
exascaleproject.org

See slide 2 for
license details

Spack:
Package Management for HPC

Todd Gamblin (he/him)
Lawrence Livermore National Laboratory

Software Productivity and Sustainability track @ Argonne Training
Program on Extreme-Scale Computing summer school

Contributors: Todd Gamblin (LLNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, Illinois, 2022. DOI: 10.6084/m9.figshare.20416215.

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

• This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

3

HPC simulations rely on icebergs of dependency libraries

71 packages
188 dependency edges

LBANN: Neural Nets for HPCMFEM:
Higher-order finite elements

31 packages,
69 dependency edges

98 packages
248 dependency edges

MuMMI: Cancer/drug interaction modeling
Integrates MD , HPC scheduling, ML

4

ECP’s E4S stack is even larger than these codes

– Red boxes are the packages in it (about 100)
– Blue boxes are what else you need to build it (about 600)
– It’s infeasible to build and integrate all of this manually

5

• 1:1 relationship between source code and binary (per platform)
– Good for reproducibility (e.g., Debian)
– Bad for performance optimization

• Binaries should be as portable as possible
– What most distributions do
– Again, bad for performance

• Toolchain is the same across the ecosystem
– One compiler, one set of runtime libraries
– Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

6

• Code is typically distributed as source
– With exception of vendor libraries, compilers

• Often build many variants of the same package
– Developers’ builds may be very different
– Many first-time builds when machines are new

• Code is optimized for the processor and GPU
– Must make effective use of the hardware
– Can make 10-100x perf difference

• Rely heavily on system packages
– Need to use optimized libraries that come with machines
– Need to use host GPU libraries and network

• Multi-language
– C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National
Lab

Power9 / NVIDIA

Summit

Lawrence
Berkeley National

Lab
AMD Zen / NVIDIA

NERSC-9
Perlmutter

Oak Ridge National
Lab

AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Current

Upcoming

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

7

• Containers provide a great way to reproduce and distribute an
already-built software stack

• Someone needs to build the container!
– This isn’t trivial
– Containerized applications still have hundreds of dependencies

• Using the OS package manager inside a container is insufficient
– Most binaries are built unoptimized
– Generic binaries, not optimized for specific architectures

• HPC containers may need to be rebuilt to support many
different hosts, anyway.
– Not clear that we can ever build one container for all facilities
– Containers likely won’t solve the N-platforms problem in HPC

What about containers?

We need something more flexible to build the containers

8

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

9

Spack sustains the HPC software ecosystem
with the help of its many contributors

6,400+ software packages
Over 1,000 contributors

Nearly 6,000 monthly active users
(per documentation site)

Monthly active users

Most package contributions are not from DOE!

10

• Each expression is a spec for a particular configuration
– Each clause adds a constraint to the spec
– Constraints are optional – specify only what you need.
– Customize install on the command line!

• Spec syntax is recursive
– Full control over the combinatorial build space

Spack provides a spec syntax to describe customized
installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=zen2 set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

11

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle

transport proxy/mini app.
"""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

12

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install

Abstract, normalized spec
with some dependencies

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance stored
with installed package

13

opt
└── spack
├── linux-rhel7-skylake
│ └── gcc-8.3.0
│ ├── mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
│ ├── callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
│ ├── openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
│ ├── dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
│ ├── libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
│ └── libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

 Each unique dependency graph is a
unique configuration.

 Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

 Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

 Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

Installation Layout

Dependency DAG

opt
└── spack
├── linux-rhel7-skylake
│ └── gcc-8.3.0
│ ├── mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
│ ├── callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
│ ├── openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
│ ├── dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
│ ├── libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
│ └── libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

Hash

14

• spack.yaml describes project requirements

• spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

• Can also be used to maintain configuration together with
Spack packages.
– E.g., versioning your own local software stack with consistent

compilers/MPI implementations
– Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

15

Spack can generate multi-stage container build recipes

spack containerize

▪ Any Spack environment can be
bundled into a container image

— Optional container section allows
finer-grained customization

▪ Generated Dockerfile uses multi-
stage builds to minimize size of final
image

— Strips binaries
— Removes unneeded build deps with

spack gc

▪ Can also generate Singularity recipes

• Builds on Spack environments
– Support auto-generating GitLab CI jobs
– Can run in a Kube cluster or on bare metal runners at an

