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HPC simulations rely on icebergs of dependency libraries

MFEM:
Higher-order finite elements

LBANN: Neural Nets for HPC
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MuMMI: Cancer/drug interaction modeling
Integrates MD , HPC scheduling, ML




ECP’s E4S stack is even larger than these codes
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— Red boxes are the packages in it (about 100)

— Blue boxes are what else you need to build it (about 600)
— It's infeasible to build and integrate all of this manually
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Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

* 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

* Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

* Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Outside these boundaries, users are typically on their own
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High Performance Computing (HPC) Some Supercomputers

violates many of these assumptions

Code is typically distributed as source

— With exception of vendor libraries, compilers o
a

Often build many variants of the same package / NVIDIA

— Developers’ builds may be very different Current

— Many first-time builds when machines are new m

Code is optimized for the processor and GPU

Lawrence
— Must make effective use of the hardware Berkeley National
— Can make 10-100x perf difference Lab

AMD / NVIDIA

Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

Multi-language Upcoming

— C, C++, Fortran, Python, others

all in the same ecosystem Intel / Xe

IDEAS

productivity

Oak Ridge National

Lab
AMD / Radeon

Argonne National Lab Lawrence Livermore

National Lab
AMD / Radeon
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What about containers?

Containers provide a great way to reproduce and distribute an
already-built software stack

Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

Using the OS package manager inside a container is insufficient *
— Most binaries are built unoptimized docker
— Generic binaries, not optimized for specific architectures

HPC containers may need to be rebuilt to support many
different hosts, anyway.

— Not clear that we can ever build one container for all facilities
— Containers likely won'’t solve the N-platforms problem in HPC

1
000

Charliecloud SHIFTER

We need something more flexible to build the containers
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Spack enables Software distribution for HPC

« Spack automates the build and installation of scientific software

« Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

S spack install hdf5@1.10.5 S spack install hdf5@1.10.5 cppflags="-03 —g3"

S spack install hdf5@1.10.5 %clang@6.0 S spack install hdf5@1.10.5 target=haswell

S spack install hdf5@1.10.5 +threadssafe S spack install hdf5@1.10.5 +mpi Ampich@3.2 .
github.com/spack/spack

 Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
« Generates (but does not require) modules
« Allows conda/virtualenv-like environments
« Provides many devops features (Cl, container generation, more)
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Spack sustains the HPC software ecosystem
with the help of its many contributors

6,400+ software packages
Over 1,000 contributors

Contributions (lines of code) over time in packages, by organization
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< . [ 100000 1 === EPFL EEE ORNL mmm Other
3 75000
50000
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Most package contributions are not from DOE!

Nearly 6,000 monthly active users
(per documentatlon site)
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Spack provides a spec syntax to describe customized
installations

S spack install mpileaks unconstrained
S spack install mpileaks@3.3 @ custom version
S spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

S spack install mpileaks@3.3 %gcc@4.7.3 +threads  +/- build option
S spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags
S spack install mpileaks@3.3 target=zen2 set target microarchitecture

S spack install mpileaks@3.3 "mpich@3.2 %gcc@4.9.3 " dependency information

« Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

« Spec syntax is recursive
— Full control over the combinatorial build space
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Spack packages are templates
They use a simple Python DSL to define how to build

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle
transport proxy/mini app.

homepage = "https://computation.linl.gov/projects/co-design/kripke"
url = "https://computation.linl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256="'3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8ab’)
version(‘1.2.2’, sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp’, default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when="+mpi’)
depends_on('cmake@3.0:', type="build’)

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s" % ('+mpi’ in self.spec),
]

def install(self, spec, prefix):
# Kripke does not provide install target, so we have to copy
# things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

} Base package

(CMake support)

= [Metadata at the class level

Versions

} Variants (build options)
} Dependencies

— (same spec syntax)

Install logic

S—

in instance methods

Don’t typically need install() for

CMakePackage, but we can work
around codes that don’t have it.
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Concretization fills in missing configuration details

when the user is not explicit.

