
exascaleproject.org

See slide 2 for
license details

Understanding Your Software
Development
(through git repository data mining and code analysis)

Boyana R. Norris (she/her)
University of Oregon

Software Productivity and Sustainability track @ Argonne Training
Program on Extreme-Scale Computing summer school

Contributors: Stephen Fickas (UO), Bosco Ndemeye (UO), Boyana R.
Norris (UO), Jason Prideaux (UO)

https://github.com/CAT-SDK/GremCat

https://github.com/CAT-SDK/GremCat

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, Illinois, 2022. DOI: 10.6084/m9.figshare.20416215.

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

• This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

3

Motivation

➢ Software development productivity is affected by many factors, many of which
are difficult or impossible to measure (accurately).

➢ So far in this track, the focus was on concepts and best practices based on
research, experience and expert opinion.

➢ Here, we focus on supporting best practices through software tools that can
help understand how existing or new software practices may affect these
observables.

➢ Tools are meant to be used -- so we will show some simple ways in which
anyone can begin exploring their own project’s data without significant up-
front investment of time and effort.

4

Motivation
(Am I just making things up?)

Murphy-Hill, E., Ciera Jaspan, Caitlin Sadowski, D. Shepherd,
Michael Phillips, C. Winter, Andrea Knight, Edward K. Smith and
M. Jorde. “What Predicts Software Developers’ Productivity?”
IEEE Transactions on Software Engineering 47 (2021): 582-594.

Top three (on average):
• Job enthusiasm (F1)
• Peer support for new ideas (F2)
• Useful feedback about job
performance (F11)

Top factor at
Google!

5

Other software-related factors

A few other positively rated software-related factors (in decreasing order of average scores):

+ My project’s bug finding process is efficient and effective.
+ The software process my project uses is well defined.
+ My software reuses code, such as by using APIs, rather than duplicating it.
+ My software’s architecture mitigates risks (e.g., security vulnerability, changes in requirements, etc.).

Negative impact on productivity:
− My software requires extensive data storage.
− My software is extremely complex.
− My software's platform (e.g. development environment, software stack, hardware stack) changes rapidly.
− Extensive documentation is required to use my software at different points in its lifecycle.

Murphy-Hill, E., Ciera Jaspan, Caitlin Sadowski, D. Shepherd,
Michael Phillips, C. Winter, Andrea Knight, Edward K. Smith and
M. Jorde. “What Predicts Software Developers’ Productivity?”
IEEE Transactions on Software Engineering 47 (2021): 582-594.

6

Murphy-Hill et al. study conclusions

“A notable outcome of the ranking is that the top 10 productivity factors are non-technical. This is
somewhat surprising, given that most software engineering research tends to focus on technical
aspects of software engineering, in our estimation.

Thus, a vigorous refocusing on human factors may yield substantially more industry impact for the
software engineering research community. For instance, answering the following questions may be
especially fruitful:

➢ What makes software developers enthusiastic about their job? What accounts for differences
in levels of enthusiasm between developers? What interventions can increase enthusiasm?
This work can extend existing work on developer happiness [24] and motivation [25].

➢ What kinds of new ideas are commonly expressed in software development practice? What
actions influence developers’ feelings of support for those ideas? What interventions can
increase support for new ideas, while maintaining current commitments?

➢ What kinds of job feedback do software engineers receive, and what makes it useful? What
kinds of feedback is not useful? What interventions can increase the regularity and
usefulness of feedback?” [emphases mine]

7

Development-
related data
and analysis

What we are trying to do

Motivation and enthusiasm are ephemeral
things that cannot be quantified easily.

On the other hand, we have many artifacts and
associated metadata that are related (if indirectly)
to productivity.

So, we are betting that using some
data is better than not looking at any
data, as we make decisions that are
aimed at improving software
development productivity and code
quality.

Enthusiasm,
motivation

More and
better
software

This work is part of two DOE ECP projects:

IDEAS-ECP: foster and promote
SE practices for better software
xSDK: Extreme-scale Scientific
Software Development Kit

https://www.exascaleproject.org/
https://ideas-productivity.org/ideas-ecp/
https://xsdk.info/

8

What this module is about

➢ We introduce a flexible,
efficient, and
usable software framework for acquiring,

storing,
manipulating, and
visualizing
development-related data.