HPC site
– Sends progress to CDash

Spack has GitLab CI integration to
automate package build pipelines

17

E4S is ECP’s curated, Spack-based software distribution

• E4S is just a set of Spack packages
– 60+ packages (297 including dependencies)
– Growing to include all of ST and more

• Users can install E4S packages:
– In their home directory
– In a container

• Facilities can install E4S packages:
– On bare metal
– In a container

• Users and facilities can choose parts they want
– spack install only the packages you want
– Or just edit the list of packages (and configurations) you

want in a spack.yaml file
E4S manifest (spack.yaml)

More on E4S at https://e4s.io

https://e4s.io/

18

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test: write tests directly in Spack packages,
so that they can evolve with the software

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

19

• Spack has has had compiler
detection for a while
– Finds compilers in your PATH
– Registers them for use

• We can find any package now
– Package defines:

• possible command names
• how to query the command

– Spack searches for known
commands and adds them to
configuration

• Easily enable rapid setup of tools
in an environment

spack external find (new in v0.15, updated for 0.16)

Logic for finding external
installations in package.py

packages.yaml configuration

20

• Developer features so far have focused on
single packages (spack dev-build, etc.)

• New spack develop feature enables
development environments
– Work on a code
– Develop multiple packages from its

dependencies
– Easily rebuild with changes

• Builds on spack environments
– Required changes to the installation model

for dev packages
– dev packages don’t change paths with

configuration changes
– Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

21

• Major new features:
1. --reuse enabled by default

• Reuse installed packages and build caches
• Use spack install --fresh to get the old behavior

2. Finer-grained spec hash + provenance
3. Better error messages
4. Unify when possible in environments
5. Cray manifest support
6. Windows support
7. New binary format + hardened package signing
8. Bootstrap mirror generation (for air gaps)
9. Makefile generation
10. Conditional variant values and sticky variants

Spack v0.18.0 was released at ISC in early June!

github.com/spack/spack

377 contributors to packages!
85 contributors to core!

22

Concretization is at the core of Spack!

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config packages.yaml
yaml

local environment config spack.yamlyaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

This problem is
NP-hard!

23

Crash course in ASP

• ASP syntax is derived from Prolog

• Basic piece of a program is a term

• Terms can easily represent any data
structure, e.g. this is a graph with:
– 2 nodes, one with a variant value

– 1 dependency edge

• Terms followed by '.' are called facts
– Facts say "this is true!"

enable_some_feature.

node("lammps").

node("cuda").

variant_value("lammps", "cuda", "False").

depends_on("lammps", "cuda", "link").

24

Crash course in ASP

• ASP programs also have rules.
– Rules can derive additional facts.

• :- can be read as "if"
– The head (left side) is true
– If the body (right side) is true

• Comma in the body is like "and"
– Writing same head twice is like "or"

• Capital words are variables
– Rules are instantiated with all possible

substitutions for variables.

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

node("cuda") node("lammps").
depends_on("lammps", "cuda", "link").

25

Crash course in ASP

• Constraints say what cannot happen

• Choice rules give the solver freedom to choose from possible options:

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this constraint says "no cycles"

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

26

ASP searches for stable models of the input program

• Stable models are also called answer sets

• A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
– Similar to fixpoints

– Put more simply: a set of atoms where all your rules are true!

• Unlike Prolog:
– Stable models contain everything that can be derived (vs. just querying values)

– ASP is guaranteed to complete!

27

• Used Clingo, the Potassco grounder/solver package

• ASP program has 2 parts:
1. Large list of facts generated from package recipes (problem

instance)
• 60k+ facts is typical – includes dependencies, options, etc.

2. Small logic program (~700 lines of ASP code)

• Algorithm (the part we write) is conceptually simpler:
– Generate facts for all possible dependencies
– Send facts and our logic program to the solver
– Rebuild a DAG from the results

Spack’s concretizer is now implemented in ASP

Some facts for HDF5 package

28

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack DSL allows declarative specification of complex constraints

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressivity in this DSL.

