ECP

st omorees e Scientific Software Design

I D E ﬂS Anshu Dubey (she/her)

pmductivity Argonne National Laboratory
bett Software Productivity and Sustainability track @ Argonne Training
I:ID sgi eﬁ{ific Program on Extreme-Scale Computing summer school

LD softwar
tware Contributors: Anshu Dubey (ANL), Mark C. Miller (LLNL), David

Bernholdt (ORNL)

See slide 2 for
Ev license details

. FTIR U.S: DEPARTMENT OF Office of N 'SE’!‘
FemeleeEen ' /ENERGY | science Nationa Nucgm,.-mm:;’,ﬂm

License, Citation and Acknowledgements

License and Citation

 This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
* The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, lllinois, 2022. DOI: 10.6084/m9.figshare.20416215.

 Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 ...

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

IDEAS =\
— \)) sxose

productivity \

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

General Design Principles for HPC Scientific Software

Considerations Design Implications
O Multidisciplinary teams O Separation of Concerns
U Many facets of knowledge O Shield developers from unnecessary
O To know everything is not feasible complexities
O Two types of code components O Work with different lifecycles
O Infrastructure (mesh/IO/runtime ...) O Long-lasting vs quick changing

U Science models (numerical methods) O Logically vs mathematically complex
0 Codes grow O Extensibility built in

O New ideas => new features Ease of adding new capabilities

O Code reuse by others O Customizing existing capabilities

o
\
IDE ‘LS — \)) St

PROJECT

productivity \(\-

General Design Principles for HPC Scientific Software

Subject of Client Code
research Mathematicall
Model Y
_ complex
Numerics

Treat differently and & encapsulate to
plug and play

pupj yioq oy saljddy

More Stable
Discretization
/O
Runtime
Parameters

Infrastructure
Data structures
and movement

logically separable
functional units of
computation

Encode into framework

Differentiate between
private and public

Define interfaces

Design first, then apply programming model to the design instead of

taking a programming model and fitting your design to it.

IDEAS

productivity

o

)

) EXASCAHLE
COMPUTING
PROJECT

Example: Design for Extensibility from FLASH, Now Flash-X

Assumed that capabilities will
be added for better models

* Assembly from components

 Decentralized maintenance of
metadata

« Python tool to parse and
configure

* OOP implemented through Unix
directory structure and
configuration tool

Key idea is distributed
intelligence

namespace

FLASH

organizational

Call Grid_initDomain

Driver (call other units)

FLASH
Driver

| 7

Call Hydro
....(call other units)

Call Grid_initDomain

Other units

——

unmodified

Other units

: Implementation
Implementation :
Implementation

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

A Design Model for Separation of Concerns

Infrastructure

>

Requirements

Implement

Maintain

Capabilities

Model

Design

Develop :|
Validate

R —

—i

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

Handling Heterogeneity — Hardware and Software

Infrastructure Capabilities

> Requirements Model

Implement Design

Develop :|
Validate This is where maximum

Maintain | / change is likely

o
\
IDE ﬂS — \)|_: expscate

productivity Y o=

Platform Heterogeneity

Computation Network

o
\
IDE ﬂs — \)|_: expscate

productivity Y o=

Platform Heterogeneity

Computation Network

CPU GPU
Other

acceler- d(e)\t/?ceers
ators

o
\
IDE ﬂS — \)|_: expscate

productivity Y o=

Platform Heterogeneity

Computation Network

Cache :
: Device
CPU GPU hierar- memory
chy
Other
Other Other
accelero : NVram
P devices types

o
\
IDE ‘AS — \)) St

N productivity -

Platform Heterogeneity

Computation Network

Cache : "
: Device Between Within
CPU GPU hierar- memory nodes node
chy
Other
Other Other : Other
a(;(iglrzr- devices NVram types With 1/O types

o
\
IDE ‘LS — \)) St

) productivity -

Platform Heterogeneity

Computation Network

Cache

: Device Between Within
CPU GPU hierar- memory nodes node
chy
Other
Other Other : Other
a(;(iglrzr- devices NVram types With I/O types

And memory access models: unified memory / gpu-direct / explicit transfer

o
\
IDE ‘LS — \)) St

N productivity -

13

Mechanisms Needed by the Code

Mechanisms to unify expression of
computation

« Minimize maintained variants of source
suitable for all computational devices
« Reconcile differences in data structures

IDEAS

productivity

o

(&

\
EXASCAHLE
\) —) COMPUTING

PROJECT

14

Mechanisms Needed by the Code

Mechanisms to move work and

data to computational targets
* Moving between devices

Mechanisms to unify expression of
computation

« Minimize maintained variants of source
suitable for all computational devices
« Reconcile differences in data structures

« Launching work at the destination
« Hiding latency of movement
« Moving data offnode

o
\
IDEAS ==

productivity -

15

Mechanisms Needed by the Code

Mechanisms to unify expression of

computation

 Minimize maintained variants of source
suitable for all computational devices

 Reconcile differences in data structures

Mechanisms to map work to

computational targets

« Figuring out the map
« Expression of dependencies
« Cost models

« Expressing the map

IDEAS

productivity

o

Mechanisms to move work and

data to computational targets
* Moving between devices

« Launching work at the destination
« Hiding latency of movement
« Moving data offnode

(&

\
EXASCAHLE
\) —) COMPUTING

PROJECT

16

Mechanisms Needed by the Code

Mechanisms to move work and

data to computational targets
* Moving between devices

Mechanisms to unify expression of

computation

 Minimize maintained variants of source
suitable for all computational devices

 Reconcile differences in data structures

« Launching work at the destination
« Hiding latency of movement
« Moving data offnode

So what do we need?

