion-fv-2d.py:74 I
nOt Python (Wh ICh Wou Id be pl n k) 28. 5%“““_ 27.2% '-halo halo({u, xlow, xhigh, nx, ny, comm, rank, size) duIUS?OI"I-fV-ZC!.py:?? v

Showing data from 2,000 samples taken over 2 processes (1000 per process) Arm Forge 19.0.2 2 Main Thread View

ap --profile jsrun -n 2 python3 °/diﬁCUSion_fv_2d°pyGrm

7 © 2019 Arm lelted

Forge Follow Up Materials

ANL specific references
https://www.alcf.anl.gov/support-center/theta/arm-ddt-theta
https://www.alcf.anl.gov/support-center/theta/arm-map

Getting started videos,
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-forge/videos

Offline debugging blogs,
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/debugging-while-you-sleep
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/more-debugging-while-you-sleep-with-ddt

Topic specific Arm HPC webinars,
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/training/arm-hpc-tools-webinars

Python specific references
https://developer.arm.com/documentation/101136/2102/DDT/Get-started-with-DDT/Python-debugging
https://developer.arm.com/documentation/101136/2102/MAP/Python-profiling

Arm Forge Overview Recorded for the SC Student Cluster Competition
https://www.youtube.com/watch?v=Pe2WDJR2cTg&t=13s

Debugging methodology presentation at Nvidia GTC
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41737/

8 © 2019 Arm Limited

arm

https://www.alcf.anl.gov/support-center/theta/arm-ddt-theta
https://www.alcf.anl.gov/support-center/theta/arm-map
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-forge/videos
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/debugging-while-you-sleep
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/more-debugging-while-you-sleep-with-ddt
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/training/arm-hpc-tools-webinars
https://developer.arm.com/documentation/101136/2102/DDT/Get-started-with-DDT/Python-debugging
https://developer.arm.com/documentation/101136/2102/MAP/Python-profiling
https://www.youtube.com/watch?v=Pe2WDJR2cTg&t=13s
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41737/