29

• Hash matches are very
sensitive to small changes

• In many cases, a
satisfying cached or
already installed spec can
be missed

• Nix, Spack, Guix, Conan,
and others reuse this way

Many packaging systems reuse builds via metadata hashes

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

30

We can be more aggressive about reusing packages.

• First, we need to tell the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

31

Telling the solver to minimize builds is surprisingly simple:
it's just the impose half of a generalized condition.

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

32

With and without reuse optimization

Pure hash-based reuse: all misses With --reuse: 16 packages were reusable

Note the bifurcated
optimization criteria

33

• Cumulative
distribution of setup
and solve times

• Hypothesis: we don’t
see big combinatorial
blow-up b/c we're
strict about
dependency hashes

• Next: try mixed ABI,
but prefer "pure"
source-built
dependencies

So far, it looks like we can handle very large problem sizes
with the reusing solver

Most of the time is spent in setup
(reading data in Python – can be sped up w/caching)

Even with 63k packages in a repo,
nearly all package solves take < 10 sec

34

Spack Community 💁💁💁♂�💁💁�💁♀��💁♂�💁♂💁💁💁♀�💁♂
�💁♀��💁♀�💁♂��💁♀ �💁♂

What does the Spack project look like?

Core tool (CLI + Solver)

Package Recipes

xSDKLLNL
stackE4S Vis

SDK . . .

Infrastructure

External Stacks AppAWS

35

CI has made Spack builds much more reliable!

spack ci

Spack Contributions
on GitHub
(over 1,000 contributors)

spack.yaml
configurations

(E4S, SDKs, AWS,
others)

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch

x86_64 and aarch64
pipelines in AWS

ppc64le, GPU pipelines
at

U. Oregon

Pipelines at LLNL
(Cray PE soon)

Do users really need to build from source?

36

With v0.18, Spack has a public binary cache

• Over 3,000 builds in the cache so far:
– Amazon Linux 2 x86_64_v4
– Amazon Linux 2 aarch64
– Amazon Linux 2 graviton2
– Ubuntu 18.04 x86_64

latest v0.18.x release binaries
spack mirror add https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add https://binaries.spack.io/develop

Do we trust binaries?

37

We aim to lower the burden of maintaining a binary distribution
and make it easy to mix source builds with binaries.

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Skylake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Traditional
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Users/developers can also build directly from source

38

https://binaries.spack.io

Public, signed binaries in
CloudFront distribution

Our infrastructure enables us to sustainably manage a
binary distribution

• Moves bulk of binary maintenance upstream, onto PRs
– Production binaries never reuse binaries from untrusted environment

develop releases/v0.18 …

Internal per-PR build caches

Untrusted S3 buckets

github/pr-28469 …

Contributors submit
package changes
• Iterate on builds in PR
• Caches prevent

unnecessary rebuilds

Maintainers review PRs
• Verify PR build succeeded
• Review package code
• Merge to develop

Rebuild and Sign
• Published binaries built

ONLY from approved code
• Protected signing runners
• Ephemeral keys

github/pr-28468

39

▪ Our codes use a lot of external software
— Most packages are external open source
— Many LLNL packages are also open source and developed in the open

▪ We cannot replace all these OSS components with our own
— How do we vet all these components?

▪ Key question: Who/what do you trust to validate the components?
— Current processes are not scalable and not automated!

Why should we care about this for our HPC codes?

LLNL ARES

30 12 71

40

We will continue scaling this infrastructure out!

• We are doing 40k builds per week!
– There are lots of optimizations left to do on the build pipelines
– We think we can eventually scale to all 6,400 Spack packages

• Goal: make source builds unnecessary for most users
– Source builds are optimized for x86_64_v4 (avx512), graviton, etc.
– Source builds will still be seamless – key for reproducibility
– Use spack develop to tweak (almost) any binary you can install

• We will keep scaling OS, compiler, and arch support
– Current crop of compilers and OS’s is a bit old – expect a refresh
– Cray PE build coming soon!