mpileaks ~callpath@1.0+debug Mibelf@0.8.11

9ZI|_eWION

12

S

mpileaks

A

callpath@l.0
+debug

vl

mpi

dyninst

Abstract, normalized spec
with some dependencies

\

Concretize

libdwarf

/

libelf@0.8.11

mpileaks@Z.3
%gcc@4.7.3
=linux-ppc64

\

callpath@l.0
%gcc@a4.7.3+debug
=linux-ppc64

L

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

dyninst@g8.1.2
%gcc@4.7.3
-11nux ppco4

\

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=l1nux-ppc64

Store

Concrete spec is fully constrained
and can be passed to install

IDEAS =

productivity

User input: abstract spec with some constraints

spec.yaml|

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aadar6ifj23yijgmdabeakpejcli72t3
hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version:4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aadar6ifj23yijgmdabeakpejcli72t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: linux-x86_64
compiler:
name: gcc
version:4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance stored
with installed package

\[=J
-

PROJECT




Spack handles combinatorial software complexity

Dependency DAG
/ mpi u
mpileaks -l v libdwarf
callpath L | dyninst — :: libelf

Installation Layout

opt
L— spack
|— linux-rhel7-skylake
| L—gcc-8.3.0
| ~— mpileaks-1.0-hcdsmdvuzpm4znmvrfzridow2mkphe2e
| — callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
| ~— openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjvsr
| — dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjvsr
| ~— libdwarf-20180129-u5eawkvaoc7vonabebnndkcfwuv233cj
| L— libelf-0.8.13-x46qg4wm46ay4pltriijbgizxjrhbaka6
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Each unique dependency graph is a
unique configuration.

Each configuration in a unique directory.
— Multiple configurations of the same
package can coexist.

Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

Installed packages automatically find

dependencies

— Spack embeds RPATHSs in binaries.

— No need to use modules or set
LD_LIBRARY_PATH

— Things work the way you built them
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Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

spack:
# include external configuration
include:
- ../special-config—-directory/
- ./config-file.yaml

# add package specs to the “specs’ list
specs:

- hdf5

- libelf

- openmpi

Concrete spack.lock file (generated)

{
"concrete_specs": {
"6s63s02kstp3zyvjezglndmavy613nul”: {
Thdfss: {
"version™: "1.10.5";
varch": {
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"
|
"compiler": {
"name": "clang",
"version": "10.0.@-apple"
I
"namespace": "builtin",
"parameters": {
"cxx": false,
"debug": false,
"fortran": false,
"hl": false,
"mpi": true,

Pl Dependency

] i packages
[ install } build
Insta project

\ 4

spack.yaml file with _ Lockfile describes
names of required | exact versions installed
dependencies

« spack.yaml describes project requirements

 spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

« Can also be used to maintain configuration together with
Spack packages.

— E.g., versioning your own local software stack with consistent
compilers/MPI implementations

— Allows developers and site support engineers to easily version
Spack configurations in a repository

IDEAS =\
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Spack can generate multi-stage container build recipes

spack:
specs:
— gromacs+mpi
- mpich

container:

RUN

# Select the format of the rec
# singularity or anything else
format: docker

# Select from a valid list of
base:

image: "centos:7"

spack: develop

# Whether or not to strip bina
strip: true

# Additional system packages t
os_packages:
— libgomp

# Extra instructions
extra_instructions:

final: |
echo 'export PS1="\[$(tput bol

# Labels for the image
labels:
app: "gromacs"
mpi: "mpich"

l

# Build stage with Spack pre-installed and ready to be used
FROM spack/centos7:latest as builder

# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)

RUN mkdir /opt/spack-environment \

& (echo "spack:" \

& echo " specs:" \

& echo " - gromacs+mpi" \

& echo " - mpich" \

& echo " concretization: together" \

& echo " config:" \

& echo " install_tree: /opt/software" \

& echo " view: /opt/view") > /opt/spack-environment/spack.yaml

# Install the software, remove unecessary deps
RUN cd /opt/spack-environment && spack install && spack gc -y

# Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
xargs file -1 | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s

# Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh

# Bare 0S image to run the installed executables
FROM centos:7

COPY ——from=builder /opt/spack-environment /opt/spack-environment
COPY ——from=builder /opt/software /opt/software
COPY ——from=builder /opt/view /opt/view

-y & yum install -y epel-release && yum update -y
-y libgomp \
cache/yum && yum clean all

‘export PS1="\[$(tput bold)\I\[$(tput setaf 1)\][gromacs]\[$(tput setaf 2)\I\u\[$(tpul

spack containerize

Any Spack environment can be

bundled into a container image
— Optional container section allows
finer-grained customization

Generated Dockerfile uses multi-
stage builds to minimize size of final
image

— Strips binaries

— Removes unneeded build deps with
spack gc

Can also generate Singularity recipes

o
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Spack has GitLab Cl integration to
automate package build pipelines

HPC site

— Sends progress to CDash

Pipeline Jobs 123

Stage-0

(+) diffutils 3.6 gc...
(¥) diffutils 3.6 gc...
@ gsl 2.5 gcc@5....
@ gsl 2.5 gcc@5....
@ libiconv 1.15 gc...
() libiconv 115 ge...
@ libsigsegv 2.11 ...

@ libsigsegv 2.11 ...

Q

Q

Q

Q

Q

Q

Q

Q

Stage-1

(+) bzip2 1.0.6 gee...
(+) bzip2 1.0.6 gee...
() libxmi2 2.9.8 g...
() libxmi2 2.9.8 g...
(*) m41.418 gee...

(*) m41.418 gec..

@ ncurses 6.14gc...

@ ncurses 6.1gc...

Q

Q

0

Q

Q

2]

Q

Q

Builds on Spack environments
— Support auto-generating GitLab ClI jobs
— Can run in a Kube cluster or on bare metal runners at an

Stage-2

() boost 1.69.0 g...
(¥) boost 1.69.0 g...
(¥) libtool 2.4.6 gc...
(%) libtool 2.4.6 ge...
@ readline 7.0 gc...

@ readline 7.0 gc...

Q

Q

Qo

O

Q

(o]

Stage-3

(¥) gdbm 1.18.1 ge...
(+) gdbm 1181 gc..
@ libpciaccess 0....
@ libpciaccess O....
(¥) sqlite 3.26.0 g...

@ sqlite 3.26.0 g...

Q

Q

Q

Q

Q

ja}

¢ Kitware

spack:
definitions:
- pkgs:
- readline@7.@
- compilers:
- '%gcc@5.5.0'
- oses:
- 0s=ubuntul8.04
- os=centos?
specs:
- matrix:
- [$pkgs]
- [$compilers]
- [$oses]
mirrors:
cloud_gitlab: https://mirror.spack.io
gitlab—-ci:
mappings:
- spack-cloud-ubuntu:
match:
- os=ubuntul8.e4
runner—attributes:
tags:
- spack-k8s
image: spack/spack_builder_ubuntu_18.04
— spack—cloud-centos:
match:
— os=centos7
runner-attributes:
tags:
— spack-k8s
image: spack/spack_builder_centos_7
cdash:
build-group: Release Testing
url: https://cdash.spack.io
project: Spack
site: Spack AWS Gitlab Instance