➢ We demonstrate a few of its capabilities here; we continue to add new
patterns and tools.

○ Contributions welcome! github.com/CAT-SDK/GremCat/

ECP projects that may be present in examples in this module: Spack, LAMMPS, PETSc, Nek5000 E3SM,
QMCPACK, QDPXX, LATTE NAMD, fast-export, Enzo, TAU2, xpress-apex, LATTE, NWChem, FLASH, Gingko.

9

Part I: Mining development metadata

Part II: Analyzing code

10

Part I: Mining your development data

Development data:
➢ Git metadata: commits, forks, branches, developers
➢ Issues and associated discussions
➢ Pull requests (github, gitlab) and associated discussions
➢ Mailing list archives

Goal: Analyze available data to help formulate and answer questions about
development processes and their impact on productivity and code quality.

11

Questions that can be answered (in part) with IDEAS data
analysis tools

➢ If I adopt practice X, how will metric Y be affected?
➢ How active is the developer community? (git, issues, PRs, emails)
➢ What parts of the code base could benefit from review or refactoring? (git, issues)
➢ What is the project’s reliance on individual developers? (git)
➢ How are developers’ contributions split among different categories? (git, manual

labeling required)
➢ How engaged are the user and developer communities? (PRs, issues, mailing lists)
➢ What are some hot topics of discussion? (issues, mailing lists)
➢ How and on what do developers collaborate? (git, issues, mailing lists)
➢ ….

12

Common patterns with known implications

Pluralsight book (2019)1:
“20 patterns is a collection of work patterns we’ve
observed in working with hundreds of software teams.
Our hope is that you’ll use this field guide to get a
better feel for how the team works, and to recognize
achievement, spot bottlenecks, and debug your
development process with data.”

1https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf

https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf
https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf

13

Common patterns with known implications

Starting with these pattern descriptions, we can:
➢ Identify patterns that are relevant to HPC (open-

source) software development.

➢ Characterize each pattern using data from revision
control systems and developer communications.

➢ Inform decisions of the effects of adopting new SE
practices.

1https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf

https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf
https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf

14

Example metrics
Metric Description

Monthly bug fix rate Computes cumulative count of bugs closed each month, starting from the beginning of the project. A higher value is not necessarily
good, trends are more informative than individual values.

Monthly feature request rate Number of new feature requests made by users. A higher value may indicate popularity/importance of the feature or missing
functionality in the current software version.

Correlation of the number of issues
with project age

Gives a good insight into the life cycle of the project by mapping the trend of issues raised over the lifetime of the project.

Commits, derived metrics Characterizes some aspects of developer activity.

Number of issues Project-related communications can be used to indicate community involvement and rates at which issues are resolved. For example,
fast-growing projects can have significantly more activity in issues than more mature ones.

Issue categories Identifies the types of issues that are reported in the repository. This information will be useful to derive correlation with other metrics.

Number of followers and watchers Reports the code maturity and popularity. In addition, the number of followers can be correlated with the time it takes to fix reported
issues.

Mailing list metrics Relates to average time in discussion, most popular topic of interest, product activity based on type of emails, etc.

Number of contributors Size of development community. When analyzed over time, we can estimate project turnover and identify different types of
contributors.

Code complexity Compute changes to code complexity metrics, e.g., cumulative size or cyclomatic complexity, over time.

15

Example pattern: Domain champion

“The Domain Champion is an expert in a
particular area of the codebase. They know
nearly everything there is to know about their
domain: every class, every method, every
algorithm and pattern. ”

Why do we care?

➢ Can lead to great productivity
➢ Code quality implications
➢ Turnover effects on code -- what happens

to the domain when the domain
champion leaves?

16

Domain champion pattern: How do we detect it?

“The Domain Champion is an expert in a particular area of the codebase.”

Developers

February, 2021

Fi
le

s

Li
ne

s
of

 C
od

e
C

ha
ng

ed
 (L

O
C

C
)

Can also consider
other notions of
“domain”, e.g., class,
package, module, etc. Can consider different

“change” metrics, more
on that later.