• Amazon Linux 2 builds work on AWS ParallelCluster
NOW!

Build stats at
https://stats.e4s.io

41

Open Source
Contributions

A Notional Secure Pipeline

• We are working to establish a set of guidelines for supply chain integrity
– Labs are trending towards GitLab, Spack for HPC
– Standard container formats can help with scanning
– Standard Software Bill of Materials (SBOM) format could help sites

cross-validate codes

• Spack can help to standardize some of this.

Tarballs, other sources

Git commits

Binary
Packages

Sign

Verify

Deploy

Container
Build

Container
Images

Build

VerifySign

Scan Scan

Spack has 6,500 packages,
with many updates per day.

42

Spack’s long-term strategy is based around
broad adoption and collaboration

• Not sustainable without a community
– Broad adoption incentivizes contributors
– Cloud resources and automation absolutely necessary

• Preserves build knowledge in a cross-platform,
reusable way

– Minimize rewriting recipes when porting

• CI ensures builds continue to work as packages
evolve

– Keep packages flexible but verify key configurations

• Growing contributor base and automation are
the top priorities

– 377 contributors to 0.18 release!

Spack
Community

43

Other resources

https://github.com/spack/spack
Star us on GitHub!

@spackpm
Follow us on Twitter!

https://spack.readthedocs.io
Documentation

https://spack-tutorial.readthedocs.io
Tutorial

https://slack.spack.io
Slack (1,900+ users)

44

Questions?

45

• We are working with the MARBL
team to move their development
environment to Spack

• We have established a
build and deployment working
group among WSC codes

• We aim to put together an L2 milestone
for next year to:
– Make a common build farm for WSC codes
– Layer with Spack’s public build farm
– Gradually bring teams together around standard

build configurations and workflows

We are working with code teams to develop standard workflows
for layered build farms

llnl.wci.mapp

llnl.wci

builtin

marbl

miranda

leos

boost raja axom

blast

Common WSC
packages

MARBL Packages

Mainline Spack
packages

	Spack:�Package Management for HPC
	License, Citation and Acknowledgements
	Slide Number 3
	ECP’s E4S stack is even larger than these codes
	Some fairly common (but questionable) assumptions�made by package managers (conda, pip, apt, etc.)
	High Performance Computing (HPC) �violates many of these assumptions
	What about containers?
	Spack enables Software distribution for HPC
	Spack sustains the HPC software ecosystem�with the help of its many contributors
	Spack provides a spec syntax to describe customized installations
	Spack packages are templates�They use a simple Python DSL to define how to build
	Slide Number 12
	Slide Number 13
	Spack environments enable users to build customized stacks from an abstract description
	Spack can generate multi-stage container build recipes
	Spack has GitLab CI integration to automate package build pipelines
	E4S is ECP’s curated, Spack-based software distribution
	spack test: write tests directly in Spack packages, �so that they can evolve with the software
	spack external find (new in v0.15, updated for 0.16)
	spack develop lets developers work on many packages at once
	Spack v0.18.0 was released at ISC in early June!
	Concretization is at the core of Spack!
	Crash course in ASP
	Crash course in ASP
	Crash course in ASP
	ASP searches for stable models of the input program
	Spack’s concretizer is now implemented in ASP
	Spack DSL allows declarative specification of complex constraints
	Many packaging systems reuse builds via metadata hashes
	We can be more aggressive about reusing packages.
	Telling the solver to minimize builds is surprisingly simple:�it's just the impose half of a generalized condition.
	With and without reuse optimization
	So far, it looks like we can handle very large problem sizes�with the reusing solver
	What does the Spack project look like?
	CI has made Spack builds much more reliable!
	With v0.18, Spack has a public binary cache
	We aim to lower the burden of maintaining a binary distribution�and make it easy to mix source builds with binaries.
	Our infrastructure enables us to sustainably manage a �binary distribution
	Why should we care about this for our HPC codes?
	We will continue scaling this infrastructure out!
	A Notional Secure Pipeline
	Spack’s long-term strategy is based around�broad adoption and collaboration
	Other resources
	Slide Number 44
	We are working with code teams to develop standard workflows for layered build farms

