= (E\\)p Understanding Your Software
N Development

(through git repository data mining and code analysis)

I D E ﬂS Boyana R. Norris (she/her)

EXASCALE COMPUTING PROJECT

PPUdUCUWW University of Oregon
DD better Software Productivity and Sustainability track @ Argonne Training
scientific Program on Extreme-Scale Computing summer school
LD software

Contributors: Stephen Fickas (UO), Bosco Ndemeye (UQO), Boyana R.
Norris (UO), Jason Prideaux (UO)

https://github.com/CAT-SDK/GremCat

See slide 2 for
Ev license details

4""*2',"“-.4& .S. . 4 4l
exascaleproject.org ENERGY hars NIS?’.J

https://github.com/CAT-SDK/GremCat

License, Citation and Acknowledgements

License and Citation

 This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
* The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Todd Gamblin, Jared O’Neal, and

Boyana R. Norris, Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale
Computing, St. Charles, lllinois, 2022. DOI: 10.6084/m9.figshare.20416215.

 Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial, ISC, 2022 ...

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This work was performed in part at University of Oregon through a subcontract with Argonne National Laboratory.

IDEAS =\
— \)) sxose

productivity \

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.20416215

Motivation

> Software development productivity is affected by many factors, many of which
are difficult or impossible to measure (accurately).

> So far in this track, the focus was on concepts and best practices based on
research, experience and expert opinion.

> Here, we focus on supporting best practices through software tools that can
help understand how existing or new software practices may affect these
observables.

> Jools are meant to be used -- so we will show some simple ways in which
anyone can begin exploring their own project’s data without significant up-
front investment of time and effort.

IDEAS =\
— \)|_: ExsschaLe.

productivity TR g

Motivation
(Am | just making things up?)

Murphy-Hill, E., Ciera Jaspan, Caitlin Sadowski, D. Shepherd,
Michael Phillips, C. Winter, Andrea Knight, Edward K. Smith and
M. Jorde. “What Predicts Software Developers’ Productivity?”
IEEE Transactions on Software Engineering 47 (2021): 582-594.