Can be computed
over any specific
period.

Individual
developers or
subteams

17

Domain Champion Pattern: What, if anything, should we do?

+ Highly productive pattern in the short term.
- There’s usually very little actionable feedback that

others can provide in code reviews.
- Potentially not sustainable → can lead to

stagnation.

☺Possible actions:

● Assign the DC tickets for other areas of the code.
● Make an effort to involve others (e.g., new

developers) in work in that domain.
Projects

Proportion of commits by the most active developer

One possible extension: Project Champion

“The Domain Champion is an expert in a particular area of the codebase.”

18

Another example pattern: Unusually high churn

What files (components) have unusually large or
frequent changes? How many developers are
involved?

+ could be a sign of normal productive
development

- may indicate need for more developer
resources

- high conflict potential

(Code churn: code that is rewritten or deleted shortly after being written)

19

Unusually high churn pattern: How do we detect it?

➢ Decide on the granularity. Some
possibilities: modules, classes, files,
functions.

➢ Define the actors -- groups of people
(e.g., sub-teams), individual developers;
doesn’t have to be people, it can also be
milestones or other project entities.

➢ Choose the time period.
➢ Choose the churn metric. Some

examples: lines of code, cos (and other)
difference between code versions,
number of PRs, commits, number of
files.

Total changes: Developers vs. files
(over the entire project history)

Developers

20

Unusually high churn pattern: What to do?

Unusually large amount of changes to
single files or components may lead to
development inefficiencies.

☺Possible actions:

➢ Consider refactoring the high-churn project
components

➢ Consider involving more developers in high-
churn areas that are dominated by a single
person

Total changes: Developers vs. files
(over the entire project history)

Developers

21

Pattern: In the zone

When are top contributors most
productive?

+ Consistent high productivity during
certain times of day

- Burnout, work-life balance

Weekday

Hour

1. Choose productivity
metric (LOCC, text
difference, # commits, #
PRs, etc.)

2. Choose time period
3. Choose visualization

How to compute?

C
ha

ng
e:

 c
os

in
e

di
ffe

re
nc

e

Peak times

22

In the zone pattern: What to do?

☺Possible actions:
➢ Acknowledge the consistently high-

performing developers.
➢ Recognize and acknowledge positive

change in non-top developers (e.g.,
junior or new contributors).

➢ Consider the timing of and number of
meetings during developers’ most
productive times.

Pr
oj

ec
t

s

Bonus: Ability to quickly “see” what people are
doing on average. Below: The average of over a
dozen ECP projects’ most active time periods.

When are top contributors most
productive?

+ Consistent high productivity during
certain times of day

- Burnout, work-life balance

After
work!

23

Technical Details and Examples

https://bit.ly/DevPatterns

https://bit.ly/DevPatterns

24

Python packages

Implementation

MySQL
Database

Git commits.
Issues, emails

patterns visualizer
Jupyter
notebooks

Local project
cache

database

Example analysis workflow

from patterns.visualizer import
Visualizer

vis =
Visualizer(project_name='spack')

vis.get_data()
INFO: Loaded local cached copy of
spack data.
INFO: Done computing averages.
64909 commits (code only)

df =
vis.plot_overall_project_locc(time_
range=None, log=True)

Some currently available projects (more are being added
constantly): LAMMPS, Spack, PETSc, Nek5000, NWChem,
E3SM, QPMCPACK, qdpxx, NWChem, TAU,... Initial import
can take up to 36 hours for some larger projects, but
subsequent updates are fast and automated.

https://github.com/HPCL/ideas-uo/

https://bit.ly/DevPatterns

https://bit.ly/DevPatterns

25

Impact of different “change” estimates

Simple line counts in git commit diffs:
● Patterns such as ‘---+++’ are counted as edited

lines, e.g., 3 in this example
● Unmatched ‘-’ and ‘+’ lines counted as lines

deleted and added, respectively
● LOCC = edited + deleted + added

More “intelligent” estimate of the magnitude of
changes:

● Collect the old and new strings corresponding to
each commit’s diffs

● Apply text distance metrics (based on the
textdistance Python package; ~30 methods)

● E.g., change-size-cos is the cos distance
between the vector embeddings of old and new

Developers

Developers

Fi
le

s

Fi
le

s

26

Impact of different “change” estimates (cont.)

