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Paradigms of Science

1. Experimental
2. Theoretical

3. Computational 4. Data-intensive

Growing due to:
• More data
• Better computers
• Better methods

Sources: Saint Louis University Madrid Campus, Mysterium Cosmographicum, Wikimedia:Atmoz, Sean Ellis

Not mutually exclusive!



3

What is machine learning?
And how do you use it for science?

Artificial Intelligence

Machine learning

Deep 
learning
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What is machine learning?
Field of study that gives computers the ability to learn without being explicitly programmed

Example: post office wants machine to sort mail by 
zip code

Want to label each image as a digit 0…9

Explicit programming: IF 80% of black pixels are in 
middle 30% of image, THEN label as 1.
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Reading Zip Codes
Field of study that gives computers the ability to learn without being explicitly programmed

1𝑓
fit function

f(image) = label

by considering many image & label pairs
“learns” as sees more examples
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Classification

• Learn how to tag Facebook photos with the right name (after we tag many other photos of our friends)
• Learn how to label x-ray images with a diagnosis (after seeing many images labeled by experts)

Have a category label for each data point, learn to categorize

Bethany
Lusch𝑓
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Regression

• Learn how to predict stock prices (after seeing historical stock data)
• Learn how to predict the melting point of a molecule (after seeing lots of experimental data)

Have a numeric label for each data point, learn to predict number

𝑓 319 ºC
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Clustering

• Find communities in a social network (after seeing Twitter data)
• Find subtypes of breast cancer (after seeing data from a bunch of patients)

Have an unlabeled dataset, find groups of similar points 
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Reinforcement Learning

• Learn to play Frogger by playing the game and receiving feedback (score)
• Learn to suggest useful chemical reactions

An agent explores an environment and learns how to get rewarded
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What is deep learning?
And how do we do it on supercomputers?

Artificial Intelligence

Machine learning

Deep 
learning
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Crash course: deep learning
Preview of tomorrow!

Input 𝑥 Output 𝑦

𝐴! 𝐴"

𝐴#

“neural network”

Basic version: each layer multiplies by a matrix, adds a vector, and applies a nonlinear function
“many” layers: “deep” learning

Some error/”loss” function to minimize

Iteratively improve those matrices and vectors to reduce the error/loss (fit the data)
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Deep Learning in Parallel
• Lots of linear algebra: fast on GPUs
• Lots of knobs to tune: can try many in parallel (embarrassingly parallel)
• Data parallelism: put different data examples on different ranks. Based on local examples, 

estimate how to improve the fit. Then communicate (average) across ranks and update the 
model.

• Model parallelism: Model doesn’t fit on one rank: have to communicate more often
• Spatial parallelism: special case – split each example spatially across ranks, such as large 

mesh

Preview of tomorrow!

Common case

More
challenging, 
lots of 
research to be 
done
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Machine Learning Software on Supercomputers
• Deep Learning: Python packages TensorFlow and PyTorch

⏤ Can program in Python and choose appropriate backends (NVIDIA/CUDA vs. Intel vs. 
AMD/ROCm, etc.)

⏤ Can add other packages such as Horovod, DeepSpeed for distributed 

• “Classical” machine learning: Python packages such as scikit-learn
⏤ Vendor-specific acceleration
⏤ NVIDIA: RAPIDS, Intel: oneDAL backend for scikit-learn, etc.

Preview of tomorrow!

Main point: you can program using the
Python API with lots of high-level 
functionality, but the backend is fast (CUDA, 
SYCL, etc.). High portability!
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How is machine learning supercharging science?
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Cancer Research
• CANDLE project: part of Exascale Computing Project and Aurora Early Science Program
• PI Rick Stevens (Argonne), DOE (4 national labs) and National Cancer Institute
• Science goals:

⏤ Predict drug responses
⏤ Understand the molecular basis of certain protein interactions in the RAS pathway, and
⏤ Develop treatment strategies

• Machine learning contribution:
⏤ Drug response: learn nonlinear relationships between drugs and tumors
⏤ RAS pathway: machine learning guides molecular dynamics simulations
⏤ Treatment strategy: read and encode clinical reports

• Supercomputing contribution:
⏤ Run simulations and machine learning on the same platform
⏤ Process large amounts of data
⏤ Train an ensemble of many models and/or train very large models

https://www.exascaleproject.org/research-project/candle/

Examples from other teams
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Neuroscience Research
• Connectomics project: part of Aurora Early Science Program
• PI: Nicola Ferrier (Argonne)
• Science goal:

⏤ Create map of neurons and their connections from brain 
images

• Machine learning contribution: 
⏤ Accurate segmentation of neurons

• Supercomputing contribution:
⏤ Enables processing increasingly larger datasets, such as 

moving from mm^3 towards a cm^3 at the 10 nm scale (mouse 
brain)

Image: Nicola Ferrier, Narayanan (Bobby) Kasthuri, and Rafael 
Vescovi, Argonne National Laboratory

https://www.alcf.anl.gov/news/preparing-exascale-argonne-s-aurora-supercomputer-drive-brain-map-construction

Examples from other teams



17

Particle Physics Research
• Lattice Quantum Chromodynamics (LatticeQCD) machine learning project for Aurora Early Science 