E4S is ECP’s curated, Spack-based software distribution

spack:

ipz;z;pmd—api - adios - gotcha
- py-libensemble”python@3.7.3 - darshan-runtime - caliper
. . - hypre - darshan-util - papi
- mfem - veloc - py-jupyterhub
 E4S is just a set of Spack packages N e 1ot 12t ekl s e B
— sundials — parallel-netcdf - sz
- - . — strumpack - qthreads - libnrm
— 60+ packages (297 including dependencies) - supertu-dist - papyrusedevelop - rempi
— superlu - bolt - ninja
- . — tasmanian - raja - kokkos-kernels
— Growing to include all of ST and more - mercury - upoxx #- turbine
- hdf5 - kokkos+openmp #- aml
— adios2 - openmpi #- unifyfs
— dyninst — umpire #- flecsi+cinch
. . - pdt - lib #- pet
» Users can install E4S packages: i R
— hpctoolkit
. . packages:
— In their home directory aw
providers:
. mpi: [spectrum-mpi]
— In a container Ll
cuda:
buildable: false
version: [10.1.243]
TLVE] . . dules:
» Facilities can install E4S paCkageS. " Cuda10.1.263: cuda/10.1.243
spectrum-mpi:
buildable: false
— On bare metal version:
. modules:
_ In a Contalner config:spectrum—mpi@lﬁ.3.1.2: spectrum-mpi/10.3.1.2-20200121
misc_cache: $spack/cache
build_stage: $spack/build-stage
agugw install_tree: $spack/$padding:512
» Users and facilities can choose parts they want
conc;etization: separately|

— spack install only the packages you want

— Or just edit the list of packages (and configurations) you E4S manifest (spack.yaml)
want in a spack.yaml file

A =
More on E4S at https://eds.io I D E : S —\( \\) —) covEuTie
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https://e4s.io/

spack test: write tests directly in Spack packages,

so that they can evolve with the software

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
""™GNU libsigsegyv is a library for handling page faults in user mode.

# ... spack package contents ...
extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test c = data_dir.join(‘'smoke_test.c’)

self.run_test(
'cc, [
"“1%s' % self.prefix.include,
"“L%s' % self.prefix.lib, '-IsigsegV’,
smoke_test_c,
'-0', 'smoke_test'
]

purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegvl': ['Test passed’], purpose='check sigsegvl output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

18
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spack external find (new in v0.15, updated for 0.16)

class Cmake(Package): « Spack has has had compiler
executables = ['cmake'] . .
detection for a while
@classmethod . . .
def determine_spec_details(cls, prefix, exes_in_prefix): — F|ndS Comp|lers N your PATH
exe_to_path = dict(
(os.path.basename(p), p) for p in exes_in_prefix —_ RegiSteI’S them for use
)
if 'cmake' not in exe_to_path: .
return None « We can find any package now
cmake = spack.util.executable.Executable(exe_to_path['cmake']) — Package deﬁnes-
output = cmake('--version', output=str) )
if output: ° 1
match = re.search(r'cmake.*xversion\s+(\S+)', output) pOSSIble command names
LEmatch: * how to query the command
version_str = match.group(1)
return Spec('cmake@{@}'.format(version_str)) — Spack Searches for known

commands and adds them to
Logic for finding external configuration

installations in package. uackages: . .
Packape-py C"'gifémalsl  Easily enable rapid setup of tools
e akeai s In an environment
prefix: /usr/local

package;.yamlConfiguration . IDE ﬂS _ ’:\\ _
K oroductivity W' AR
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spack develop lets developers work on many packages at once

Developer features so far have focused on zggg‘; o a;;;‘ﬁ;ia%ion
single packages (spack dev-build, etc.) T TR SO
spack develop mfem@4.2.0

New spack develop feature enables
development environments

— Work on a code $ 1s

— Develop multiple packages from its spack.yaml  axom/  mfem/
dependencies

— Easily rebuild with changes

$ cat spack.yaml

Builds on spack environments spack:
specs:

— Required changes to the installation model — myapplication # depends on axom, mfem
for dev packages

— dev packages don’t change paths with deve}(’giom @0.4.0
configuration changes — mfem @dévélop

— Allows devs to iterate on builds quickly
IDEAS

productivity
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Spack v0.18.0 was released at ISC in early June!

 Major new features:

21

1.
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--reuse enabled by default

* Reuse installed packages and build caches
» Use spack install --fresh to get the old behavior

Finer-grained spec hash + provenance

Better error messages

Unify when possible in environments

Cray manifest support

Windows support

New binary format + hardened package signing
Bootstrap mirror generation (for air gaps)
Makefile generation

0. Conditional variant values and sticky variants

O github.com/spack/spack

377 contributors to packages!
85 contributors to core!

