E\(\’é\)P Spack:

Package Management for HPC

I D E ﬂS Todd Gamblin (he/him)

productivity Lawrence Livermore National Laboratory
DD better Software Productivity and Sustainability track @ Argonne Training
I:ID scientific Program on Extreme-Scale Computing summer school
software

Contributors: Todd Gamblin (LLNL)

See slide 2 for
Ev license details

F7%\ U.S. . 4 4l
exascaleproject org (@ENERGY |See NS

License, Citation and Acknowledgements

License and Citation

 This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
* The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, lllinois, 2022. DOI: 10.6084/m9.figshare.20416215.

 Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 ...

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

IDEAS =\
— \)) sxose

productivity \

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

HPC simulations rely on icebergs of dependency libraries

MFEM:
Higher-order finite elements

LBANN: Neural Nets for HPC

=
N .j'\’v e e =
Libtool e ; Qeunfai\r nas J [crke /l “—*f‘:‘wm" n

71 packages
188 dependency edges

hhhhh 31 packages,
} 69 dependency edges

openpi. i

crake NSRS python

L :

(S X
~ / ,,,,,,,,,, t bend

MuMMI: Cancer/drug interaction modeling
Integrates MD , HPC scheduling, ML

ECP’s E4S stack is even larger than these codes

e = L= &, o = ey oy - mn = = o = snan s
S ==} e (=) e e ot oy |y =) i | enamm) | Em [i e
=== e === e = ot =) men. BENS || =7 =0 mew oo ey ==
= = = Em s | ez = = = s e = e = = =i
= == P e e (== ==
= == = === = = == s == e m ==
== = (==} = =] = ===l = (= W==
=== = === == == = =] = EmmeEs s = s = == pe==3 = pen orEnm s == =
o e === st s o] = = == ey e] == Lo
ol = o) e EaEss = = e=hEn EE=mmes ==
=o === === =2 e=) = e === =Semem === = = e e ey s ey e) ey ey | e =
] = e == ==
== mmrmED == e=nEa

— Red boxes are the packages in it (about 100)

— Blue boxes are what else you need to build it (about 600)
— It's infeasible to build and integrate all of this manually

IDEAS @&

A — (P o
productivity &

PROJECT

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

* 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

* Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

* Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Outside these boundaries, users are typically on their own

o
\
IDE ﬂS — \)|_: expscate

PPPPPPP

5 productivity \(\~—

High Performance Computing (HPC) Some Supercomputers

violates many of these assumptions

Code is typically distributed as source

— With exception of vendor libraries, compilers o
a

Often build many variants of the same package / NVIDIA

— Developers’ builds may be very different Current

— Many first-time builds when machines are new m

Code is optimized for the processor and GPU

Lawrence
— Must make effective use of the hardware Berkeley National
— Can make 10-100x perf difference Lab

AMD / NVIDIA

Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

Multi-language Upcoming

— C, C++, Fortran, Python, others

all in the same ecosystem Intel / Xe

IDEAS

productivity

Oak Ridge National

Lab
AMD / Radeon

Argonne National Lab Lawrence Livermore

National Lab
AMD / Radeon

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

\

What about containers?

Containers provide a great way to reproduce and distribute an
already-built software stack

Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

Using the OS package manager inside a container is insufficient *
— Most binaries are built unoptimized docker
— Generic binaries, not optimized for specific architectures

HPC containers may need to be rebuilt to support many
different hosts, anyway.

— Not clear that we can ever build one container for all facilities
— Containers likely won'’t solve the N-platforms problem in HPC

1
000

Charliecloud SHIFTER

We need something more flexible to build the containers

o
\
IDE ‘LS — \)) St

PROJECT

’ productivity \(\.-

Spack enables Software distribution for HPC

« Spack automates the build and installation of scientific software

« Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

S spack install hdf5@1.10.5 S spack install hdf5@1.10.5 cppflags="-03 —g3"

S spack install hdf5@1.10.5 %clang@6.0 S spack install hdf5@1.10.5 target=haswell

S spack install hdf5@1.10.5 +threadssafe S spack install hdf5@1.10.5 +mpi Ampich@3.2 .
github.com/spack/spack

 Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
« Generates (but does not require) modules
« Allows conda/virtualenv-like environments
« Provides many devops features (Cl, container generation, more)

IDEAS =
— \)) sxose

i productivity \

Spack sustains the HPC software ecosystem
with the help of its many contributors

6,400+ software packages
Over 1,000 contributors

Contributions (lines of code) over time in packages, by organization

175000 - LLNL s RIT mm RIKEN

ANL/UIUC ~ mmm LANL mmm Hamburg
» 150000 - lowa CERN mmm OVGU
[lowa State CSCS mmm 3vGeomatics
) - 125000 1 ®m=m unknown ANL mm CEA
A ¥y e mm HiSilicon AMD FAU
< . [100000 1 === EPFL EEE ORNL mmm Other
3 75000
50000
25000
0 T T
’b x %
S S S

Most package contributions are not from DOE!

