
exascaleproject.org

See slide 2 for
license details

Software Testing and Verification

Anshu Dubey (she/her)
Argonne National Laboratory

Software Productivity and Sustainability track @ Argonne Training
Program on Extreme-Scale Computing summer school

Contributors: Anshu Dubey (ANL), Patricia Grubel (LANL), Rinku Gupta
(ANL), Alicia Klinvex (SNL), Mark C. Miller (LLNL), Jared O’Neal (ANL),
David M. Rogers (ORNL), Gregory R. Watson (ORNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, Illinois, 2022. DOI: 10.6084/m9.figshare.20416215.

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

• This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

3

Motivation – Testing Practices

• Supercomputer Cycles are Scarce Resources
– Goal = capture QA details during science runs

• Many people need to have confidence
in your results:
– You
– Your project lead or boss
– Your sponsor
– Your reviewers or referees
– Your readers

• Testing helps build credibility without repeating runs.

4

What about Verification and Validation?
• Scientific computing and software engineering use different definitions

Scientific computing Software engineering
Verification Confirms the mathematical accuracy and

stability of a numerical solution in addition to
specifications.

Confirms that the software conforms to its
specifications (i.e. requirements.)

Validation Confirms the physical accuracy of a given
model by comparing against experimental
data.

Confirms that the software actually meets the
customer’s needs.

• Validation in scientific computing requires a comparison to the experimental
data, whereas in software engineering it is based on customer needs

• Also, for a real problem, there is typically no way to check for correct output
given some inputs. Validation is still required however, so an indirect method
must be used.

5

Testing within the software development lifecycle

• When should functional tests be provided?

• Ideally before the code is written
– Also known as test driven development (TDD)
– Tests then become the specification for the program

• This approach also ensures that thought is given to what it means for the
program to be correct, rather than just what the program should do

• Requires:
– Care in writing tests
– Frequent running of tests (see our Continuous Integration module)
– Wide adoption by development team

6

Steps for test driven development

• Write a single test1 describing an aspect of the program

• Run the test, which should fail because the feature does not exist

• Write just enough code to make the test pass

• Refactor the code

• Repeat, creating new tests as new functionality is added

1In numerical methods there are times when a single test may not suffice

7

Testing within the software development lifecycleTesting within the software development lifecycle

8

Developing Tests

We verify
correct

behavior

How ?

9

Developing Tests

We verify
correct

behavior

We think of ways in which we can tell
whether the code is doing what it is

supposed to do How ?

10

Developing Tests

We verify
correct

behavior

We think of ways in which we can tell
whether the code is doing what it is

supposed to do

Compare
against a known

analytical
solution

Compare
against a

manufactured
solution

How ?

11

Developing Tests

We verify
correct

behavior

We think of ways in which we can tell
whether the code is doing what it is

supposed to do

Compare
against a known

analytical
solution

Compare
against a

manufactured
solution

How ?

Right there are all the
ingredients for building

tests

All that is needed is
automating directly or

indirectly

12

Developing Tests

We verify
correct

behavior

We think of ways in which we can tell
whether the code is doing what it is

supposed to do

Compare
against a known

analytical
solution

Compare
against a

manufactured
solution

How ?

Visualize and
inspect output

Right there are all the
ingredients for building

tests

All that is needed is
automating directly or

indirectly

13

Developing Tests

We verify
correct

behavior

We think of ways in which we can tell
whether the code is doing what it is

supposed to do

Compare
against a known

analytical
solution

Compare
against a

manufactured
solution

How ?

Visualize and
inspect output

Develop
diagnostics

(indirect ways
of verification)

Right there are all the
ingredients for building

tests

All that is needed is
automating directly or

indirectly

14

Developing Tests

We verify
correct

behavior

We think of ways in which we can tell
whether the code is doing what it is

supposed to do

Compare
against a known

analytical
solution

Compare
against a

manufactured
solution

How ?

Visualize and
inspect output

Develop
diagnostics

(indirect ways
of verification)

Right there are all the
ingredients for building

tests

All that is needed is
automating directly or

indirectly

Including these through
automation is equally

important

Comparison utility
Conserved quantities

Error bars
Statistical analysis

15

Test Development For a New Code

For every new
functionality
being added,
think about its

verification

If manufacturing
input is too

difficult, again
apply scaffolding

If it has limited
dependencies,
manufacturing
input for known
output will give
you a self test

Simple functions:
relation between
input and output

=> unit test

Other functions:
build scaffolding

16

Test Development For a New Code

For every new
functionality
being added,
think about its

verification
If it has limited
dependencies,
manufacturing
input for known
output will give
you a self test

Simple functions:
relation between
input and output

=> unit test

17

Components needed
• Mesh
• Hydrodynamics solver
• Equation of state
• Parallelization

Example – Shock Hydrodynamics with Adaptive Mesh Refinement

Strategy for development
Think of an application with

analytical solution

18

Components needed
• Mesh
• Hydrodynamics solver
• Equation of state
• Parallelization

Example – Shock Hydrodynamics with Adaptive Mesh Refinement

Strategy for development
Think of an application with

analytical solution

• Sedov blast wave
• High pressure at the

center
• Shock moves out in a

circle
• Analytical solution for

how far the shock has
travelled

19

Step 1 – Equation of State

• Initialize density and internal energy with known values
• Compute pressure and temperature using EOS
• Next use density and computed pressure as input and compute internal

energy and temperature using EOS
• Compare computed values against initialized values

20

Step 1 – Equation of State

• Initialize density and internal energy with known values
• Compute pressure and temperature using EOS
• Next use density and computed pressure as input and compute internal

energy and temperature using EOS
• Compare computed values against initialized values