IDEAS

productivity
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Concretization is at the core of Spack! This problem is
NP-hard!

AN
Contributors I s N
_ package.py repository
Q:f;/ & P * new versions

 new dependencies
* new constraints

N =@concretizer
spack default config
developers packages.yaml e
\ G2
admins, il oreferences confi k | »
USsers P g packages.yam
\ >
users Al cal environment config spack.yaml
Concrete spec is
fully constrained
Command line constraints and can be built.
users

spack install hdf5@1.12.0 +debug

IDEAS =
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Crash course in ASP

ASP syntax is derived from Prolog

Basic piece of a program is a term

Terms can easily represent any data
structure, e.g. this is a graph with:

— 2 nodes, one with a variant value

— 1 dependency edge

Terms followed by "." are called facts

— Facts say "this is true!"

23

enable_some_feature.
node("lammps").
node("cuda").

variant_value("lammps", "cuda", "False").

depends_on("lammps", "cuda”, "link").

IDEAS =
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Crash course in ASP

« ASP programs also have rules. « Comma in the body is like "and"
— Rules can derive additional facts. — Writing same head twice is like "or"
e ;- can be read as "if" « Capital words are variables
— The head (left side) is true — Rules are instantiated with all possible

bstitutions f iables.
— If the body (right side) is true substitutions Tor variables

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

| node("lammps").
depends_on("lammps", "cuda”, "link").

IDEAS =
— \) ) sxose
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Crash course in ASP

« Constraints say what cannot happen

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this constraint says "no cycles"

* Choice rules give the solver freedom to choose from possible options:

% if a package is in the graph, exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

o
\
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ASP searches for stable models of the input program

« Stable models are also called answer sets

» A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.

— Similar to fixpoints

— Put more simply: a set of atoms where all your rules are true!

* Unlike Prolog:
— Stable models contain everything that can be derived (vs. just querying values)

— ASP is guaranteed to complete!

IDEAS =
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Spack’s concretizer is now implemented in ASP

« Used Clingo, the Potassco grounder/solver package

« ASP program has 2 parts:

1. Large list of facts generated from package recipes (problem
instance)

« 60k+ facts is typical — includes dependencies, options, etc.
2. Small logic program (~700 lines of ASP code)

« Algorithm (the part we write) is conceptually simpler:
— Generate facts for all possible dependencies

— Send facts and our logic program to the solver
— Rebuild a DAG from the results

Some facts for HDF5 package

IDEAS =\
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Spack DSL allows declarative specification of complex constraints

CudaPackage: a mix-in for packages that use CUDA

class (PackageBase):

variant('cuda’, default= , cuda is a variant (build option)
description="Build with CUDA")

variant('cuda_arch', cuda_archis only present
description="CUDA architecture', if cuda is enabled
values=any_combination_of(cuda_arch_values),

when="+cuda") dependency on cuda, but only

depends_on('cuda', when="+cuda") if cuda is enabled

depends_on('cuda@9.0:", when="cuda_arch=70")
depends_on('cuda@9.0: ", when="cuda_arch=72")
depends_on('cuda@10.0: ", when="cuda_arch=75")

constraints on cuda version

conflicts('%gcc@9:', when="+cuda Acuda@:10.2.89 target=x86_64:") compiler support for x86_64
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppcbdle:') and ppc64le

There is a lot of expressivity in this DSL. IDEAS —

\
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Many packaging systems reuse builds via metadata hashes

mpileaks

mpi

= = = e e = - - - -

callpath -

yninst

libdwarf

= == e e e e e —m———

74mwnxgn6nujehpyyalhwizwojwn5zga

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs
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1
1
d
1
I
1
|
I
1
1
|
I
1
1
|
I

v

D et =

go2af23r2npatxdtna3fmwkeennywixp

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

libelf

v

k2yumgxwqbijubivfpbjpmrrbzyqcoot

1. Resolve metadata

2. Create per-node hashes

cwx4qwk4bkamfagjrgimxfu3bhasyt74

N
S

Package
22 N cache

~.