➢ Time-series git data is messy
● Moving averages help see trends for any time period

● nd cosine distance

🐙🐙 Combining different “change
size” metrics
🐶🐶 Example on right: simple

LOCC totals and cos distance

27

Significant events

Project 1

Project 2

29

How do projects weather interesting times?

Project 1 Project 2

Project 4Project 3

30

Where is development effort going?

Grannan, A., Sood, K., Norris, B., & Dubey, A. (2020). Understanding the landscape of scientific software used on high-performance
computing platforms. The International Journal of High Performance Computing Applications. https://doi.org/10.1177/1094342019899451

https://doi.org/10.1177/1094342019899451

31

Example Tool: MeerCAT
Using git data to improve developer processes and

efficiency

32

A Draft PR is created to
merge feature branch into
main branch.

The MeerCat PRA triggers
and analyzes file changes
and reports back.

More traditional Code
Quality and testing tools
trigger and report results.

33

The MeerCat PRA provides
the following analysis:

1. Are required docstrings
in place and actually
match the code?

2. If changes to files will
cause existing test
cases to become
misaligned.

3. Potentially useful labels
to add to the PR for
other tools to use.

4. Suggests other people
to add to the discussion
given their prior roles
related to files in this
PR.

The link will take the user to
the MeerCat PRA site for
further refinement of the PR
(see next slide).

34

Once the user is at the PRA
site, several aids are
available.

After analysis, the PRA finds
that one commit has
removed a parameter from a
function sub, but there is
been no change to the
documentation, i.e., code
and documentation are
misaligned.

Here the PRA editor is
highlighting the Numpy
docstring code that needs to
be changed and why.

The user can download
changes made to a Git
Patch file and then easily
merge in with existing PR.

35

The PRA can also search
the repo for test files that
reference the now changed
sub function.

It discovers one such file
(now misaligned) and
suggests changes in the
editor. Once the user
removes the now invalid
cases, the PRA will add the
test file (and commits) to
the existing Pull Request
through the Patch
mechanism.

The user can download
changes made to a Git
Patch file and then easily
merge in with existing PR.

36

1. MeerCat does analysis and leaves
comment in GitHub PR

2. If user clicks link, she is taken to the
PRA tool (previous slides).

3. From the PRA, click on a specific file
to get to the file explorer.

Benefits:
+ Problems detected early, don’t have to
wait for CI failure
+ Better overall documentation, testing

MeerCAT: File Explorer

37

Part II: Analyzing Code

38

Defects that code analyses can catch

Security: Buffer overruns, improperly validated input.
Memory safety: Null dereference, uninitialized data.
Resource leaks: Memory, OS resources.
API Protocols: improper use of APIs, incomplete/incorrect implementations
Exceptions: Arithmetic/library/user-defined
Encapsulation: Accessing internal data, calling private functions.
Data races: Two threads access the same data without synchronization

Key idea: check compliance with (mostly) simple, mechanical design rules.
Standard: ISO/IEC 5055:2021(E): Information technology —
Software measurement — Software quality measurement —
Automated source code quality measures

39

General-purpose tools for code checking (bugs, style)

➢ C/C++
● Run a bunch of general analyses with scan-check

(wrapper around clang --analyze, which is uses the static analyzer below)
○ Minimally invasive, not very customizable
○ Works great with CMake and Autoconf builds

● Clang static analyzer component: extensible analysis
framework for bug finding

○ Can do more complex analyses (path-sensitive, inter-procedural
analysis based on a symbolic execution technique)

○ Requires more compiler knowledge to extend
● Clang-tidy: extensible (libTooling-based) framework for

diagnosing typical programming errors or style issues
○ Checking and enforcing of simple coding conventions
○ Modular, provides API for implementing new checks
○ Relatively easy to integrate into Cmake

➢ Fortran
● Flang (compiler front-end to LLVM)
● Fortran-linter (limited)

https://clang.llvm.org/docs/ClangStaticAnalyzer.html
https://clang.llvm.org/extra/clang-tidy/

