
HPCToolkit Performance Tools
Performance analysis of CPU and GPU-accelerated applications

John Mellor-Crummey
Professor, Rice University

2

HPCToolkit Funding Acknowledgments

• Government
⏤Exascale Computing Project 17-SC-20-SC
⏤Lawrence Livermore National Laboratory Subcontract B645220
⏤Argonne National Laboratory Subcontract 9F-60073

• Corporate
⏤Advanced Micro Devices
⏤Intel Corporation
⏤TotalEnergies EP Research & Technology USA, LLC.

3

Rice University’s HPCToolkit Performance Tools
Measure and analyze performance of CPU and GPU-accelerated applications

• Easy: profile unmodified application binaries
• Fast: low-overhead measurement
• Informative: understand where an application spends its time and why

⏤call path profiles associate metrics with application source code contexts
⏤optional hierarchical traces to understand execution dynamics

• Broad audience
⏤application developers
⏤framework developers
⏤runtime and tool developers

4

HPCToolkit’s Workflow for CPU Applications

3/28/2021

5

HPCToolkit’s Workflow for GPU-accelerated Applications

3/28/2021

6

HPCToolkit’s Workflow for GPU-accelerated Applications

3/28/2021

Step	1:	
• Ensure	that	compilers	record	line	mappings		
• host	compiler:	-g	
• nvcc:	-lineinfo	

7

HPCToolkit’s Workflow for GPU-accelerated Applications

3/28/2021

Step	2:	
• hpcrun	collects	call	path	profiles	of	

events	of	interest	

8

Measurement of CPU and GPU-accelerated Applications
• Sampling using timers and hardware counter overflow on the CPU
• Callbacks when GPU operations are launched and (sometimes) completed
• GPU event stream for GPU operations; PC Samples (NVIDIA)

9

Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows
⏤measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

10

hpcrun: Measure CPU and/or GPU activity
• GPU profiling

⏤hpcrun -e gpu=xxx <app> ….

• GPU instrumentation (Intel GPU only)
⏤hpcrun -e gpu=level0,inst=count,latency <app>

• GPU PC sampling (NVIDIA GPU only)
⏤hpcrun -e gpu=nvidia,pc <app>

• CPU and GPU Tracing (in addition to profiling)
⏤hpcrun -e CPUTIME -e gpu=xxx -t <app>

• Use hpcrun with job launchers
⏤jsrun -n 32 -g 1 -a 1 hpcrun -e gpu=xxx <app>
⏤srun -n 1 -G 1 hpcrun -e gpu=xxx <app>
⏤aprun -n 16 -N 8 -d 8 hpcrun -e gpu=xxx <app>

Profiles: aggregated on the fly
- a calling context tree per thread
- a calling context tree per GPU stream
- instruction level measurements

CPU traces
- trace of call stack samples

GPU traces
- trace of call stacks that initiate

GPU operations

 xxx ∈ {nvidia,amd,opencl,level0}

11

HPCToolkit’s Workflow for GPU-accelerated Applications

3/28/2021

Step	3:	
• hpcstruct	recovers	program	structure	

about	lines,	loops,	and	inlined	functions

12

hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads

• Usage
hpcstruct [--gpucfg yes] <measurement-directory>

• What it does
• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines
• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

⏤default: use size(CPU set)/2 threads
⏤analyze large application binaries with 16 threads
⏤analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

NOTE: --gpucfg yes needed only for analysis of GPU binaries when NVIDIA PC samples were collected

13

HPCToolkit’s Workflow for GPU-accelerated Applications

3/28/2021

Step	4:	
• hpcprof/hpcprof-mpi	combines	

profiles	from	multiple	threads	and	
correlate	metrics	to	static	&	dynamic	
program	structure

14

hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions sequentially
hpcprof <measurement-directory>