3. Query for exact hash match

« Hash matches are very
sensitive to small changes

* In many cases, a
satisfying cached or
already installed spec can
be missed

* Nix, Spack, Guix, Conan,
and others reuse this way

IDEAS =\
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We can be more aggressive about reusing packages.

* First, we need to tell the solver about all the installed packages!
« Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","1lwatuuysmwkhuahrncywvn77icdhsémn"’
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "node" , "openssl").
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn”, ver510n" ,"openssl”,"1.1.1g"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsemn" , "node platform set","openssl","darwin").
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_os_set","openssl","catalina"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn",’ node_target_set"_"openssl","x86_64"f‘
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” ,"variant_set", "openssl”, "systemcerts","True").
","openssl”,"apple-clang")

,"openssl", "apple clang","12.0.0").

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "node_compiler_set
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_compiler_version_set

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” ,"concrete", "openssl").
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "depends_ on" ., openss1” . "211b" . "biiild"]
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "depends_on","openssl”,"zlib","1ink").

imposed_constrainti"lwatuuysmwkhuahrncywvn??icdhsGmn":"hash"."zlib" "x2anksgssxsxa7pcnhzg5k3dhgacglze™).

IDEAS =\
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Telling the solver to minimize builds is surprisingly simple:

it's just the impose half of a generalized co

ndition.

1. Allow the solver to choose a hash for any package:

{ hash(Package, Hash) : installed_hash(Package, Hash) }

1 :- node(Package).

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package, Hash

3. Define a build as something without a hash:

build(Package hash(Package, _), node(Package

4. Minimize builds!

#minimize { 1€100,Package : build(Package) }.

31

productivity

EEEEEEEE
CCCCCCCCC
PROJECT



With and without reuse optimization

spackle):solver solve -I1 hdf5
==> Best of 9 considered solutions.
==> Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild
20

(SIS RS IS ISR RS IS RSSO IS RS SIS
(SSHSHSENNSRSESESRSRSESR SR SRS

hdf5@1.10.7
Acmake@3 .21 .4
Ancurses@6. 2
Apkgconf@1.8.0
Aopenss1@1.1.11
Aperl@5.34.0
Aberkeley-db@18.1.40
Abzip2@1.0.8
Adiffutils@3.8
Alibiconv@l. 16!
Agdbm@1 . 19
Areadline@8.1
Az1ib@1.2.11

~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default Y
~doc+ncurses+openssl+ownlibs~qt build_type=Release
~symlinks+termlib abi=none

~docs certs=system
+cpanm+shared+threads
+cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814
~debug~pic+shared

libs=shared,static

+optimize+pic+shared
Aopenmpi@4.1.1! ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac
Ahwloc@2.6.0 ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+shd
Alibxml2@2.9.12 ~python
Axz@5.2.5 ~pic libs=shared,static
Alibevent@2.1.12 +openssl
Aopenssh@g. 7pl!
Alibedit@3.1-20210216!

spackle):spack
=> Best of 1@ considered solutions.
=> Optimization Criteria:

Priority Criterion

Pure hash-based reuse: all misses

Note the bifurcated

optimization criteria

solve --reuse -I1 hdf5

Installed ToBuild
number of packages to build (vs. reuse) -
deprecated versions used

version weight

number of non-default variants (roots)

preferred providers for roots

default values of variants not being used (roots)
number of non-default variants (non-roots)

preferred providers (non-roots)