40

Example development workflow that considers code quality

Example “make commit” workflow (easy in C/C++, and hopefully possible soon for
Fortran):

● clang-format passes and reformats the code
● clang-tidy passes and enforces coding conventions
● clang static analyzer compiles debug and production builds (check errors)
● Project-specific analysis for debug and production build (check errors)
● debug/production builds get compiled and unit tests launched (check errors)
● production build + unit tests run under valgrind (check errors)
● production build gets compiled and unit test launched (check errors)
● production build with --coverage gets compiled and unit test launched against llvm-

cov (write unit-test coverage stats)

41

Our goals and approach
Make it easy(-ish) to define and apply static and dynamic program analysis
techniques to identify quality-related problems in HPC codes.

How? Two parts:
A. By integrating general static and dynamic program analyses into the HPC

software development process: mainly through documentation and examples.
B. By creating easy interfaces to custom analyses, with examples.

Why?
➢ Abstraction

● Elide details of a specific implementation.
● Capture semantically relevant details; ignore the rest.

➢ Programs as data
● Programs are just trees/graphs!
● …and we have lots of ways to analyze trees/graphs

42

Static program analysis is...

Systematic examination of an
abstraction of program state space.

Ensure everything is
checked the same
way.

Only track “important”
things...

Applies to all possible
executions.

Examples:
● clang-tidy
● Clang static analyzer

43

Dynamic program analysis is...

Partial examination of an abstraction of
a single execution path at runtime.

Applies to specific
executions; can miss
errors.

Can capture
information not
available statically.

Instrumented code only.

Examples:
● Valgrind
● Clang/LLVM

sanitizers (better!)

46

Example: Using scan-build with HYPRE1

hypre/src/cmbuild$ scan-build cmake ..
hypre/src/cmbuild$ scan-build make

1HYPRE: Scalable Linear Solvers and Multigrid Methods. https://github.com/hypre-space/hypre

https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods

47

Example: hypre (cont.)

hypre/src/cmbuild$ scan-view /tmp/scan-build-2021-05-27-073157-25436-1

details

Eek! Too much
information, can

synthesize a more
actionable report.

48

What about project-specific requirements?

Do you need to be a compiler expert to implement new program checks?

Thankfully -- no!

49

Implementation approach: Part B
Develop custom static and dynamic checking based on project-specific
requirements.
➢ C/C++

● Static: use and extend existing APIs (Clang static analyzer, clang-tidy); implement
custom AST traversals and matchers (more details next)

● Dynamic: use Clang sanitizer APIs; python for simplicity and easy of extensions by HPC
software developers

➢ Fortran
● Static: need to write new Flang-based checkers only for things that Fortran developers

actually care about
● Dynamic: do we need anything?

50

Example: Checking for violations of
PETSc developer rules

From PETSc Style and Usage Guide: https://petsc.org/release/developers/style/

https://petsc.org/release/developers/style/

52

Examples of project-specific rule violations (PETSc 3.14)
PETSc
Rule

PETSc Construct Description path Line Colu
mn

Rule-1 Function definition in
the library

PetscErrorCode
PETSCMAP1(VecScatterBeginMPI3Node)(VecScatter ctx,Vec
xin,Vec yin,InsertMode addv,ScatterMode mode)

~/petsc-3.14.3/src/vec/vscat/impls/mpi3/vpscat.h 249 16

Rule-2 Macro in the library #define
mpi_reduce_scatter PETSC_MPI_REDUCE_SCATTER

~/petsc-3.14.3/include/petsc/mpiuni/mpiunifdef.h 118 2

Rule-3 Function declaration
in the library

PETSC_INTERN PetscErrorCode
MatFactorFactorizeSchurComplement_Private(Mat);

~/petsc-3.14.3/include/petsc/private/matimpl.h 494 29

Function declaration
in the library

PETSC_EXTERN PetscErrorCode
MatFactorFactorizeSchurComplement(Mat);

~/petsc-3.14.3/include/petscmat.h 1245 29

Rule-4 Function definition in
the library

PETSC_EXTERN PetscErrorCode
DMDAVecGetArray(DM,Vec,void *)