Nearly 6,000 monthly active users
(per documentatlon site)

IDEAS =
— \)) sxose

productivity -

Spack provides a spec syntax to describe customized
installations

S spack install mpileaks unconstrained
S spack install mpileaks@3.3 @ custom version
S spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

S spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
S spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags
S spack install mpileaks@3.3 target=zen2 set target microarchitecture

S spack install mpileaks@3.3 "mpich@3.2 %gcc@4.9.3 " dependency information

« Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

« Spec syntax is recursive
— Full control over the combinatorial build space

IDEAS =
— \)) sxose

10 productivity \

Spack packages are templates
They use a simple Python DSL to define how to build

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle
transport proxy/mini app.

homepage = "https://computation.linl.gov/projects/co-design/kripke"
url = "https://computation.linl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256="'3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8ab’)
version(‘1.2.2’, sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp’, default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when="+mpi’)
depends_on('cmake@3.0:', type="build’)

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s" % ('+mpi’ in self.spec),
]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

} Base package

(CMake support)

= [Metadata at the class level

Versions

} Variants (build options)
} Dependencies

— (same spec syntax)

Install logic

S—

in instance methods

Don’t typically need install() for

CMakePackage, but we can work
around codes that don’t have it.

11

rEJt:ﬁ“E; — P
EXASCALE
\)I COMPUTING

productivity \

Concretization fills in missing configuration details

when the user is not explicit.

mpileaks ~callpath@1.0+debug Mibelf@0.8.11

9ZI|_eWION

12

S

mpileaks

A

callpath@l.0
+debug

vl

mpi

dyninst

Abstract, normalized spec
with some dependencies

\

Concretize

libdwarf

/

libelf@0.8.11

mpileaks@Z.3
%gcc@4.7.3
=linux-ppc64

\

callpath@l.0
%gcc@a4.7.3+debug
=linux-ppc64

L

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

dyninst@g8.1.2
%gcc@4.7.3
-11nux ppco4

\

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=l1nux-ppc64

Store

Concrete spec is fully constrained
and can be passed to install

IDEAS =

productivity

User input: abstract spec with some constraints

spec.yaml|

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aadar6ifj23yijgmdabeakpejcli72t3
hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version:4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aadar6ifj23yijgmdabeakpejcli72t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: linux-x86_64
compiler:
name: gcc
version:4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance stored
with installed package

\[=J
-

PROJECT

Spack handles combinatorial software complexity

Dependency DAG
/ mpi u
mpileaks -l v libdwarf
callpath L | dyninst — :: libelf

Installation Layout

opt
L— spack
|— linux-rhel7-skylake
| L—gcc-8.3.0
| ~— mpileaks-1.0-hcdsmdvuzpm4znmvrfzridow2mkphe2e
| — callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
| ~— openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjvsr
| — dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjvsr
| ~— libdwarf-20180129-u5eawkvaoc7vonabebnndkcfwuv233cj
| L— libelf-0.8.13-x46qg4wm46ay4pltriijbgizxjrhbaka6

13

Each unique dependency graph is a
unique configuration.

Each configuration in a unique directory.
— Multiple configurations of the same
package can coexist.

Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

Installed packages automatically find

dependencies

— Spack embeds RPATHSs in binaries.

— No need to use modules or set
LD_LIBRARY_PATH

— Things work the way you built them

o
\
IDE ‘LS — \)) St

productivity -

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

spack:
include external configuration
include:
- ../special-config—-directory/
- ./config-file.yaml

add package specs to the “specs’ list
specs:

- hdf5

- libelf

- openmpi

Concrete spack.lock file (generated)

{
"concrete_specs": {
"6s63s02kstp3zyvjezglndmavy613nul”: {
Thdfss: {
"version™: "1.10.5";
varch": {
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"
|
"compiler": {
"name": "clang",
"version": "10.0.@-apple"
I
"namespace": "builtin",
"parameters": {
"cxx": false,
"debug": false,
"fortran": false,
"hl": false,
"mpi": true,

Pl Dependency

] i packages
[install } build
Insta project

\ 4

spack.yaml file with _ Lockfile describes
names of required | exact versions installed
dependencies

« spack.yaml describes project requirements

 spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

« Can also be used to maintain configuration together with
Spack packages.