0.0

Google (n=407) ABB (n=137) NI (n=78) Google Analysts (n=88)
e e smor|_ ettt o __on Top three (on average):
I am enthusiastic aboutmyjob F1 | 0414 * [o004s| o386 M o0090| o484 I o008s| 043 o.051) I B o4zz M o097 -001 |
People on my project are supportive of new ideas F2 | 0337 * [l oos9| o3 M ooso| o3z oq02) o032 ooz I | o461 I o133 -0z H
My job aliows me to make decisions about what methods | use to complete mywork F3 | 0,298 * [0058 o3so- [oce3| o2 IR 0.106 o300s) [l W o365 [N 0157 -0.07 |l O J O b e nth U S I aS m (F 1)
My job allows me to make my own decisions about managing my time F4 | 0203 * [l oo0s6| o313l oors| o237 HH 0.121 028 0042) [N o467 I o106 -0.9 .
People who manage my project are highly capable, efficient, ive, and ive F5 | 0.318 * [0053 o241 oos4| oz2s4 0.112 o27 (oos) [N oze7 R 0105 003 | Y Peer Support for neW Ideas (F2)
The information supplied to me (bug reports, user stories, etc.) isaccurate F& | 0.233 * [l ooe1| o161 ooe7| os4ic- I oan 027 (0132l . - .
I feel positively about other people on my project F7 | 0201 * [l o3| o240 N o103 ozre N o148 o027 o0zn [| o611 [o135 -03: N H
My job allows me to use my personal judgment in camrying outmywork F8 | 0372 [l ooss| o242 [l ooso| o172 W 0100, oz26ot0n [l MM |osio NI o127 -01s > USGfU' feed baCk about JOb
My project resolves conflicts quickly F9 | 0.205 * [oo4s| o207 [ooes| ozrz 0.115 0.26 (0.046) [N o4sc [o111 -016
People who write code for my software are highly capable, efficient, thorough, icative, and ive F10 | 0346 [l oo0s8| oa77 oos4| oz4s HH 0124] o026 (ooss) [W B . . pe rfo rm a n Ce (F 1 1)
I receive useful feedback about my job performance F11 | 0.245 * [l oo0s0| o262 oo76| o02s9- 0.091 0.26 (0.009) [l | ozz0 0125 o002 |
My job requires me to use a number of complex or high-level skils F12 | 0.304 * Il 0055 o246 ooes| o193 0.136 025 (0.056) W o286 [0130 o002 |
My job involves a greal deal of task variety F13 | 0.163 * [l 0235 [l ooes| o033 [N 0.133 o24 (0os7) W 0.010 | o128 o017 [l
People who work on my software's requirements and design are highly capable, efficient, thon 28 0.174 . 0.076 0.267 * - 0.094 0.24 (0.061) - . - - -
| use the best tools and practices to de y software F15 | 0.445 0.082| o095 [0.109 0.24 (0.181) [l 0501 I o145 -006
Knowledge flows adequately between the key persons in our project F16 | 0.251 * [0.080] o0.198 Wl 0.106 0.2z (0.026) I | [0256 M 0.106 -0.01
My &
~w | USE the best tools and practices to develop my software F15 | 0445~
My project's bug |
The software process my project Uses s FZT | U305 UOAB| U127 UO7Z| UTES W UTT&[U200 (0095 il il [ramy | UTO6 =007 | B
| seek out the best tools and practices to develop my software F22 | 0252 * [l oos2| o174 R ooso| o155 0.19 omwposy il N 0413 I o163 016
There is physical space available for tasks that require concentration F23 | 0.235 * [l 003 o199 oos1| o139 W 0.081 o190 ooss) N oi7s 0083 006
The results of my work are likely to significantly affect the lives of other people F24 | 0.214 * [l 0.047| 0067 1 oo7s| oz2ez N 0107/ or0@nayl B | o1ss W o109 o007
My software reuses code, such as by using APls, rather than duplicatingit F25 | 0.310 * 0.052 0030 | 0.074 ozz1 [0.144 0.19 (0.143)] - - -
| have with my platform (software stack and hardware stack) F26 | 0.201 * [l 0047| 0130 Wl oo7s| o216 IR 0113 o018 o)l N B . .
My software's architecture mitigates risks (e.g.. security vulnerabilities, changes in requirements, etc.) F27 | 0.313 * ooso| o062 1 oos7| o141 W 0.104] 0.17 (0.128) || - - -
| have extensive experience with the tools and programming languages used in my software F28 | 0.161 * [l oos3| 0144 W ooe3| o17a W o123) o168 oo1s) | - - -
1 frequently talk o other people in the company besides the people on my projeet F29 | 0.121* [l 0042 o093 JiI 0073 0263 0.083 otwpos) [l 0153 0095 -003]
| can work effectively away from my desk F30 | 0.156 * [ll ood0| o128 W oor1| o073 NI 0092 o120zl 0.005 | o104 015 [l
| have extensive experience developing other software similar to the one I'm workingon F31 | 0.173 * [l 0.044| 0037 | oore| o107 W 0.105 0.11 (0.068) Wl |] 0124 W 0114 o005l TO p fa Cto r at
Context switching is a necessary part of myjob F32 | 0.077 [noss| -0.027 | oos1| oz17 N 0.113) 0.9 (0.123) B |00z | o118 o011
People on my project are physically collocated F33 | 0.100 * | 0040 0015 | 0.063] o087 [0.088 0.07 (0.046) | [| o150 o085 -005 I Goog Ie '
My project deadlines are tight F34 | 0.061 || 0045 0024 | oors| oosr B 0.125 0.06 (0.037) || 1 0011 | 0120 o005 i "
I require direct access to specific hardware to test my software. F35 | 0.079 * 0033| o041 | ooss| -0031 | 0.082) 003 (0.056) | [| - - -
My software provides an API that will be used widely and heavily by other software developers F36 | 0.117 * [l 0038 -0.053 || 0.086| 0008 | 0.089 0.02 (0.086) | |] - - -
My change Fa7 |-0033 | ooso| oot | o079 o076 N 0.115| 0.02 (0.055) | | - - -
Significant effort is required to create and maintain the data necessary 1o test my software F38 | 0.038 | o040| 0025 | 0.076| -0009 | 0.087 0.02 (0.024) |] - - -
My software requires extensive processing power F39 | 0027 | 0041| o044 | oo71| -0040 | 0.110) 0.0 (0.045) | | - - -
| often work remotely for carrying out tasks that require uninterrupted concentration F40 | 0.006 0039 0002 | 0.061| -0.008 | 0.082 0.00 (0.007) | o110 @ ooss o012 [l
My project has many people working on it F41 | 0,002 0.043| o035 | oos2| -0039 | 0.100] 0.00 (0.037) | 1 0037 | o107 -004
The constraints on my software are high (e.g., privacy, legal, environmental, etc) F42 | -0.044 | 0.043| o058 | 0.076| -0.018 | 0.119 0.00 (0.053) | [] S = =
My software requires extensive data storage F43 |-0018 | 0.039| o008 | 0070 -0015 | 0.105| -0.01 (0.014) | | - -
My software is extremely complex F44 |-0.013 | o0s3| o115 W o.084| 0143 0111 -0.01 (0.129) | | - - -
I shut down email and ether toals’ netifications to concentrate on my work F45 | -0.005 o.040| -0058 1 ooss| -0035 | 0.088| -0.03 (0.027) | 1 0.014 | 0001 -0.02 |
My platform (e.g. software stack, hardware stack) changes rapidly Fa6 | 0.0s4 I oo046| -oose I oos3| -0166 o0es| 006 (0.11) 1 | | B . -
Extensive documentation is required to use my software at different points in its lifecycle F47 |-0.043 | o047 0069 I oo7s| -0o8s i o111 -0.07 (0.022) | I - - -
Personnel tumover on my project is high F48 | -0.040 | ooas| 0153 oore| -0160 I o102 -012006a] W 00 W 0087 008