~/petsc-3.14.3/include/petscdmda.h 113 29

Function call in the
application

ierr = VecGetArray(y,yv) ~/petsc-3.14.3/include/petscvec.h 545 10

Rule-5 Function call in the
library

ierr = PetscFEPushforwardGradient(fe, fegeom, 1,
interpolantGrad);

~/petsc-
3.14.3/include/petsc/private/petscfeimpl.h

332 10

Rule-6 If in the library if (p == 0) return node; ~/petsc-3.14.3/src/dm/impls/plex/gmshlex.h 231 3

Rule-7 Macro in the library #ifndef PETSC4PY_COMPAT_MUMPS_H ~/petsc-
3.14.3/src/binding/petsc4py/src/include/compat/
mumps.h

1 1

Rules from: https://petsc.org/release/developers/style/

https://petsc.org/release/developers/style/

54

Example results for a subset of the PETSc rules

55

Capabilities summary

Database Examples Repository LocationType of Data/Analysis

github.com/CAT-SDK/GremCat/

● github.com/HPCL/code-analysis (dynamic)
● github.com/HPCL/llvm-project/tree/xsdk-

uo/clang-tools-extra/clang-tidy/petsc (static)

Code quality checkers
(dynamic & static)

Not publicly available yet, contact
norris@cs.uoregon.edu

github.com/CAT-SDK/GremCat/Git data: commits,
changes (lines, files, etc.)

Mailin

Github and Gilab issues
and associated metadata

Mailing lists

56

Summary

➢ We introduced a flexible, efficient, and usable software framework for acquiring,
storing, manipulating, and visualizing development-related data.

➢ We demonstrated a few of its capabilities here; a growing number of analyses and tools
are continuously being developed.

● Contributions and/or requests welcome! https://github.com/CAT-SDK/GremCat

➢ Acknowledgments: DOE ECP IDEAS Productivity Project
● Carter Perkins, Bosco Ndemeye, Stephen Fickas, University of Oregon
● Armando Acosta and Kanika Sood, California State University, Fullerton
● Anshu Dubey and Lois Curfman McInnes, Argonne National Laboratory

Thank you!
ECP projects that may be present in examples in this presentation: Spack, LAMMPS, PETSc, Nek5000
E3SM, QMCPACK, QDPXX, LATTE NAMD, HYPRE, fast-export, Enzo, TAU2, xpress-apex, LATTE, NWChem

https://github.com/CAT-SDK/GremCat

	Understanding Your Software Development�(through git repository data mining and code analysis)
	License, Citation and Acknowledgements
	Motivation
	Motivation
(Am I just making things up?)
	Other software-related factors
	Murphy-Hill et al. study conclusions
	What we are trying to do
	What this module is about
	Part I: Mining development metadata

Part II: Analyzing code
	Part I: Mining your development data
	Questions that can be answered (in part) with IDEAS data analysis tools
	Common patterns with known implications
	Common patterns with known implications
	Example metrics
	Example pattern: Domain champion
	Domain champion pattern: How do we detect it?
	Domain Champion Pattern: What, if anything, should we do?
	Another example pattern: Unusually high churn
	Unusually high churn pattern: How do we detect it?
	Unusually high churn pattern: What to do?
	Pattern: In the zone
	In the zone pattern: What to do?
	Technical Details and Examples
	Implementation
	Impact of different “change” estimates
	Impact of different “change” estimates (cont.)
	Significant events
	How do projects weather interesting times?
	Where is development effort going?
	Example Tool: MeerCAT�Using git data to improve developer processes and efficiency
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	MeerCAT: File Explorer
	Part II: Analyzing Code
	Defects that code analyses can catch
	General-purpose tools for code checking (bugs, style)
	Example development workflow that considers code quality
	Our goals and approach
	Static program analysis is...
	Dynamic program analysis is...
	Example: Using scan-build with HYPRE1
	Example: hypre (cont.)
	What about project-specific requirements?
	Implementation approach: Part B
	Example: Checking for violations of PETSc developer rules
	Examples of project-specific rule violations (PETSc 3.14)
	Example results for a subset of the PETSc rules
	Capabilities summary
	Summary

