
exascaleproject.org

See slide 2 for
license details

Scientific Software Design

Anshu Dubey (she/her)
Argonne National Laboratory

Software Productivity and Sustainability track @ Argonne Training
Program on Extreme-Scale Computing summer school

Contributors: Anshu Dubey (ANL), Mark C. Miller (LLNL), David
Bernholdt (ORNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, Illinois, 2022. DOI: 10.6084/m9.figshare.20416215.

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

• This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

3

General Design Principles for HPC Scientific Software

Considerations

 Multidisciplinary teams
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others

Design Implications

 Separation of Concerns
 Shield developers from unnecessary

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities

4

Design first, then apply programming model to the design instead of
taking a programming model and fitting your design to it.

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Runtime

Parameters

Treat differently and & encapsulate to
plug and play

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

logically separable
functional units of

computation

Encode into framework

Differentiate between
private and public

Define interfaces

Applies to both kind

General Design Principles for HPC Scientific Software

5

Example: Design for Extensibility from FLASH, Now Flash-X

Assumed that capabilities will
be added for better models
• Assembly from components
• Decentralized maintenance of

metadata
• Python tool to parse and

configure
• OOP implemented through Unix

directory structure and
configuration tool

Key idea is distributed
intelligence

6

A Design Model for Separation of Concerns

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

7

Handling Heterogeneity – Hardware and Software

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

This is where maximum
change is likely

8

Platform Heterogeneity

Computation Memory Network

9

Platform Heterogeneity

Computation Memory Network

CPU GPU

Other
acceler-

ators
Other

devices

10

Platform Heterogeneity

Computation Memory Network

CPU GPU

Other
accelero

-ators
Other

devices

Cache
hierar-

chy
Device
memory

NVram Other
types

11

Platform Heterogeneity

Computation Memory Network

CPU GPU

Other
acceler-

ators
Other

devices

Cache
hierar-

chy
Device
memory

NVram Other
types

Between
nodes

Within
node

With I/O Other
types

12

Platform Heterogeneity

Computation Memory Network

CPU GPU

Other
acceler-

ators
Other

devices

Cache
hierar-

chy
Device
memory

NVram Other
types

Between
nodes

Within
node

With I/O Other
types

And memory access models: unified memory / gpu-direct / explicit transfer

13

Mechanisms Needed by the Code

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

14

Mechanisms Needed by the Code

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

15

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

16

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

17

Same algorithm different data layouts or operation sequence:
• A way to let compiler know that ”this” expression can be specialized in many ways
• Definition of specializations
• Often done with template meta-programming

Underlying Ideas: Unification of Computational Expressions

More challenging if algorithms need to be fundamentally different
• Support for alternatives

Make the same code work on different devices

18

Underlying Ideas: Moving Work and Data to the Target

Hierarchy in domain decomposition

• Distributed memory model at node level – still very prevalent, likely to remain so for a while
• Also done with PGAS models – shared with locality being important

Parallelization Models

Assigning work within the node

• “Parallel For” or directives with unified memory
• Directives or specific programming model for explicit data movement

More complex data orchestration system for asynchronous computation

• Task based work distribution

19

Underlying Ideas: Mapping Work to Targets

This is how many abstraction layers work

• Infer the structure of the code
• Infer the map between algorithms and devices
• Infer the data movements
• Map computations to devices
• These are specified either through constructs or pragmas

.It can also be the end user who figures out the mapping
In either case performance depends upon how well the mapping is done

20

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of
computation

Macros with inheritance

21

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to move work and
data to computational targets

Domain specific runtime

Mechanisms to unify expression of
computation

Macros with inheritance

22

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

Domain specific runtime

Mechanisms to unify expression of
computation

Macros with inheritance

23

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

Domain specific runtime

Mechanisms to unify expression of
computation

Macros with inheritance

Composability in the source
A toolset of each mechanism

Independent tool sets

24

Library of templates for time-
stepping

O
pt

im
iz

er code for
target
device

Static physics code
• Encoded with macros
• Including optimization

hints as directives

Platform specific information

Recipe for
control flow

in time
stepping

R
ec

ip
e

tra
ns

la
to

r Source
code for

time
stepping

And
Runtime
pipeline

Library of runtime
configurations

tra
ns

la
to

r Source
code for
physics

operators

H
um

an
 in

 th
e

lo
op C

od
e

As
se

m
bl

er

Fully
assembled and

configured
source code

Compiler

Executable

Overview of Flash-X Design Approach with Separation of
Concerns in tools

Design Philosophy

• Constrain semantics to enable simple tools to
accomplish the needed transformations