Mechanisms to map work to

computational targets « Abstractions layers
* Figuring out the map e Code transformation tools

« Expression of dependencies
« Cost models
« Expressing the map

« Data movement orchestrators

o
\
IDE ﬂS — \)) St

productivity -

17

Underlying Ideas: Unification of Computational Expressions

Make the same code work on different devices

IDEAS =\
= \)|_: ExpschLe

productivity Ve

18

Underlying Ideas: Moving Work and Data to the Target

Parallelization Models

Assigning work within the node

« “Parallel For” or directives with unified memory
« Directives or specific programming model for explicit data movement

More complex data orchestration system for asynchronous computation

 Task based work distribution

S
N\
IDEAS — (D s=re

oroductivity e SR

Underlying Ideas: Mapping Work to Targets

productivity

20

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of
computation

Macros with inheritance

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

21

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of
computation

Macros with inheritance

Mechanisms to move work and

data to computational targets

Domain specific runtime

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

22

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of
computation

Macros with inheritance

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

Domain specific runtime

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of Mechanisms to move work and
computation data to computational targets

Macros with inheritance Domain specific runtime

Mechanisms to map work to

computational targets Composability in the source

A toolset of each mechanism

DSL for recipes with code Independent tool sets

generator

productivity

Overview of Flash-X Design Approach with Separation of
Concerns in tools

Design Philosophy

Constrain semantics to enable simple tools to Fully
accomplish the needed transformations —>| *onfioured
Each individual tool can be maintained by non- source code
experts

Utilize the domain knowledge of the “human-in-the-
loop”

Minimize modifications needed to the tools to port to

a new platform

[Executable]

IDEAS =\
— \|_: exsschaLe.

productivity il

Overview of Flash-X Design Approach with Separation of
Concerns in tools

Static physics code . .

* Encoded with macros DeS|gn PhI|OSOphy

* Including optimization
hints as directives

Constrain semantics to enable =i
assembled and

simple tools to accomplish the

. configured
needed transformations source code
Each individual tool can be

Platform specific information

maintained by non-experts
Utilize the domain knowledge of

Library of templates for time-

stepping
the “human-in-the-loop”
Minimize modifications needed to
Library of runtime the tools to port to a new platform
configurations [Executable]

IDEAS =\
— \|_: exsschaLe.

productivity \

26

Overview of Flash-X Design Approach with Separation of

Concerns in tools

Static physics code

* Encoded with macros

* Including optimization
hints as directives

Platform specific information

stepping

Library of templates for time-

Library of runtime
configurations

Human in the loop

code for
target
device

Recipe for
control flow
in time
stepping

Design Philosophy

Constrain semantics to
enable simple tools to
accomplish the needed
transformations

Each individual tool
can be maintained by
non-experts

Utilize the domain
knowledge of the
“human-in-the-loop”
Minimize modifications
needed to the tools to
port to a new platform

IDEAS =

productivity \

Fully

assembled and
configured

source code

[Executable]

T

)

) EXASCALE
COMPUTING
PROJECT

27

Overview of Flash-X Design Approach with Separation of

Concerns in tools

E; Is) Source
£ - code.for
= o physics
O = operators Fully
| assembled and
configured

source code

—
Q@
e

£

[0

(7))

n

®

[0
g,

o)
@)

Source
code for
time
stepping
and

runtime
pipeline [Executable]

IDEAS =
— \)) sxose

oroductivity e SR

Human in the loop
Recipe translator

28

Other Rules of Thumb

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options

IDEAS

productivity

T

(&

Y

, EXASCAHLE
COMPUTING
PROJECT

29

Final takeaways

* The key to both performance portability and longevity is careful software design
» Extensibility should be built into the design

« Design should be independent of any specific programming model

« Composability and flexibility help with performance portability

* Resources:
— https://www.exascaleproject.org/
— https://doi.org/10.6084/m9.figshare.13283714.v1
— https://bssw.io/blog posts/performance-portability-and-the-exascale-computing-project
— https://www.exascaleproject.org/event/kokkos-class-series
— A Design Proposal for a Next Generation Scientific Software Framework
— Software Design for Longevity with Performance Portability

IDEAS =
— \)) sxose

productivity \

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series
https://doi.org/10.1007/978-3-319-27308-2_19
https://bssw.io/events/webinar-software-design-for-longevity-with-performance-portability

	Scientific Software Design
	License, Citation and Acknowledgements
	General Design Principles for HPC Scientific Software
	General Design Principles for HPC Scientific Software
	Example: Design for Extensibility from FLASH, Now Flash-X
	A Design Model for Separation of Concerns
	Handling Heterogeneity – Hardware and Software
	Platform Heterogeneity
	Platform Heterogeneity
	Platform Heterogeneity
	Platform Heterogeneity
	Platform Heterogeneity
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Underlying Ideas: Unification of Computational Expressions
	Underlying Ideas: Moving Work and Data to the Target
	Underlying Ideas: Mapping Work to Targets
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Overview of Flash-X Design Approach with Separation of Concerns in tools
	Slide Number 25
	Overview of Flash-X Design Approach with Separation of Concerns in tools
	Overview of Flash-X Design Approach with Separation of Concerns in tools
	Other Rules of Thumb
	Final takeaways