• Analyze data from large executions in parallel
jsrun -n 32 -a 1 hpcprof-mpi <measurement-directory>

srun -n 32 hpcprof-mpi <measurement-directory>

aprun -n 128 -N 8 hpcprof-mpi <measurement-directory>

15

HPCToolkit’s Workflow for GPU-accelerated Applications

3/28/2021

Step	4:	
• hpcviewer	-	interactively	explore	

profile	and	traces	for	GPU-accelerated	
applications

16

Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

• function calls in full context
• inlined procedures
• inlined templates
• outlined OpenMP loops
• loops

source pane

navigation pane metric pane

view control

metric display

17

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

Tim

Processes

Call
stack

18

Time-centric Analysis with hpcviewer
M

PI
 ra

nk
s,

O
pe

nM
P

Th
re

ad
s,

 G
PU

 s
tr

ea
m

s

Time

The color at a particular point in a
timeline indicates the CPU procedure
or GPU kernel active at that time at
the selected call stack depth

A depth view showing the history of calling contexts for the thread with the cursor

Call stack pane
shows full calling
context for the
cursor

Minimap indicates part of
execution trace shownA multi-level call stack based view of execution over time

19

Time-centric Analysis with hpctraceviewer
Experimental version of
QMCPack
• 32 ranks
• 32 threads each

Summary view
summarizes activity
across threads at
each point in time

20

hpcstruct Example: Analyze 7.7GB TensorFlow library (170MB text) in 77s

• Example: Analyze 7.7GB shared library _pywrap_tensorflow_internal.so (170MB text) in 77s

21

Improved Tracing to Show Blocking on CPU Threads
Miniqmc: OpenMP on 32 CPU threads

22

Coarse- and Fine-grain Measurement on NVIDIA GPUs: LLNL’s Quicksilver

Compute Node
- 2xPower9 + 4xNIVIDIA

GPUs
• Optimized (-O2) compilation

with nvcc
• Detailed measurement and

attribution using PC
sampling

• Attribute information to
heterogeneous calling
context

• Key Metrics
- instructions executed
- instruction stalls and

reasons
- GPU utilization

K. Zhou, M. W. Krentel, and J. Mellor-Crummey. Tools for top-down performance analysis of GPU-accelerated applications.
International Conference on Supercomputing. ACM, New York, NY, USA, June, 2020.

Power 9 + NVIDIA V100

GPU inst
countsCPU time GPU inst

stalls

23

Analysis of PeleC using PC Sampling on an NVIDIA GPU

9.4% GPU stalls
outside the loop

mostly memory
stalls

Improvement:

pass udata components as scalars
https://github.com/AMReX-Combustion/PelePhysics/pull/192

4% speedup on PeleC PMF drm19 test case

Cause:
passed udata structure pointer to lambda capture

CPU
context

GPU
context

24

HPCToolkit Trace of WarpX (16 ranks + 16 GPUs)
• Monitor HIP operations

• kernel execution, memory copies, memset
• Collect profiles of HIP operations attributed to calling contexts where they are initiated
• Collect traces of HIP operations attributed to calling contexts where they are initiated
• Support measurement of multiple processes (e.g. MPI ranks) across multiple nodes

GPU imbalance: significantly less GPU work on last 6 ranks

25

Measure and Attribute OpenMP Offloading

26

HPCToolkit Status on GPUs
• NVIDIA

• heterogeneous profiles, including GPU instruction-level execution and stalls using PC sampling
• traces

• AMD
• heterogeneous profiles; no GPU instruction-level measurements within kernels
• measure OpenMP offloading using OMPT interface
• traces

• Intel
• heterogeneous profiles, including GPU instruction-level measurements with kernel instrumentation

and heuristic latency attribution to instructions
• traces

27

Coming Attraction: Improved Scalability of Post-mortem Analysis

• Exploit natural sparsity in performance data
⏤Reduce storage requirements, efficiently use available I/O

• Use multithreading to process performance data
⏤Reduce memory footprint and communication cost, efficiently use available compute

• Empirical results of improvements in HPCToolkit
⏤Practical benefits: process data from 1000s of nodes with <10, in minutes!

28

Storing Mountains of Performance Data from Extreme-Scale Executions

Exploit natural sparsity to reduce storage and I/O

“1254x compression: 14TB→11GB for PeleC (turbulent combustion) @ 2K threads + 2K GPUs”

29

Analyzing Mountains of Performance Data from Extreme-Scale Executions

Scalable parallelism: multithreading + MPIHighly-efficient multithreaded parallelism!