• Each individual tool can be maintained by non-
experts

• Utilize the domain knowledge of the “human-in-the-
loop”

• Minimize modifications needed to the tools to port to
a new platform

25

Library of templates for time-
stepping

O
pt

im
iz

er code for
target
device

Static physics code
• Encoded with macros
• Including optimization

hints as directives

Platform specific information

Recipe for
control flow

in time
stepping

R
ec

ip
e

tra
ns

la
to

r Source
code for

time
stepping

And
Runtime
pipeline

Library of runtime
configurations

tra
ns

la
to

r Source
code for
physics

operators

H
um

an
 in

 th
e

lo
op C

od
e

As
se

m
bl

er

Fully
assembled and

configured
source code

Compiler

Executable

Design Philosophy

• Constrain semantics to enable
simple tools to accomplish the
needed transformations

• Each individual tool can be
maintained by non-experts

• Utilize the domain knowledge of
the “human-in-the-loop”

• Minimize modifications needed to
the tools to port to a new platform

Overview of Flash-X Design Approach with Separation of
Concerns in tools

26

Library of templates for time-
stepping

O
pt

im
iz

er code for
target
device

Static physics code
• Encoded with macros
• Including optimization

hints as directives

Platform specific information

Recipe for
control flow

in time
stepping

R
ec

ip
e

tra
ns

la
to

r Source
code for

time
stepping

And
Runtime
pipeline

Library of runtime
configurations

tra
ns

la
to

r Source
code for
physics

operators

H
um

an
 in

 th
e

lo
op C

od
e

As
se

m
bl

er

Fully
assembled and

configured
source code

Compiler

Executable

Design Philosophy
• Constrain semantics to

enable simple tools to
accomplish the needed
transformations

• Each individual tool
can be maintained by
non-experts

• Utilize the domain
knowledge of the
“human-in-the-loop”

• Minimize modifications
needed to the tools to
port to a new platform

Overview of Flash-X Design Approach with Separation of
Concerns in tools

27

Library of templates for time-
stepping

O
pt

im
iz

er code for
target
device

Static physics code
• Encoded with macros
• Including optimization

hints as directives

Platform specific information

Recipe for
control flow

in time
stepping

R
ec

ip
e

tra
ns

la
to

r Source
code for

time
stepping

and
runtime
pipeline

Library of runtime
configurations

Tr
an

sl
at

or Source
code for
physics

operators

H
um

an
 in

 th
e

lo
op C

od
e

as
se

m
bl

er

Fully
assembled and

configured
source code

Compiler

Executable

Overview of Flash-X Design Approach with Separation of
Concerns in tools

28

Other Rules of Thumb

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options

29

Final takeaways

• The key to both performance portability and longevity is careful software design
• Extensibility should be built into the design
• Design should be independent of any specific programming model
• Composability and flexibility help with performance portability
• Resources:

– https://www.exascaleproject.org/
– https://doi.org/10.6084/m9.figshare.13283714.v1
– https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
– https://www.exascaleproject.org/event/kokkos-class-series
– A Design Proposal for a Next Generation Scientific Software Framework
– Software Design for Longevity with Performance Portability

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series
https://doi.org/10.1007/978-3-319-27308-2_19
https://bssw.io/events/webinar-software-design-for-longevity-with-performance-portability

	Scientific Software Design
	License, Citation and Acknowledgements
	General Design Principles for HPC Scientific Software
	General Design Principles for HPC Scientific Software
	Example: Design for Extensibility from FLASH, Now Flash-X
	A Design Model for Separation of Concerns
	Handling Heterogeneity – Hardware and Software
	Platform Heterogeneity
	Platform Heterogeneity
	Platform Heterogeneity
	Platform Heterogeneity
	Platform Heterogeneity
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Underlying Ideas: Unification of Computational Expressions
	Underlying Ideas: Moving Work and Data to the Target
	Underlying Ideas: Mapping Work to Targets
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Overview of Flash-X Design Approach with Separation of Concerns in tools
	Slide Number 25
	Overview of Flash-X Design Approach with Separation of Concerns in tools
	Overview of Flash-X Design Approach with Separation of Concerns in tools
	Other Rules of Thumb
	Final takeaways