compiler mismatches

0S mismatches

non-preferred 0S's

version badness

default values of variants not being used (non-roots)
non-preferred compilers

target mismatches

non-preferred targets

(S

[(SEOSI SIS I SIS

[y
(SISO, I o B SIS IS
(SIS RS S IS I SIS IS I IS IS IS IS RS B B

hdf5@1.10.7
Acmake@3 .21 .1
Ancurses@6.2
Aopenssl@l.1.11
Azlib@1.2 .11

~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
~doc+ncurses+openssl+ownlibs~qgt build_type=Release
~symlinks+termlib abi=none
~docs+systemcerts
+optimize+pic+shared
Aopenmpi@4. 1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
Ahwloc@2.6.0 ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+
Alibxml2@2.9.12 ~python
Alibiconv@l. 16 libs=shared,static
Axz@5.2.5 ~pic libs=shared,static
Apkgconf@1.8.0
Alibevent@2.1.12
Aopenssh@3 . 6pl!
Alibedit@3.1-20210216
Aperl@5.34.0
Aberkeley-db@18.1.40
Abzip2@1.0.8
Agdbm@1.19
Areadline@8.1

With --reuse: 16 packages were reusable

IDE A S =
productivity E\(C\)P

+openssl

+cpanm+shared+threads
+cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814f
~debug~pic+shared




So far, it looks like we can handle very large problem sizes

with the reusing solver

« Cumulative
distribution of setup
and solve times

* Hypothesis: we don't
see big combinatorial
blow-up b/c we're
strict about
dependency hashes

* Next: try mixed ABI,
but prefer "pure"
source-built
dependencies

33

setup

4000 -

3000 A

Package count

2000 ~

1000 -

[

—— 6804 cached pks

—— 15255 cached pks
—— 27160 cached pks
—— 63099 cached pks

(reading data in Python — can be sped up w/caching)

20 40 60 80 100 120
Sec

Most of the time is spent in setup

solve

4000 -

3000 A

Package count

2000 ~

1
1
1
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1000 :
|
1

—— 6804 cached pks

—— 15255 cached pks
—— 27160 cached pks
01 —— 63099 cached pks

0 5 10

15

Se

20 25 30 35
C

Even with 63k packages in a repo,
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What does the Spack project look like?

External Stacks E4 S

Infrastructure

IDEAS

productivity
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Cl has made Spack builds much more reliable!

@ Spack Contributions > VQitlab.spack.io w X olinos in ANS.

on GitHub

(over 1,000 contributors)

<

ppcb64le, GPU pipelines
v at
> -J U. Oregon
Pipelines at LLNL

spack ci J ! !g (Cray PE soon)

cosr?f?g(;:tlj'ryaat?cq)lns GitLab Cl builds (changed) packages
v ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab On every pull request
@ (E4S, S[Egrss’)AWS’ On every release branch

Do users really need to build from source?

o
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With v0.18, Spack has a public binary cache

# latest v0.18.x release binaries
spack mirror add https://binaries.spack.io/releases/v0.18

# rolling release: bleeding edge binaries
spack mirror add https://binaries.spack.io/develop

e Over 3,000 builds in the cache so far:

36

— Amazon Linux 2 x86 64 v4
— Amazon Linux 2 aarcho4

— Amazon Linux 2 graviton2
— Ubuntu 18.04 x86 64

Do we trust binaries?

IDEAS
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We aim to lower the burden of maintaining a binary distribution
and make it easy to mix source builds with binaries.

W
Traditional
package manager

One software stack

. ; Portable (unoptimized
Recipe per Build farm ( P ) upgraded over time

package configuration x86_64 binaries
(need rewrites for new systems)

( |::
. [ L
i ‘ a Optimized |:> zlg TE TE Built for specific:
Spack Parameterized recipe N 44, Skylake binaries O ‘M3 M3 Systems

Optimized |:> zlg ?E TE Many
Graviton2 binaries — — O software stacks

. Compilers
per package Build farm / CI e e I = :
(Same recipe evolves for all targets) i, Opt|m|zeq |:> zII:I z||:| z||:| OS's
4y GPU binaries 0O \Oa VO MPIs

etc.
Q Users/developers can also build directly from source ﬁ

IDEAS =
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Our infrastructure enables us to sustainably manage a
binary distribution