Fig. 4: 48 factors’ correlation with developers’ and analysts’ self-rated productivity at three companies.

I/

_AS

productivity

EXASCAHLE
COMPUTING
PROJECT

\
\) I~

Other software-related factors

Murphy-Hill, E., Ciera Jaspan, Caitlin Sadowski, D. Shepherd,
Michael Phillips, C. Winter, Andrea Knight, Edward K. Smith and
M. Jorde. “What Predicts Software Developers’ Productivity?”
IEEE Transactions on Software Engineering 47 (2021): 582-594.

A few other positively rated software-related factors (in decreasing order of average scores):

+ + + 4+

Negative impact on productivity:

- My software requires extensive data storage.

- My software is extremely complex.

My project’s bug finding process is efficient and effective.
The software process my project uses is well defined.
My software reuses code, such as by using APIs, rather than duplicating it.

My software’s architecture mitigates risks (e.g., security vulnerability, changes in requirements, etc.).

- My software's platform (e.g. development environment, software stack, hardware stack) changes rapidly.

- Extensive documentation is required to use my software at different points in its lifecycle.

My project’s bug finding process is efficient and effective F20
The software process my project uses is well-defined F21
My software reuses code, such as by using APls, rather than duplicating it F25

My software's architecture mitigates risks (e.g., security vulnerabilities, changes in requirements, etc.) F27

Google (n=407)

estimate error

0294 * R 0.047
0.309 * N 0.046
0310 R 0.052
0313 * R 0.050

ABB (n=137)

estimate error
0092 0.076
0121 B 0.072
0.030 | 0.074
0062 | 0.087

NI (n=78)
estimate
0217 R
0165
0221 R
0141

error
0.100
0.114
0.144

0.104

estimate p (o)
0.20 (0.102) IR
0.20 (0.098) IR
0.19 (0.143) |}
0.17 (0.128) I}

IDEAS

productivity

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

=

Murphy-Hill et al. study conclusions

“A notable outcome of the ranking is that the top 10 productivity factors are non-technical. This is
somewhat surprising, given that most software engineering research tends to focus on technical
aspects of software engineering, in our estimation.

Thus, a vigorous refocusing on human factors may yield substantially more industry impact for the
software engineering research community. For instance, answering the following questions may be
especially fruitful:

> What makes software developers enthusiastic about their job? What accounts for differences
in levels of enthusiasm between developers? What interventions can increase enthusiasm?
This work can extend existing work on developer happiness [24] and motivation [25].

> What kinds of new ideas are commonly expressed in software development practice? What
actions influence developers’ feelings of support for those ideas? What interventions can
increase support for new ideas, while maintaining current commitments?

> What kinds of job feedback do software engineers receive, and what makes it useful? \What
kinds of feedback is not useful? What interventions can increase the regularity and
usefulness of feedback?” [emphases mineg] I D E A S

—
\\) EXASCARLE
) COMPUTING

PROJECT

productivity \

This work is part of two DOE ECP projects:

What we are trying to do

IDEAS IDEAS-ECP: foster and promote
productivity SE practices for better software
\ & xSDK: Extreme-scale Scientific

Motivation and enthusiasm are ephemeral <o« Software Development Kit

things that cannot be quantified easily.

