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General Design Principles for HPC Scientific Software

Considerations

 Multidisciplinary teams
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others 

Design Implications

 Separation of Concerns
 Shield developers from unnecessary 

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities
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Design first, then apply programming model to the design instead of 
taking a programming model and fitting  your design to it.

Subject of 
research

Model
Numerics

More Stable
Discretization

I/O
Runtime 

Parameters 

Treat differently and & encapsulate to 
plug and play

Client Code
Mathematically 

complex

Infrastructure
Data structures 
and movement

logically separable 
functional units of 

computation

Encode into framework

Differentiate between 
private and public

Define interfaces

Applies to  both kind

General Design Principles for HPC Scientific Software
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Example: Design for Extensibility from FLASH, Now Flash-X

Assumed that capabilities will 
be added for better models
• Assembly from components
• Decentralized maintenance of 

metadata
• Python tool to parse and 

configure
• OOP implemented through Unix 

directory structure and 
configuration tool

Key idea is distributed 
intelligence
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A Design Model for Separation of Concerns

Requirements

Software Architecture API  Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities
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Handling Heterogeneity – Hardware and Software

Requirements

Software Architecture API  Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

This is where maximum 
change is likely
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Platform Heterogeneity

Computation Memory Network
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Platform Heterogeneity

Computation Memory Network

CPU GPU
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acceler-

ators
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Platform Heterogeneity

Computation Memory Network

CPU GPU

Other 
acceler-

ators
Other 

devices

Cache 
hierar-

chy
Device 
memory

NVram Other 
types

Between 
nodes

Within 
node

With I/O Other 
types

And memory access models: unified memory / gpu-direct / explicit transfer 
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Mechanisms Needed by the Code 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures
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Mechanisms Needed by the Code 

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of 
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• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures
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Mechanisms Needed by the Code 

Mechanisms to map work to 
computational targets
• Figuring out the map

• Expression of dependencies 
• Cost models

• Expressing the map

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures

So what do we need?

• Abstractions layers 
• Code transformation tools
• Data movement orchestrators
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Same algorithm different data layouts or operation sequence:
• A way to let compiler know that ”this” expression can be specialized in many ways
• Definition of specializations
• Often done with template meta-programming

Underlying Ideas: Unification of Computational Expressions

More challenging if algorithms need to be fundamentally different
• Support for alternatives

Make the same code work on different devices
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Underlying Ideas: Moving Work and Data to the Target

Hierarchy in domain decomposition

• Distributed memory model at node level – still very prevalent, likely to remain so for a while
• Also done with PGAS models – shared with locality being important

Parallelization Models

Assigning work within the node

• “Parallel For” or directives with  unified memory
• Directives or specific programming model for explicit data movement

More complex data orchestration system for asynchronous computation

• Task based work distribution
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Underlying Ideas: Mapping Work to Targets

This is how many abstraction layers work

• Infer the structure of the code
• Infer the map between algorithms and devices
• Infer the data movements
• Map computations to devices
• These are specified either through constructs or pragmas

.It can also be the end user who figures out the mapping
In either case performance depends upon how well the mapping is done
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of 
computation

Macros with inheritance 
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to move work and 
data to computational targets

Domain specific runtime

Mechanisms to unify expression of 
computation

Macros with inheritance 
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to 
computational targets

DSL for recipes with code 
generator

Mechanisms to move work and 
data to computational targets

Domain specific runtime

Mechanisms to unify expression of 
computation

Macros with inheritance 
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to 
computational targets

DSL for recipes with code 
generator

Mechanisms to move work and 
data to computational targets

Domain specific runtime

Mechanisms to unify expression of 
computation

Macros with inheritance 

Composability in the source
A toolset of each mechanism

Independent tool sets
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Library of templates for time-
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Overview of Flash-X Design Approach with Separation of 
Concerns in tools

Design Philosophy

• Constrain semantics  to enable simple tools to 
accomplish the needed transformations

• Each individual tool can be maintained by non-
experts

• Utilize the domain knowledge of the “human-in-the-
loop”

• Minimize modifications needed to the tools to port to 
a new platform
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Other Rules of Thumb

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options
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Final takeaways

• The key to both performance portability and longevity is careful software design
• Extensibility should be built into the design
• Design should be independent of any specific programming model
• Composability and flexibility help with performance portability
• Resources:

– https://www.exascaleproject.org/
– https://doi.org/10.6084/m9.figshare.13283714.v1
– https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
– https://www.exascaleproject.org/event/kokkos-class-series
– A Design Proposal for a Next Generation Scientific Software Framework
– Software Design for Longevity with Performance Portability

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series
https://doi.org/10.1007/978-3-319-27308-2_19
https://bssw.io/events/webinar-software-design-for-longevity-with-performance-portability
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