Program
• PI: William Detmold (MIT). Team includes Phiala Shanahan (co-PI), Denis Boyda, and others
• Science goal: Calculate possible interactions between candidate dark matter particles and nuclei, then 

informing experimental sources. (Calculations currently intractable)
• Machine learning contribution: use ML model to improve sampling algorithm (more efficiently sample a 

target probability distribution), even as move to finer spacing in lattice
• Supercomputing contribution: Need enormous memory as scale to finer lattices and incorporate full 

physics

https://www.nextplatform.com/2021/08/06/aurora-exascale-system-to-advance-dark-matter-research/
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Other Examples Preparing for Aurora
• Predicting & mitigating disruptions in fusion (for a clean energy source)
• Discovering singlet fission materials for efficient solar cells
• Scaling fluid dynamics simulations, such as an airplane tail
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Combining Simulations and Machine Learning
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Example: surrogate models
• A simplified mapping from inputs to outputs mimicking a more complex process (such as a simulation)
• AKA: an emulator
• We use machine learning to fit a surrogate to training data
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Motivation For Surrogate Models
• Simulations can be computationally expensive
• Surrogates can be orders of magnitude faster
• Can compromise: surrogate for just part of simulation

Enabling:
• Exploring parameter space
• Preliminary evaluations of designs (such as of an engine)
• Faster data assimilation (e.g. observational data from sensors)
• Large ensembles exploring effect of uncertain inputs
• Saving compressed representation of simulation due to I/O limitations
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Accelerating RANS Simulations
• Science goal: (proof of concept example) simulate flow past a backward-facing step
• Machine learning contribution: replace one PDE solve 
• Prediction from machine learning model fed back into simulation to solve rest of equations
• Results: reasonable accuracy at 5x – 7x faster

• Challenges: 
⏤ Communicating between simulation and machine learning library
⏤ Designing problem (inputs and outputs) to enable some generalization

arXiv:1910.10878
Computers & Fluids 2021
Romit Maulik, Himanshu Sharma, Saumil Patel, Bethany Lusch, and Elise Jennings (all Argonne)
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Accelerating Engine Design
• Science goal: design an efficient automotive engine 
• Machine learning contribution: 

⏤ Accelerate exploration of design parameter space
⏤ Replace expensive part of simulation with surrogate model

• Prediction of flow fields exiting the injector fed into rest of the simulation
• Results: Surrogate is 38 million times faster (but then still run less expensive part of simulation)

Injection Map from CFD (“Truth”) Injection Map from Emulator

ICEF 2021 Mondal, Magnotti, Lusch, Maulik, Torelli
SAE 2021 Mondal, Torelli, Lusch, Milan, Magnotti
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Accelerating Weather Prediction
• Science goal: (proof of concept) predict geopotential height on the weather scale 
• Machine learning contribution: 

⏤ Replace expensive simulation with faster (and differentiable) surrogate model
⏤ Then apply data assimilation to the surrogate model 

• Results: data assimilation is O(1000) times faster
⏤ Assimilating into fast surrogate, and gradients are easy

• Vision: able to predict more quantities, integrate more observational data, and move to climate scale. 
Replace only part of climate model.

Maulik, et al. “Efficient high-dimensional variational data assimilation with machine-learned reduced-order 
models” Geoscientific Model Development, 2022
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Coupling ML and Simulations
Example Modes

Loosely-coupled

Execute on same resource as different 
processes

Compute resource

Simulation AI
Space-
shared

Tightly-coupled

Execute as a single process on the 
same resource

Time-
shared

Compute resource

Simulation AI

Execute simultaneously on different 
resources

Data 
movement

Simulation

Compute 
resource

AI 
Nodes

AI

“A terminology for in situ visualization and analysis 
systems” by Childs et al. 2020 

Figure adapted from Venkat Vishwanath

Example: simulation running 
on some CPUs, data is 
passed to some GPUs where 
a surrogate model is trained 
(skip I/O bottleneck)

Example: at every step of 
simulation, apply surrogate 
model to replace one 
component
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Open Challenges
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Challenges with Machine Learning
• Want to generalize well to future data (not “overfit”)

⏤ Extrapolation in terms of the input space is especially rough/impossible

• Often hard to interpret
• Typically lacking in guarantees
• Want to build trust, such as by including uncertainty estimates
• Want to incorporate domain knowledge instead of wasting compute relearning it
• Can be hard to troubleshoot

Or areas of open research!

Need careful formulation of problem and 
proper held-out test data
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Challenges with ML for Simulations
• Limited training data, especially when each simulation is expensive

⏤ How do you choose diverse simulations with limited budget?

• The larger the simulation, the easier it is to overfit?
• ML is more commonly trained on smaller examples – non-trivial to train when even one example (one 

time step) doesn’t fit in one GPU
• Unclear how to efficiently handle unstructured meshes

⏤ Convolutional layers are efficient for images, but can’t be straightforwardly applied here

• Time-series models like RNNs struggle with long-term stability

Or areas of open research!



29

Challenges in Coupling ML and Simulations
• Keeping resources busy 

⏤ Are certain processors always running simulations and others always running ML?
⏤ If not, can you dynamically adjust?
⏤ Do these pieces need different hardware, like simulations on CPUs and ML on GPUs? Do you have the right 

balance near each other?
• Low overhead if passing data 
• Software issues, such as 

⏤ Communicating between C++ simulations and ML in Python
⏤ If the simulation is distributed but not memory-intensive, do you use fewer nodes for the ML, requiring a 

different domain decomposition?
• If simulations are too large to save and doing online training:

⏤ Can you return to older data?
⏤ Are the batches diverse? Are the arriving in a special order?

• If deploying ML “online” within a simulation:
⏤ Do errors accumulate too much, causing instabilities?
⏤ Does the ML pass something non-physical to the simulation? 

• If the surrogate is just for part of the simulation: is the training done “off-line” without feedback from the 
simulation? Is there a computationally-feasible way to train end-to-end?

Or areas of open research!
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In summary:
Large-scale machine learning can enable tackling scientific questions previously out of 
reach

But many open challenges (or potential research)

Thank you!
blusch@anl.gov