On the other hand, we have many artifacts and
associated metadata that are related (if indirectly)
to productivity. ¢

o)

More and
better
software

So, we are betting that using some
data is better than not looking at any
data, as we make decisions that are
aimed at improving software
development productivity and code
quality.

Enthusiasm,
motivation

Development-
related data
and analysis

o
\
IDE ﬂS — \)) St

productivity \

https://www.exascaleproject.org/
https://ideas-productivity.org/ideas-ecp/
https://xsdk.info/

What this module is about

> WWe introduce a ,
efficient, and
usable software framework for acquiring,
storing,
manipulating, and

development-related data.

> \We demonstrate a few of its capabilities here; we continue to add new
patterns and tools.

o Contributions welcome! github.com/CAT-SDK/GremCat/

ECP projects that may be present in examples in this module: Spack, LAMMPS, PETSc, Nek5000 E3SM,
QMCPACK, QDPXX, LATTE NAMD, fast-export, Enzo, TAU2, xpress-apex, LATTE, NWChem, FLASH, Gingko.

IDEAS =\
— \)) sxose

productivity \

Part I: Mining development metadata

Part ll: Analyzing code

DEAS — =_ ..
— \) P e

productivity TR g

Part I: Mining your development data

Development data:

> Git metadata: commits, forks, branches, developers

> |ssues and associated discussions

> Pull requests (github, gitlab) and associated discussions
> Mailing list archives

Goal: Analyze available data to help formulate and answer questions about
development processes and their impact on productivity and code quality.

IDEAS =\
— \)|_: ExsschaLe.

10 productivity \(EEEEEEE

11

Questions that can be answered (in part) with IDEAS data
analysis tools

>

>

>

If | adopt practice X, how will metric Y be affected?

How active is the developer community? (git, issues, PRs, emails)

What parts of the code base could benefit from review or refactoring? (git, issues)
What is the project’s reliance on individual developers? (git)

How are developers’ contributions split among different categories? (git, manual
labeling required)

How engaged are the user and developer communities? (PRs, issues, mailing lists)
What are some hot topics of discussion? (issues, mailing lists)

How and on what do developers collaborate? (git, issues, mailing lists)

IDEAS =\
— \)|_: exsschaLe.

productivity TR g

12

Common patterns with known implications

Pluralsight book (2019): 20 patterns

“20 patterns is a collection of work patterns we’ve
observed in working with hundreds of software teams. A lld gl t Nelp you recognize achievemert,spot

bottlenecks, and debug your development process with data

Our hope is that you'll use this field guide to get a
better feel for how the team works, and to recognize
achievement, spot bottlenecks, and debug your
development process with data.”

 —— 9

e K =%l e o
RO T S e WAEN _Aaeg
1252 2 Sl == _-:T Al i o‘{},: =

Thttps://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight 20Patterns ebook.pdf

IDEAS

productivity

\\ EXASCAHLE

—, COMPUTING
PROJECT

https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf
https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf

Common patterns with known implications

Starting with these pattern descriptions, we can: 20 patterns

> |dentify patterns that are relevant to HPC (open-
source) software development. e e T

> Characterize each pattern using data from revision
control systems and developer communications.

> |Inform decisions of the effects of adopting new SE
practices.

Thttps://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight 20Patterns ebook.pdf

IDEAS =
— \)) sxose

N productivity -

https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf
https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf

Example metrics

Metric

Description

Monthly bug fix rate

Computes cumulative count of bugs closed each month, starting from the beginning of the project. A higher value is not necessarily
good, trends are more informative than individual values.

Monthly feature request rate

Number of new feature requests made by users. A higher value may indicate popularity/importance of the feature or missing
functionality in the current software version.

Correlation of the number of issues
with project age

Gives a good insight into the life cycle of the project by mapping the trend of issues raised over the lifetime of the project.

Commits, derived metrics

Characterizes some aspects of developer activity.

Number of issues

Project-related communications can be used to indicate community involvement and rates at which issues are resolved. For example,
fast-growing projects can have significantly more activity in issues than more mature ones.

Issue categories

Identifies the types of issues that are reported in the repository. This information will be useful to derive correlation with other metrics.

Number of followers and watchers

Reports the code maturity and popularity. In addition, the number of followers can be correlated with the time it takes to fix reported
issues.