30

hpcprof-mpi: Analyze Measurements of LAMMPS @ 2K threads + 2K GPUs

Completes in 41s!

A
na

ly
si

s
on

 8
 n

od
es

us

in
g

50
4

th
re

ad
s!

31

HPCToolkit Resources

• Documentation
• User manual

• http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
• Tutorial videos

• http://hpctoolkit.org/training.html
• Software

• Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer
• OS: Linux, Windows, MacOS
• Processors: x86_64, aarch64, ppc64le
• http://hpctoolkit.org/download.html

• Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack
• http://hpctoolkit.org/software-instructions.html

HPCToolkit Hands-On Directions
Performance analysis of CPU and GPU-accelerated applications

John Mellor-Crummey
Professor, Rice University

33

Sample Performance Databases for You to Explore

• Where can you find the databases: theta:/grand/ATPESC2022/hpctoolkit/data
⏤hpctoolkit-gamess.makefp.crusher.db

▪ General Atomic and Molecular Electronic Structure System (GAMESS) is a general ab initio quantum chemistry package
▪ Fortran; MPI + OpenMP offloading (Cray CCE); AMD GPUs
▪ 110s; 40MB; 16 MPI ranks x (5 CPU threads + 2 GPU streams)

⏤hpctoolkit-qmcpack-database-dmc-S16-cpu-n32-t32-d2-BGQ
▪ An early prototype distributed-memory implementation of QMCPACK - a many-body ab initio Quantum Monte Carlo code for

computing the electronic structure of atoms, molecules, 2D nanomaterials & solids
▪ C++; MPI + OpenMP; Blue Gene Q
▪ 155s; 3.2GB; 32 MPI ranks x 32 threads

⏤hpctoolkit-PeleC-PMF-96GPU.d
▪ PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows
▪ C++; AMReX framework using CUDA ; Power9 + NVIDIA GPUs
▪ 1.4GB; 96 MPI ranks x (3 threads + 5 GPU streams)

⏤hpctoolkit-PeleC3d.dpcpp.ex-skylake-gpu.d
▪ C++; AMReX framework using SYCL ; Intel Skylake with integrated GPU cores
▪ Instruction-level measurements within GPU kernels
▪ 10s; 44MB; Single process + GPU offloading

34

Profiling Quicksilver with HPCToolkit on Theta-gpu

• module swap cobalt/cobalt-knl cobalt/cobalt-gpu # if cobalt/cobalt-gpu is loaded

• ssh thetagpusn1

• qsub -I -q single-gpu -t 60 -n 1 --attrs filesystems=grand -A ATPESC2022

• source /grand/ATPESC2022/hpctoolkit/scripts/setup-proxy.sh

• cd /grand/ATPESC2022/usr/${LOGNAME}

• git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

• cd hpctoolkit-tutorial-examples/examples/gpu/quicksilver

• source setup-env/theta-gpu.sh

• make build

• make run

• make run-pc

• exit # your compute node

• exit # thetagpusn1

• cd /grand/ATPESC2022/usr/${LOGNAME}

• cd hpctoolkit-tutorial-examples/examples/gpu/quicksilver

• module load hpctoolkit

• hpcviewer hpctoolkit-qs-gpu-cuda.d

• hpcviewer hpctoolkit-qs-gpu-cuda-pc.d

35

Profiling AMG2013 with HPCToolkit on Theta

• module swap cobalt/cobalt-gpu cobalt/cobalt-knl # if cobalt/cobalt-gpu is loaded

• cd /grand/ATPESC2022/usr/${LOGNAME}

• git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

• cd hpctoolkit-tutorial-examples/examples/cpu/mpi+openmp/amg2013

• export HPCTOOLKIT_TUTORIAL_RESERVATION=<queue name>

• export HPCTOOLKIT_TUTORIAL_PROJECTID=ATPESC2022

• source setup-env/theta.sh

• make build

• make run

• # wait for $COBALT_JOBID.done to appear in your directory
• Alternatives

• make analyze

• make analyze-parallel

• # wait for $COBALT_JOBID.done to appear in your directory
• Alternatives

• make view

• hpcviewer hpctoolkit-amg2013.d

