

# Supercharge Your Science with Large-Scale Machine Learning

**Bethany Lusch** Assistant Computer Scientist Argonne Leadership Computing Facility Argonne National Laboratory August 11, 2022 blusch@anl.gov



#### **Paradigms of Science**



1. Experimental







4. Data-intensive

Growing due to:

- More data
- Better computers
- Better methods

Sources: Saint Louis University Madrid Campus, *Mysterium Cosmographicum*, Wikimedia:Atmoz, Sean Ellis

#### Not mutually exclusive!

### What is machine learning? And how do you use it for science?







### What is machine learning?

Field of study that gives computers the ability to learn without being explicitly programmed



Example: post office wants machine to sort mail by zip code

Want to label each image as a digit 0...9

Explicit programming: IF 80% of black pixels are in middle 30% of image, THEN label as 1.





## **Reading Zip Codes**

Field of study that gives computers the ability to learn without being explicitly programmed



by considering many image & label pairs "learns" as sees more examples





#### Classification

Have a category label for each data point, learn to categorize

- Learn how to tag Facebook photos with the right name (after we tag many other photos of our friends)
- Learn how to label x-ray images with a diagnosis (after seeing many images labeled by experts)







#### Regression

Have a numeric label for each data point, learn to predict number

- Learn how to predict stock prices (after seeing historical stock data)
- Learn how to predict the melting point of a molecule (after seeing lots of experimental data)







## Clustering

Have an unlabeled dataset, find groups of similar points

- Find communities in a social network (after seeing Twitter data)
- Find subtypes of breast cancer (after seeing data from a bunch of patients)







## **Reinforcement Learning**

An agent explores an environment and learns how to get rewarded

- Learn to play Frogger by playing the game and receiving feedback (score)
- Learn to suggest useful chemical reactions







### What is deep learning? And how do we do it on supercomputers?







#### **Crash course: deep learning**



Basic version: each layer multiplies by a matrix, adds a vector, and applies a nonlinear function

"many" layers: "deep" learning

Iteratively improve those matrices and vectors to reduce the error/loss (fit the data)





#### Preview of tomorrow!

### **Deep Learning in Parallel**

- Lots of linear algebra: fast on GPUs
- Lots of knobs to tune: can try many in parallel (embarrassingly parallel)
- Data parallelism: put different data examples on different ranks. Based on local examples, estimate how to improve the fit. Then communicate (average) across ranks and update the model.

- Model parallelism: Model doesn't fit on one rank: have to communicate more often
- Spatial parallelism: special case split each example spatially across ranks, such as large mesh







#### Machine Learning Software on Supercomputers

- Deep Learning: Python packages TensorFlow and PyTorch
  - Can program in Python and choose appropriate backends (NVIDIA/CUDA vs. Intel vs. AMD/ROCm, etc.)
  - Can add other packages such as Horovod, DeepSpeed for distributed
- "Classical" machine learning: Python packages such as scikit-learn
  - Vendor-specific acceleration
  - NVIDIA: RAPIDS, Intel: oneDAL backend for scikit-learn, etc.

Main point: you can program using the Python API with lots of high-level functionality, but the backend is fast (CUDA, SYCL, etc.). High portability!





#### How is machine learning supercharging science?





#### **Cancer Research**

- CANDLE project: part of Exascale Computing Project and Aurora Early Science Program
- PI Rick Stevens (Argonne), DOE (4 national labs) and National Cancer Institute
- Science goals:
  - Predict drug responses
  - Understand the molecular basis of certain protein interactions in the RAS pathway, and
  - Develop treatment strategies
- Machine learning contribution:
  - Drug response: learn nonlinear relationships between drugs and tumors
  - RAS pathway: machine learning guides molecular dynamics simulations
  - Treatment strategy: read and encode clinical reports
- Supercomputing contribution:
  - Run simulations and machine learning on the same platform
  - Process large amounts of data
  - Train an ensemble of many models and/or train very large models

https://www.exascaleproject.org/research-project/candle/





#### **Neuroscience Research**

- Connectomics project: part of Aurora Early Science Program
- PI: Nicola Ferrier (Argonne)
- Science goal:
  - Create map of neurons and their connections from brain images
- Machine learning contribution:
  - Accurate segmentation of neurons
- Supercomputing contribution:
  - Enables processing increasingly larger datasets, such as moving from mm<sup>3</sup> towards a cm<sup>3</sup> at the 10 nm scale (mouse brain)



Image: Nicola Ferrier, Narayanan (Bobby) Kasthuri, and Rafael Vescovi, Argonne National Laboratory

https://www.alcf.anl.gov/news/preparing-exascale-argonne-s-aurora-supercomputer-drive-brain-map-construction





### **Particle Physics Research**

- Lattice Quantum Chromodynamics (LatticeQCD) machine learning project for Aurora Early Science Program
- PI: William Detmold (MIT). Team includes Phiala Shanahan (co-PI), Denis Boyda, and others
- Science goal: Calculate possible interactions between candidate dark matter particles and nuclei, then informing experimental sources. (Calculations currently intractable)
- Machine learning contribution: use ML model to improve sampling algorithm (more efficiently sample a target probability distribution), even as move to finer spacing in lattice
- Supercomputing contribution: Need enormous memory as scale to finer lattices and incorporate full physics

https://www.nextplatform.com/2021/08/06/aurora-exascale-system-to-advance-dark-matter-research/