Mailing list metrics

Relates to average time in discussion, most popular topic of interest, product activity based on type of emails, etc.

Number of contributors

Size of development community. When analyzed over time, we can estimate project turnover and identify different types of
contributors.

Code complexity

Compute changes to code complexity metrics, e.g., cumulative size or cyclomatic complexity, over time.

14

) EXASCAHLE
\) I COMPUTING

productivity \

Example pattern: Domain champion

The Domain Champion is an expert in a particular
area of the codebase. They know nearly everything
there is to know about their domain: every class,
every method, every algorithm and pattern.

In truth, they probably wrote most of
it, and in some cases rewrote the same
sections of code multiple times.

The Domain Champion isn’t just “the
engineer who knows credit card
processing”; it’s all they ever work on.
It’s their whole day, every day.

Some degree of job specialization is
essential and often motivating. But
even within specialized roles there can
be ‘too much of one thing.’ Managers
must balance enabling a team member
to unilaterally own the expertise, and
encouraging breadth of experience.

How to recognize it

Domain Champions will always work
in the same area of code. They'll

also rewrite their code over and over,
and you’ll see it in churn and legacy
refactoring metrics as they perfect it.

Domain Champions are deeply familiar
with one particular domain. As a result,
they'll typically submit their work in
small, frequent commits and will show a
sustained above average Impact.

Because no one else knows more than
the Domain Champion, there's usually
very little actionable feedback that

others can provide in the review process.
As a result, Domain Champions will
typically show low Receptiveness in
incorporating feedback from reviews.

Domain Champions will seldom, if ever,
appear blocked. Short-term, it’s a highly
productive pattern. But it’s often not
sustainable and can lead to stagnation,
which of course can lead to attrition.

®

Primary Focus

o o e]
e o e s
v o e e o

What to do

Assign tickets that focus on other areas
of the codebase.

Of course, some engineers would prefer
to stay where they are. It can be very
enjoyable to do a task you're good at.
And, it can be uncomfortable to take on
work that requires information or skills
you have less practice with. But effective
managers will strive to challenge

15

their team.
O patterns

“The Domain Champion is an expert in a
particular area of the codebase. They know
nearly everything there is to know about their
domain: every class, every method, every
algorithm and pattern. ”

Why do we care?

> Can lead to great productivity

Code quality implications

> Turnover effects on code -- what happens
to the domain when the domain
champion leaves?

I D E A S ’;\\\ EXASCAHLE
f—)I—) COMPUTING

productivity \

|

Domain champion pattern: How do we detect it?

“The Domain Champion is an expert in a particular area of the codebase.”

Can also consider

ws/linux_unit_tests.yami

other notions of

Files

filepati

var/spack/repos/builtin/packages/ger|e

var/spack/repos/builtin/packages/gromacs/packa

var/spack/repos/builtin/packages/mxnet/packa

build_systen

s/stackeds

var/spack/repos/builtin/packages/3dt}

pythen.py

ci.py

k/spgc.py

“‘domain’, e.g., class, {eesreo
package, module, etc. ads

ckyaml

ige.py

kage.py

e.py

var/spack/repos/builtin/packages/n2p2/package.py

16

February, 2021
2, 2021 [count: 698, mean: 8.79656, std] 17.0607, min: 0, max: 231 -

0 0 0 0 0 51 0 0 24
4l 0 0 0 0 0 0 0 0
0 WAk 0 0 0 0 0 0 0
3 0 90 0 0 0 0 3 0
0 m 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
0 0 0 el 0 0 0 0 0
0 0 0 0 0 0 5l 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Developers

Can be computed
over any specific

period.
200
)
[
w| 83 | |
O Can consider different
= ;i,/ | “change” metrics, more
i @D | on that later.
00’ GCJ % \
- c
@)
-850
Individual
-0 developers or
subteams
AO (P e
productivity (L= =

Domain Champion Pattern: What, if anything, should we do?

“The Domain Champion is an expert in a particular area of the codebase.”
+ Highly productive pattern in the short term.

There’s usually very little actionable feedback that

others can provide in code reviews. One possible extension: Project Champion
Potentially not sustainable — can lead to Proportion of commits by the most active developer
stagnation. 7

0.7 -

[=]
o

© Possible actions:

[=]
LA

=T
L

o Assign the DC tickets for other areas of the code.
e Make an effort to involve others (e.g., new
developers) in work in that domain.