— E.g., versioning your own local software stack with consistent
compilers/MPI implementations

— Allows developers and site support engineers to easily version
Spack configurations in a repository

IDEAS =\
— YO sxe=e

oroductivity W' AR

15

Spack can generate multi-stage container build recipes

spack:
specs:
— gromacs+mpi
- mpich

container:

RUN

Select the format of the rec
singularity or anything else
format: docker

Select from a valid list of
base:

image: "centos:7"

spack: develop

Whether or not to strip bina
strip: true

Additional system packages t
os_packages:
— libgomp

Extra instructions
extra_instructions:

final: |
echo 'export PS1="\[$(tput bol

Labels for the image
labels:
app: "gromacs"
mpi: "mpich"

l

Build stage with Spack pre-installed and ready to be used
FROM spack/centos7:latest as builder

What we want to install and how we want to install it
is specified in a manifest file (spack.yaml)

RUN mkdir /opt/spack-environment \

& (echo "spack:" \

& echo " specs:" \

& echo " - gromacs+mpi" \

& echo " - mpich" \

& echo " concretization: together" \

& echo " config:" \

& echo " install_tree: /opt/software" \

& echo " view: /opt/view") > /opt/spack-environment/spack.yaml

Install the software, remove unecessary deps
RUN cd /opt/spack-environment && spack install && spack gc -y

Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
xargs file -1 | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s

Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh

Bare 0S image to run the installed executables
FROM centos:7

COPY ——from=builder /opt/spack-environment /opt/spack-environment
COPY ——from=builder /opt/software /opt/software
COPY ——from=builder /opt/view /opt/view

-y & yum install -y epel-release && yum update -y
-y libgomp \
cache/yum && yum clean all

‘export PS1="\[$(tput bold)\I\[$(tput setaf 1)\][gromacs]\[$(tput setaf 2)\I\u\[$(tpul

spack containerize

Any Spack environment can be

bundled into a container image
— Optional container section allows
finer-grained customization

Generated Dockerfile uses multi-
stage builds to minimize size of final
image

— Strips binaries

— Removes unneeded build deps with
spack gc

Can also generate Singularity recipes

o
\
IDE ‘LS — \)|_: expscate

productivity -

Spack has GitLab Cl integration to
automate package build pipelines

HPC site

— Sends progress to CDash

Pipeline Jobs 123

Stage-0

(+) diffutils 3.6 gc...
(¥) diffutils 3.6 gc...
@ gsl 2.5 gcc@5....
@ gsl 2.5 gcc@5....
@ libiconv 1.15 gc...
() libiconv 115 ge...
@ libsigsegv 2.11 ...

@ libsigsegv 2.11 ...

Q

Q

Q

Q

Q

Q

Q

Q

Stage-1

(+) bzip2 1.0.6 gee...
(+) bzip2 1.0.6 gee...
() libxmi2 2.9.8 g...
() libxmi2 2.9.8 g...
(*) m41.418 gee...

(*) m41.418 gec..

@ ncurses 6.14gc...

@ ncurses 6.1gc...

Q

Q

0

Q

Q

2]

Q

Q

Builds on Spack environments
— Support auto-generating GitLab ClI jobs
— Can run in a Kube cluster or on bare metal runners at an

Stage-2

() boost 1.69.0 g...
(¥) boost 1.69.0 g...
(¥) libtool 2.4.6 gc...
(%) libtool 2.4.6 ge...
@ readline 7.0 gc...

@ readline 7.0 gc...

Q

Q

Qo

O

Q

(o]

Stage-3

(¥) gdbm 1.18.1 ge...
(+) gdbm 1181 gc..
@ libpciaccess 0....
@ libpciaccess O....
(¥) sqlite 3.26.0 g...

@ sqlite 3.26.0 g...

Q

Q

Q

Q

Q

ja}

¢ Kitware

spack:
definitions:
- pkgs:
- readline@7.@
- compilers:
- '%gcc@5.5.0'
- oses:
- 0s=ubuntul8.04
- os=centos?
specs:
- matrix:
- [$pkgs]
- [$compilers]
- [$oses]
mirrors:
cloud_gitlab: https://mirror.spack.io
gitlab—-ci:
mappings:
- spack-cloud-ubuntu:
match:
- os=ubuntul8.e4
runner—attributes:
tags:
- spack-k8s
image: spack/spack_builder_ubuntu_18.04
— spack—cloud-centos:
match:
— os=centos7
runner-attributes:
tags:
— spack-k8s
image: spack/spack_builder_centos_7
cdash:
build-group: Release Testing
url: https://cdash.spack.io
project: Spack
site: Spack AWS Gitlab Instance