We have a unit test

21

Step 2 – Mesh

• Start with uniform grid
• Domain decomposition for

parallelization
– Halo fill operation

• Initialize the interior (red) with a known
function

• Apply halo fill
• Compute values for the halo using the

known function
• Compare against filled values

rank 2

rank 1

halo cells

22

Step 2 – Mesh

• Start with uniform grid
• Domain decomposition for

parallelization
– Halo fill operation

• Initialize the interior (red) with a known
function

• Apply halo fill
• Compute values for the halo using the

known function
• Compare against filled values

rank 2

rank 1

halo cells

We have another unit test

23

Step 3 – Hydrodynamics

• Apply initial conditions to the mesh
– zeroes everywhere except at the center

• Write code for the analytical expression of the distance traveled by the shock
• Do time integration
• At time T compare evolved solution against analytical solution

If both mesh and EOS unit test pass, then any failure is in
Hydrodynamics

This is the idea behind scaffolding

24

• The same halo fill unit test for mesh also works for AMR
• Additional functionalities to test are:

– Fine-coarse boundary resolution
– Regridding

• Steps in testing
– Run Sedov with UG
– Run Sedov with AMR, but no dynamic refinement

• If failed fault is in flux correction
– Run Sedov with AMR and dynamic refinement

• If failed fault is in regridding

Step 4: AMR

25

• The same halo fill unit test for mesh also works for AMR
• Additional functionalities to test are:

– Fine-coarse boundary resolution
– Regridding

• Steps in testing
– Run Sedov with UG
– Run Sedov with AMR, but no dynamic refinement

• If failed fault is in flux correction
– Run Sedov with AMR and dynamic refinement

• If failed fault is in regridding

Step 4: AMR

We have continued to build scaffolding and
are able to pinpoint cause of error

26

There may not be existing tests

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state
• Verify correctness

– Always inject errors to verify that the test is working

state

driver

Test Development For a Legacy Code

27

How to build your test suite?

• Two “levels”
– Automated / scheduled testing

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

28

How to build your test suite?

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults
– Integration tests with simple to complex configuration and system level
– Restart tests

• Rules of thumb
– Simple
– Enable quick pin-pointing

Useful resources https://ideas productivity.org/resources/howtos/

https://ideas-productivity.org/resources/howtos/

29

• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– Counts the number of times each statement is

executed
– Necessary for testing, but not sufficient

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what tests are needed?

• Lcov
– a graphical front-end for gcov
– available at

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module

• Hosted servers (e.g. coveralls,
codecov)

• graphical visualization of results
• push results to server through

continuous integration server

30

Building Test-suite

• Code coverage
tools necessary but
not sufficient

• Do not give any
information about
interoperability • Map your tests and examples – what do they do?

• Follow the order
– All unit tests – including full module tests (e.g. CL)
– Tests sensitive to perturbations (e.g. SV)
– Most stringent tests for solvers (e.g. WD, PT)
– Least complex test to cover remaining spots (Aha!)

First line of defense – code coverage tools

31

Good Rules of Thumb

• Test your tests!
– Make sure tests fail when they’re supposed to!

• Add “regression tests”
– Ensure that bugs aren’t creeping in

• Test regularly
– Critical when teams are adding code regularly
– To identify and document where changes to the underlying platform change code

behavior/results
• Automate regular testing

– Inculcate the discipline of monitoring the outcome of regular testing

• Exercise third-party dependencies

• Physics/math based strategies
– Conserved quantities, symmetries, synthetic operators
– Eliminate complete dependence on bitwise reproducibility

32

Summary

• A testing strategy is essential for producing reliable trustworthy
software
– Invest the time needed to thoroughly test your software at all levels
– Use automation whenever possible

• Different challenges are associated with exploratory, legacy, and
composable codes
– Adapt your strategy to fit your situation.
– Eventually you will want to be able to verify all components in a code release.

• Don’t get distracted by all the technologies out there – focus on
exercising your code.
– Scaffolding projects can help with mechanics.

33

Resources

• Oberkampf, W., & Roy, C. (2010). Verification and Validation in Scientific
Computing. Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511760396

• Michael Feathers. 2004. Working Effectively with Legacy Code. Prentice Hall
PTR, USA. ISBN: 9780131177055

• A Dubey, K Weide, D Lee, J Bachan, C Daley, S Olofin… - Ongoing Verification
of a Multiphysics Community Code. Software: Practice and Experience, 2015
https://doi.org/10.1002/spe.2220

https://doi.org/10.1002/spe.2220

	Software Testing and Verification
	License, Citation and Acknowledgements
	Motivation – Testing Practices
	What about Verification and Validation?
	Testing within the software development lifecycle
	Steps for test driven development
	Testing within the software development lifecycle
	Developing Tests
	Developing Tests
	Developing Tests
	Developing Tests
	Developing Tests
	Developing Tests
	Developing Tests
	Slide Number 15
	Slide Number 16
	Example – Shock Hydrodynamics with Adaptive Mesh Refinement
	Example – Shock Hydrodynamics with Adaptive Mesh Refinement
	Step 1 – Equation of State
	Step 1 – Equation of State
	Step 2 – Mesh
	Step 2 – Mesh
	Step 3 – Hydrodynamics
	Step 4: AMR
	Step 4: AMR
	Slide Number 26
	How to build your test suite?
	How to build your test suite?
	How do we determine what tests are needed?
	Building Test-suite
	Good Rules of Thumb
	Summary
	Resources