Public, signed binaries in

Untrusted S3 buckets CloudFront distribution
Internal per-PR build caches https://binaries.spack.io
github/pr-28468 ]—[ github/pr-28469 develop H releases/v0.18
Contributors submit Maintainers review PRs Rebuild and Sign
package changes « Verify PR build succeeded - Published binaries built
« Iterate on builds in PR - Review package code ONLY from approved code

« Merge to develop * Protected signing runners

» Caches prevent
* Ephemeral keys

unnecessary rebuilds

* Moves bulk of binary maintenance upstream, onto PRs
— Production binaries never reuse binaries from untrusted environment

IDEAS =\
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Why should we care about this for our HPC codes?

LLNL ARES

L—1

g — 2 T Types of Packages

LLNL, Internal [ LLNL, Open Source) External, Open Source

Our codes use a lot of external software 30 12 71
— Most packages are external open source
— Many LLNL packages are also open source and developed in the open

We cannot replace all these OSS components with our own
— How do we vet all these components?

Key question: Who/what do you trust to validate the components?
— Current processes are not scalable and not automated!

S
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We will continue scaling this infrastructure out!

* We are doing 40k builds per week!
— There are lots of optimizations left to do on the build pipelines
— We think we can eventually scale to all 6,400 Spack packages

* Goal: make source builds unnecessary for most users
— Source builds are optimized for x86_64_v4 (avx512), graviton, etc.
— Source builds will still be seamless — key for reproducibility
— Use spack develop to tweak (almost) any binary you can install

* We will keep scaling OS, compiler, and arch support
— Current crop of compilers and OS’s is a bit old — expect a refresh o
— Cray PE build coming soon! = =

« Amazon Linux 2 builds work on AWS ParallelCluster Build stats at
NOW! https://stats.e4s.io
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A Notional Secure Pipeline Binary
@ Packages

O Open Source Tarballs, other sources l:\I> &‘ |

Contributions =0= Git commits Verify

: < Qo B S 7

’\-/ Sign %ca-rjl ///
T Scan Build Deploy
LI container
Images
Spack has 6,500 packages,
with many updates per day. @ @ &‘
b
Container Sign Verify
Build

« We are working to establish a set of guidelines for supply chain integrity
— Labs are trending towards GitLab, Spack for HPC
— Standard container formats can help with scanning
— Standard Software Bill of Materials (SBOM) format could help sites

cross-validate codes I D E A S o
' —\ EXASCALE
s * Spack can help to standardize some of this. productivity —\( \) — e
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Spack’s long-term strategy is based around

broad adoption and collaboration

Not sustainable without a community
— Broad adoption incentivizes contributors
— Cloud resources and automation absolutely necessary

* Preserves build knowledge in a cross-platform,
reusable way

— Minimize rewriting recipes when porting
* Cl ensures builds continue to work as packages
evolve
— Keep packages flexible but verify key configurations

 Growing contributor base and automation are
the top priorities

— 377 contributors to 0.18 release!

dWS

©
FUJITSU

(ii:g ,,,,,,,,,,

NVIDIA.

Sandia
National
Laboratories

BERKELEY LAB

Arm  %OAKRIDGE

National Laboratory
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Other resources
* Star us on GitHub!
https://github.com/spack/spack

, .. Slack (1,900+ users)
.. https://slack.spack.io

43

Tutorial
https://spack-tutorial.readthedocs.io

(i

Documentation
https://spack.readthedocs.io

(i

Follow us on Twitter!
@spackpm
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Questions?
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We are working with code teams to develop standard workflows

for layered build farms

We are working with the MARBL
team to move their development
environment to Spack

We have established a
build and deployment working
group among WSC codes

We aim to put together an L2 milestone MARBL Packages

for next year to: Common WSC
— Make a common build farm for WSC codes packages
— Layer with Spack’s public build farm
— Gradually bring teams together around standard Mainline Spack

packages

IDEAS
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