E4S is ECP’s curated, Spack-based software distribution

spack:

ipz;z;pmd—api - adios - gotcha
- py-libensemble”python@3.7.3 - darshan-runtime - caliper
. . - hypre - darshan-util - papi
- mfem - veloc - py-jupyterhub
 E4S is just a set of Spack packages N e 1ot 12t ekl s e B
— sundials — parallel-netcdf - sz
- - . — strumpack - qthreads - libnrm
— 60+ packages (297 including dependencies) - supertu-dist - papyrusedevelop - rempi
— superlu - bolt - ninja
- . — tasmanian - raja - kokkos-kernels
— Growing to include all of ST and more - mercury - upoxx #- turbine
- hdf5 - kokkos+openmp #- aml
— adios2 - openmpi #- unifyfs
— dyninst — umpire #- flecsi+cinch
. . - pdt - lib #- pet
» Users can install E4S packages: i R
— hpctoolkit
. . packages:
— In their home directory aw
providers:
. mpi: [spectrum-mpi]
— In a container Ll
cuda:
buildable: false
version: [10.1.243]
TLVE] . . dules:
» Facilities can install E4S paCkageS. " Cuda10.1.263: cuda/10.1.243
spectrum-mpi:
buildable: false
— On bare metal version:
. modules:
_ In a Contalner config:spectrum—mpi@lﬁ.3.1.2: spectrum-mpi/10.3.1.2-20200121
misc_cache: $spack/cache
build_stage: $spack/build-stage
agugw install_tree: $spack/$padding:512
» Users and facilities can choose parts they want
conc;etization: separately|

— spack install only the packages you want

— Or just edit the list of packages (and configurations) you E4S manifest (spack.yaml)
want in a spack.yaml file

A =
More on E4S at https://eds.io I D E : S —\(\\) —) covEuTie
" productivity \

https://e4s.io/

spack test: write tests directly in Spack packages,

so that they can evolve with the software

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
""™GNU libsigsegyv is a library for handling page faults in user mode.

... spack package contents ...
extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test c = data_dir.join(‘'smoke_test.c’)

self.run_test(
'cc, [
"“1%s' % self.prefix.include,
"“L%s' % self.prefix.lib, '-IsigsegV’,
smoke_test_c,
'-0', 'smoke_test'
]

purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegvl': ['Test passed’], purpose='check sigsegvl output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

18

I D E A S ’-;.\\\ EXASCALE
[—)I—) COMPUTING

productivity \

spack external find (new in v0.15, updated for 0.16)

class Cmake(Package): « Spack has has had compiler
executables = ['cmake'] . .
detection for a while
@classmethod . . .
def determine_spec_details(cls, prefix, exes_in_prefix): — F|ndS Comp|lers N your PATH
exe_to_path = dict(
(os.path.basename(p), p) for p in exes_in_prefix —_ RegiSteI’S them for use
)
if 'cmake' not in exe_to_path: .
return None « We can find any package now
cmake = spack.util.executable.Executable(exe_to_path['cmake']) — Package deﬁnes-
output = cmake('--version', output=str))
if output: ° 1
match = re.search(r'cmake.*xversion\s+(\S+)', output) pOSSIble command names
LEmatch: * how to query the command
version_str = match.group(1)
return Spec('cmake@{@}'.format(version_str)) — Spack Searches for known

commands and adds them to
Logic for finding external configuration

installations in package. uackages: . .
Packape-py C"'gifémalsl Easily enable rapid setup of tools
e akeai s In an environment
prefix: /usr/local

package;.yamlConfiguration . IDE ﬂS _ ’:\\ _
K oroductivity W' AR

20

spack develop lets developers work on many packages at once

Developer features so far have focused on zggg‘; o a;;;‘ﬁ;ia%ion
single packages (spack dev-build, etc.) T TR SO
spack develop mfem@4.2.0

New spack develop feature enables
development environments

— Work on a code $ 1s

— Develop multiple packages from its spack.yaml axom/ mfem/
dependencies

— Easily rebuild with changes

$ cat spack.yaml

Builds on spack environments spack:
specs:

— Required changes to the installation model — myapplication # depends on axom, mfem
for dev packages

— dev packages don’t change paths with deve}(’giom @0.4.0
configuration changes — mfem @dévélop

— Allows devs to iterate on builds quickly
IDEAS

productivity

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

Spack v0.18.0 was released at ISC in early June!

 Major new features:

21

1.

= © 00N O kDN

--reuse enabled by default

* Reuse installed packages and build caches
» Use spack install --fresh to get the old behavior

Finer-grained spec hash + provenance

Better error messages

Unify when possible in environments

Cray manifest support

Windows support

New binary format + hardened package signing
Bootstrap mirror generation (for air gaps)
Makefile generation

0. Conditional variant values and sticky variants

O github.com/spack/spack

377 contributors to packages!
85 contributors to core!