#### **Other Examples Preparing for Aurora**

- Predicting & mitigating disruptions in fusion (for a clean energy source)
- Discovering singlet fission materials for efficient solar cells
- Scaling fluid dynamics simulations, such as an airplane tail





#### **Combining Simulations and Machine Learning**





#### **Example: surrogate models**

- A simplified mapping from inputs to outputs mimicking a more complex process (such as a simulation)
- AKA: an emulator
- We use machine learning to fit a surrogate to training data





### **Motivation For Surrogate Models**

- Simulations can be computationally expensive
- Surrogates can be orders of magnitude faster
- Can compromise: surrogate for just part of simulation

Enabling:

- Exploring parameter space
- Preliminary evaluations of designs (such as of an engine)
- Faster data assimilation (e.g. observational data from sensors)
- Large ensembles exploring effect of uncertain inputs
- Saving compressed representation of simulation due to I/O limitations





## **Accelerating RANS Simulations**

- Science goal: (proof of concept example) simulate flow past a backward-facing step
- Machine learning contribution: replace one PDE solve
- Prediction from machine learning model fed back into simulation to solve rest of equations
- Results: reasonable accuracy at 5x 7x faster
- Challenges:
  - Communicating between simulation and machine learning library
  - Designing problem (inputs and outputs) to enable some generalization

arXiv:1910.10878 Computers & Fluids 2021 Romit Maulik, Himanshu Sharma, Saumil Patel, Bethany Lusch, and Elise Jennings (all Argonne)





## **Accelerating Engine Design**

ICEF 2021 Mondal, Magnotti, Lusch, Maulik, Torelli SAE 2021 Mondal, Torelli, Lusch, Milan, Magnotti

- Science goal: design an efficient automotive engine
- Machine learning contribution:
  - Accelerate exploration of design parameter space
  - Replace expensive part of simulation with surrogate model
- Prediction of flow fields exiting the injector fed into rest of the simulation
- Results: Surrogate is **38 million times faster** (but then still run less expensive part of simulation)



#### **Injection Map from Emulator**







## **Accelerating Weather Prediction**

- Science goal: (proof of concept) predict geopotential height on the weather scale
- Machine learning contribution:
  - Replace expensive simulation with faster (and differentiable) surrogate model
  - Then apply data assimilation to the surrogate model
- Results: data assimilation is O(1000) times faster
  - Assimilating into fast surrogate, and gradients are easy
- Vision: able to predict more quantities, integrate more observational data, and move to climate scale. Replace only part of climate model.

Maulik, et al. "Efficient high-dimensional variational data assimilation with machine-learned reduced-order models" Geoscientific Model Development, 2022





## **Coupling ML and Simulations**

#### Example Modes



#### Tightly-coupled

Compute resource Simulation AI Timeshared Execute as a single process on the same resource

Example: simulation running on some CPUs, data is passed to some GPUs where a surrogate model is trained (skip I/O bottleneck)



Example: at every step of simulation, apply surrogate model to replace one component

Figure adapted from Venkat Vishwanath

"A terminology for in situ visualization and analysis systems" by Childs et al. 2020



#### **Open Challenges**





## **Challenges with Machine Learning**

#### Or areas of open research!

- Want to generalize well to future data (not "overfit")
  - Extrapolation in terms of the input space is especially rough/impossible
- Often hard to interpret
- Typically lacking in guarantees
- Want to build trust, such as by including uncertainty estimates
- Want to incorporate domain knowledge instead of wasting compute relearning it
- Can be hard to troubleshoot

Need careful formulation of problem and proper held-out test data





## **Challenges with ML for Simulations**

- Limited training data, especially when each simulation is expensive
  - How do you choose diverse simulations with limited budget?
- The larger the simulation, the easier it is to overfit?
- ML is more commonly trained on smaller examples non-trivial to train when even one example (one time step) doesn't fit in one GPU
- Unclear how to efficiently handle unstructured meshes
  - Convolutional layers are efficient for images, but can't be straightforwardly applied here
- Time-series models like RNNs struggle with long-term stability





## **Challenges in Coupling ML and Simulations**

- Keeping resources busy
  - Are certain processors always running simulations and others always running ML?
  - If not, can you dynamically adjust?
  - Do these pieces need different hardware, like simulations on CPUs and ML on GPUs? Do you have the right balance near each other?
- Low overhead if passing data
- Software issues, such as
  - Communicating between C++ simulations and ML in Python
  - If the simulation is distributed but not memory-intensive, do you use fewer nodes for the ML, requiring a different domain decomposition?
- If simulations are too large to save and doing online training:
  - Can you return to older data?
  - Are the batches diverse? Are the arriving in a special order?
- If deploying ML "online" within a simulation:
  - Do errors accumulate too much, causing instabilities?
  - Does the ML pass something non-physical to the simulation?
- If the surrogate is just for part of the simulation: is the training done "off-line" without feedback from the simulation? Is there a computationally-feasible way to train end-to-end?





#### In summary:

Large-scale machine learning can enable tackling scientific questions previously out of reach

But many open challenges (or potential research)