IDEAS

productivity

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

\

Concretization is at the core of Spack! This problem is
NP-hard!

AN
Contributors I s N
_ package.py repository
Q:f;/ & P * new versions

 new dependencies
* new constraints

N =@concretizer
spack default config
developers packages.yaml e
\ G2
admins, il oreferences confi k | »
USsers P g packages.yam
\ >
users Al cal environment config spack.yaml
Concrete spec is
fully constrained
Command line constraints and can be built.
users

spack install hdf5@1.12.0 +debug

IDEAS =
— \)) sxose

* productivity (-

Crash course in ASP

ASP syntax is derived from Prolog

Basic piece of a program is a term

Terms can easily represent any data
structure, e.g. this is a graph with:

— 2 nodes, one with a variant value

— 1 dependency edge

Terms followed by "." are called facts

— Facts say "this is true!"

23

enable_some_feature.
node("lammps").
node("cuda").

variant_value("lammps", "cuda", "False").

depends_on("lammps", "cuda”, "link").

IDEAS =
— \)) sxose

productivity \

Crash course in ASP

« ASP programs also have rules. « Comma in the body is like "and"
— Rules can derive additional facts. — Writing same head twice is like "or"
e ;- can be read as "if" « Capital words are variables
— The head (left side) is true — Rules are instantiated with all possible

bstitutions f iables.
— If the body (right side) is true substitutions Tor variables

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

| node("lammps").
depends_on("lammps", "cuda”, "link").

IDEAS =
— \)) sxose

productivity \

node("cuda") <

25

Crash course in ASP

« Constraints say what cannot happen

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this constraint says "no cycles"

* Choice rules give the solver freedom to choose from possible options:

% if a package is in the graph, exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

o
\
IDE ﬂS — \)) St

productivity \

26

ASP searches for stable models of the input program

« Stable models are also called answer sets

» A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.

— Similar to fixpoints

— Put more simply: a set of atoms where all your rules are true!

* Unlike Prolog:
— Stable models contain everything that can be derived (vs. just querying values)

— ASP is guaranteed to complete!

IDEAS =

productivity \

EEEEEEEE
CCCCCCCCC
EEEEEEE

Spack’s concretizer is now implemented in ASP

« Used Clingo, the Potassco grounder/solver package

« ASP program has 2 parts:

1. Large list of facts generated from package recipes (problem
instance)

« 60k+ facts is typical — includes dependencies, options, etc.
2. Small logic program (~700 lines of ASP code)

« Algorithm (the part we write) is conceptually simpler:
— Generate facts for all possible dependencies

— Send facts and our logic program to the solver
— Rebuild a DAG from the results

Some facts for HDF5 package

IDEAS =\
— \)) sxose

PROJECT

27 productivity \

Spack DSL allows declarative specification of complex constraints

CudaPackage: a mix-in for packages that use CUDA

class (PackageBase):

variant('cuda’, default= , cuda is a variant (build option)
description="Build with CUDA")

variant('cuda_arch', cuda_archis only present
description="CUDA architecture', if cuda is enabled
values=any_combination_of(cuda_arch_values),

when="+cuda") dependency on cuda, but only

depends_on('cuda', when="+cuda") if cuda is enabled

depends_on('cuda@9.0:", when="cuda_arch=70")
depends_on('cuda@9.0: ", when="cuda_arch=72")
depends_on('cuda@10.0: ", when="cuda_arch=75")

constraints on cuda version

conflicts('%gcc@9:', when="+cuda Acuda@:10.2.89 target=x86_64:") compiler support for x86_64
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppcbdle:') and ppc64le

There is a lot of expressivity in this DSL. IDEAS —

\
EXASCALE
\) —) COMPUTING

PROJECT

2 productivity \

Many packaging systems reuse builds via metadata hashes

mpileaks

mpi

= = = e e = - - - -

callpath -

yninst

libdwarf

= == e e e e e —m———

74mwnxgn6nujehpyyalhwizwojwn5zga

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

29

1
1
d
1
I
1
|
I
1
1
|
I
1
1
|
I

v

D et =

go2af23r2npatxdtna3fmwkeennywixp

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

libelf

v

k2yumgxwqbijubivfpbjpmrrbzyqcoot

1. Resolve metadata

2. Create per-node hashes

cwx4qwk4bkamfagjrgimxfu3bhasyt74

N
S

Package
22 N cache

~.

3. Query for exact hash match

« Hash matches are very
sensitive to small changes

* In many cases, a
satisfying cached or
already installed spec can
be missed

* Nix, Spack, Guix, Conan,
and others reuse this way

IDEAS =\
— \)) sxose

productivity \

PROJECT

We can be more aggressive about reusing packages.

* First, we need to tell the solver about all the installed packages!
« Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","1lwatuuysmwkhuahrncywvn77icdhsémn"’
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "node" , "openssl").
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn”, ver510n" ,"openssl”,"1.1.1g"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsemn" , "node platform set","openssl","darwin").
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_os_set","openssl","catalina"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn",’ node_target_set"_"openssl","x86_64"f‘
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” ,"variant_set", "openssl”, "systemcerts","True").
","openssl”,"apple-clang")

,"openssl", "apple clang","12.0.0").

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "node_compiler_set
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_compiler_version_set

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” ,"concrete", "openssl").
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "depends_ on" ., openss1” . "211b" . "biiild"]
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "depends_on","openssl”,"zlib","1ink").

imposed_constrainti"lwatuuysmwkhuahrncywvn??icdhsGmn":"hash"."zlib" "x2anksgssxsxa7pcnhzg5k3dhgacglze™).

IDEAS =\
— \|_: exsschaLe.

productivity \

Telling the solver to minimize builds is surprisingly simple:

it's just the impose half of a generalized co

ndition.

1. Allow the solver to choose a hash for any package:

{ hash(Package, Hash) : installed_hash(Package, Hash) }

1 :- node(Package).

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package, Hash

3. Define a build as something without a hash:

build(Package hash(Package, _), node(Package

4. Minimize builds!

#minimize { 1€100,Package : build(Package) }.

31

productivity

EEEEEEEE
CCCCCCCCC
PROJECT

With and without reuse optimization

spackle):solver solve -I1 hdf5
==> Best of 9 considered solutions.
==> Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild
20

(SIS RS IS ISR RS IS RSSO IS RS SIS
(SSHSHSENNSRSESESRSRSESR SR SRS

hdf5@1.10.7
Acmake@3 .21 .4
Ancurses@6. 2
Apkgconf@1.8.0
Aopenss1@1.1.11
Aperl@5.34.0
Aberkeley-db@18.1.40
Abzip2@1.0.8
Adiffutils@3.8
Alibiconv@l. 16!
Agdbm@1 . 19
Areadline@8.1
Az1ib@1.2.11

~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default Y
~doc+ncurses+openssl+ownlibs~qt build_type=Release
~symlinks+termlib abi=none

~docs certs=system
+cpanm+shared+threads
+cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814
~debug~pic+shared

libs=shared,static

+optimize+pic+shared
Aopenmpi@4.1.1! ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac
Ahwloc@2.6.0 ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+shd
Alibxml2@2.9.12 ~python
Axz@5.2.5 ~pic libs=shared,static
Alibevent@2.1.12 +openssl
Aopenssh@g. 7pl!
Alibedit@3.1-20210216!

spackle):spack
=> Best of 1@ considered solutions.
=> Optimization Criteria:

Priority Criterion

Pure hash-based reuse: all misses

Note the bifurcated

optimization criteria

solve --reuse -I1 hdf5

Installed ToBuild
number of packages to build (vs. reuse) -
deprecated versions used

version weight

number of non-default variants (roots)

preferred providers for roots

default values of variants not being used (roots)
number of non-default variants (non-roots)

preferred providers (non-roots)

compiler mismatches

0S mismatches

non-preferred 0S's

version badness

default values of variants not being used (non-roots)
non-preferred compilers

target mismatches

non-preferred targets

(S

[(SEOSI SIS I SIS

[y
(SISO, I o B SIS IS
(SIS RS S IS I SIS IS I IS IS IS IS RS B B

hdf5@1.10.7
Acmake@3 .21 .1
Ancurses@6.2
Aopenssl@l.1.11
Azlib@1.2 .11

~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
~doc+ncurses+openssl+ownlibs~qgt build_type=Release
~symlinks+termlib abi=none
~docs+systemcerts
+optimize+pic+shared
Aopenmpi@4. 1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
Ahwloc@2.6.0 ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+
Alibxml2@2.9.12 ~python
Alibiconv@l. 16 libs=shared,static
Axz@5.2.5 ~pic libs=shared,static
Apkgconf@1.8.0
Alibevent@2.1.12
Aopenssh@3 . 6pl!
Alibedit@3.1-20210216
Aperl@5.34.0
Aberkeley-db@18.1.40
Abzip2@1.0.8
Agdbm@1.19
Areadline@8.1

With --reuse: 16 packages were reusable

IDE A S =
productivity E\(C\)P

+openssl

+cpanm+shared+threads
+cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814f
~debug~pic+shared

So far, it looks like we can handle very large problem sizes

with the reusing solver

« Cumulative
distribution of setup
and solve times

* Hypothesis: we don't
see big combinatorial
blow-up b/c we're
strict about
dependency hashes

* Next: try mixed ABI,
but prefer "pure"
source-built
dependencies

33

setup

4000 -

3000 A

Package count

2000 ~

1000 -

[

—— 6804 cached pks

—— 15255 cached pks
—— 27160 cached pks
—— 63099 cached pks

(reading data in Python — can be sped up w/caching)

20 40 60 80 100 120
Sec

Most of the time is spent in setup

solve

4000 -

3000 A

Package count

2000 ~

1
1
1
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1000 :
|
1

—— 6804 cached pks

—— 15255 cached pks
—— 27160 cached pks
01 —— 63099 cached pks

0 5 10

15

Se

20 25 30 35
C

Even with 63k packages in a repo,

IDEAS

productivity

nearly all package solves take <10 sec

o

\
EXASCAHLE
\) —) COMPUTING

\

PROJECT

34

What does the Spack project look like?

External Stacks E4 S

Infrastructure

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

Cl has made Spack builds much more reliable!

@ Spack Contributions > VQitlab.spack.io w X olinos in ANS.

on GitHub

(over 1,000 contributors)

<

ppcb64le, GPU pipelines
v at
> -J U. Oregon
Pipelines at LLNL

spack ci J ! !g (Cray PE soon)

cosr?f?g(;:tlj'ryaat?cq)lns GitLab Cl builds (changed) packages
v ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab On every pull request
@ (E4S, S[Egrss’)AWS’ On every release branch

Do users really need to build from source?

o
\
IDE ﬂs — \)) St

PROJECT

% productivity \(\-

With v0.18, Spack has a public binary cache

latest v0.18.x release binaries
spack mirror add https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add https://binaries.spack.io/develop

e Over 3,000 builds in the cache so far:

36

— Amazon Linux 2 x86 64 v4
— Amazon Linux 2 aarcho4

— Amazon Linux 2 graviton2
— Ubuntu 18.04 x86 64

Do we trust binaries?

IDEAS

productivity

kitware

\\ EXASCAHLE

) —) COMPUTING

PROJECT

We aim to lower the burden of maintaining a binary distribution
and make it easy to mix source builds with binaries.

W
Traditional
package manager

One software stack

. ; Portable (unoptimized
Recipe per Build farm (P) upgraded over time

package configuration x86_64 binaries
(need rewrites for new systems)

(|::
. [L
i ‘ a Optimized |:> zlg TE TE Built for specific:
Spack Parameterized recipe N 44, Skylake binaries O ‘M3 M3 Systems

Optimized |:> zlg ?E TE Many
Graviton2 binaries — — O software stacks

. Compilers
per package Build farm / CI e e I = :
(Same recipe evolves for all targets) i, Opt|m|zeq |:> zII:I z||:| z||:| OS's
4y GPU binaries 0O \Oa VO MPIs

etc.
Q Users/developers can also build directly from source ﬁ

IDEAS =
— \)) sxose

37 productivity \

Our infrastructure enables us to sustainably manage a
binary distribution

Public, signed binaries in

Untrusted S3 buckets CloudFront distribution
Internal per-PR build caches https://binaries.spack.io
github/pr-28468]—[github/pr-28469 develop H releases/v0.18
Contributors submit Maintainers review PRs Rebuild and Sign
package changes « Verify PR build succeeded - Published binaries built
« Iterate on builds in PR - Review package code ONLY from approved code

« Merge to develop * Protected signing runners

» Caches prevent
* Ephemeral keys

unnecessary rebuilds

* Moves bulk of binary maintenance upstream, onto PRs
— Production binaries never reuse binaries from untrusted environment

IDEAS =\
— \)) sxose

*® productivity \

Why should we care about this for our HPC codes?

LLNL ARES

L—1

g — 2 T Types of Packages

LLNL, Internal [LLNL, Open Source) External, Open Source

Our codes use a lot of external software 30 12 71
— Most packages are external open source
— Many LLNL packages are also open source and developed in the open

We cannot replace all these OSS components with our own
— How do we vet all these components?

Key question: Who/what do you trust to validate the components?
— Current processes are not scalable and not automated!

S
\
IDEAS —(CP s

” productivity -

We will continue scaling this infrastructure out!

* We are doing 40k builds per week!
— There are lots of optimizations left to do on the build pipelines
— We think we can eventually scale to all 6,400 Spack packages

* Goal: make source builds unnecessary for most users
— Source builds are optimized for x86_64_v4 (avx512), graviton, etc.
— Source builds will still be seamless — key for reproducibility
— Use spack develop to tweak (almost) any binary you can install

* We will keep scaling OS, compiler, and arch support
— Current crop of compilers and OS’s is a bit old — expect a refresh o
— Cray PE build coming soon! = =

« Amazon Linux 2 builds work on AWS ParallelCluster Build stats at
NOW! https://stats.e4s.io

IDEAS =
— \)) sxose

4 productivity \

A Notional Secure Pipeline Binary
@ Packages

O Open Source Tarballs, other sources l:\I> &‘ |

Contributions =0= Git commits Verify

: < Qo B S 7

’\-/ Sign %ca-rjl ///
T Scan Build Deploy
LI container
Images
Spack has 6,500 packages,
with many updates per day. @ @ &‘
b
Container Sign Verify
Build

« We are working to establish a set of guidelines for supply chain integrity
— Labs are trending towards GitLab, Spack for HPC
— Standard container formats can help with scanning
— Standard Software Bill of Materials (SBOM) format could help sites

cross-validate codes I D E A S o
' —\ EXASCALE
s * Spack can help to standardize some of this. productivity —\(\) — e

42

Spack’s long-term strategy is based around

broad adoption and collaboration

Not sustainable without a community
— Broad adoption incentivizes contributors
— Cloud resources and automation absolutely necessary

* Preserves build knowledge in a cross-platform,
reusable way

— Minimize rewriting recipes when porting
* Cl ensures builds continue to work as packages
evolve
— Keep packages flexible but verify key configurations

 Growing contributor base and automation are
the top priorities

— 377 contributors to 0.18 release!

dWS

©
FUJITSU

(ii:g ,,,,,,,,,,

NVIDIA.

Sandia
National
Laboratories

BERKELEY LAB

Arm %OAKRIDGE

National Laboratory

IDEAS =
— \)) sxose

productivity \

Other resources
* Star us on GitHub!
https://github.com/spack/spack

, .. Slack (1,900+ users)
.. https://slack.spack.io

43

Tutorial
https://spack-tutorial.readthedocs.io

(i

Documentation
https://spack.readthedocs.io

(i

Follow us on Twitter!
@spackpm

o
\
IDE ﬂS — \)) St

productivity \

44

Questions?

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

45

We are working with code teams to develop standard workflows

for layered build farms

We are working with the MARBL
team to move their development
environment to Spack

We have established a
build and deployment working
group among WSC codes

We aim to put together an L2 milestone MARBL Packages

for next year to: Common WSC
— Make a common build farm for WSC codes packages
— Layer with Spack’s public build farm
— Gradually bring teams together around standard Mainline Spack

packages

IDEAS

productivity

build configurations and workflows

linl.wci.mapp

miranda

linl.wci

builtin

PPPPPPP

	Spack:�Package Management for HPC
	License, Citation and Acknowledgements
	Slide Number 3
	ECP’s E4S stack is even larger than these codes
	Some fairly common (but questionable) assumptions�made by package managers (conda, pip, apt, etc.)
	High Performance Computing (HPC) �violates many of these assumptions
	What about containers?
	Spack enables Software distribution for HPC
	Spack sustains the HPC software ecosystem�with the help of its many contributors
	Spack provides a spec syntax to describe customized installations
	Spack packages are templates�They use a simple Python DSL to define how to build
	Slide Number 12
	Slide Number 13
	Spack environments enable users to build customized stacks from an abstract description
	Spack can generate multi-stage container build recipes
	Spack has GitLab CI integration to automate package build pipelines
	E4S is ECP’s curated, Spack-based software distribution
	spack test: write tests directly in Spack packages, �so that they can evolve with the software
	spack external find (new in v0.15, updated for 0.16)
	spack develop lets developers work on many packages at once
	Spack v0.18.0 was released at ISC in early June!
	Concretization is at the core of Spack!
	Crash course in ASP
	Crash course in ASP
	Crash course in ASP
	ASP searches for stable models of the input program
	Spack’s concretizer is now implemented in ASP
	Spack DSL allows declarative specification of complex constraints
	Many packaging systems reuse builds via metadata hashes
	We can be more aggressive about reusing packages.
	Telling the solver to minimize builds is surprisingly simple:�it's just the impose half of a generalized condition.
	With and without reuse optimization
	So far, it looks like we can handle very large problem sizes�with the reusing solver
	What does the Spack project look like?
	CI has made Spack builds much more reliable!
	With v0.18, Spack has a public binary cache
	We aim to lower the burden of maintaining a binary distribution�and make it easy to mix source builds with binaries.
	Our infrastructure enables us to sustainably manage a �binary distribution
	Why should we care about this for our HPC codes?
	We will continue scaling this infrastructure out!
	A Notional Secure Pipeline
	Spack’s long-term strategy is based around�broad adoption and collaboration
	Other resources
	Slide Number 44
	We are working with code teams to develop standard workflows for layered build farms