Proportion of Commits
=
F =

[=]
Bl

=
]

[=]
[=]

Projects

o
\
IDE ‘LS — \)|_: expscate

i productivity Y o=

Another example pattern: Unusually high churn

Churn is a natural and healthy part of the development
process and varies from project to project. However,
Unusually High Churn is often an early indicator that a
team or a person may be struggling with an assignment.

In benchmarking the code contribution
patterns of over 85,000 software
engineers, Pluralsight’s data science
team identified that Code Churn levels
frequently run between 13-30% of all
code committed (i.e., 70-87% Efficiency),
while a typical team can expect to
operate in the neighborhood of 25%
Code Churn (75% Efficiency).

Testing, reworking, and exploring
various solutions is expected, and these
levels will vary between people, types
of projects, and stage in the software
lifecycle. Given the variance, becoming
familiar with your team’s ‘normal’

levels is necessary to identify when
something is off.

Unusually high churn levels aren’t a
problem in themselves. More likely, there
are outside factors causing the problem.

An unusually high level of churn can be
indicative of one of three behaviors:

» Perfectionism: When an engineers’
standards of “good enough” are not
aligned with the company’s standard
of “"good enough.” Engineers keep
going back into the code to rewrite it
because they think it can and should
be better but may not add much to
the actual functionality of the code.

» They’re struggling with the problem
at hand. This situation manifests
differently than with Hoarding
the Code (pattern #2), because
in this case, the engineer initially
thought they had correctly solved
the problem, perhaps even sent it
off for review, and then discovered
it needed to be rewritten. Not just
touched up. Rewritten.

Or, most commonly, issues
concerning external stakeholders.
We see this with unclear or
ambiguous specs, late arriving
requirements, or mid-sprint updates
to the deliverables.

How to recognize it

This pattern is characterized by high
levels of churn in the back of the sprint
or project. Watch for churn rates that
climb significantly above the engineer’s
historical average (see the Snapshot
and Spot Check reports), pairing that
information with where they are in

a project.

Productive
Throughput

V.
2 Code
Churn

AN
RN

18

20 patterns

(Code churn: code that is rewritten or deleted shortly after being written)

What files (components) have unusually large or
frequent changes? How many developers are
involved?

+ could be a sign of normal productive
development

- may indicate need for more developer
resources

- high conflict potential

o
\
ID ‘AS — \)|_: expscate

productivity -

19

Unusually high churn pattern: How do we detect it?

> Decide on the granularity. Some
possibilities: modules, classes, files,
functions.

> Define the acfors -- groups of people
(e.g., sub-teams), individual developers;
doesn’t have to be people, it can also be
milestones or other project entities.

> Choose the time period.

> (Choose the churn metric. Some
examples: lines of code, cos (and other)
difference between code versions,
number of PRs, commits, number of
files.

filepath

share/spack/spack-completion

var/spack/repos/builtin/packages/lvm/package py \215

var/spack/repos/builtin/packages/trilinos/package py 29

Total changes: Developers vs. files
(over the entire project history)

Entire projectieet 8232, mean: 12.7416, std: 448594, min: 0, max: 2114]

339 24 0 152

lib/spack/spack/modules py 202 883 0 0 3
ib/spack/spack/package.py JMELFE 396 290 2 2 17 45
lib/spack/spack/solyer/asp.py 710 20 0 0

lib/spack/spackispec.py [FANE] 15 857 0 340 28
hash 47 [EELDE 125 1 123

19 214 12 0

IDEAS =&y

productivity

EXASCAHLE
COMPUTING
PROJECT

2000

1750

- 1500
- 1250

g
- 1000 3

[}
- 750
- 500

-250

20

Unusually high churn pattern: What to do?

Total changes: Developers vs. files
Unusually large amount of changes to (over the entire project history)

Single fiIeS Or Components may Iead to Entire projact festnt=26537. mean: 12 7416, std: 44 8534, min’ 0, max: 2114]

lib/spack/spack/config py | $% 246 15 0 0 94 2000

development inefficiencies. N 1 P

1750
lib/spack/spack/ 138 0 3 186
1500
- L] - lib/spack/spack/modules py 202 0 883 5 0 0 0 3
© Possible actions:
- lib/spack/spack/fpackage. py 396 290 0 234 703 2 2 17 45
©
o
. . . . =) B - 1000
> Consider refactoring the high-churn project ey 00 AR
lib/spack/spack{spec.py 15 857 0 340 309 a7 0 258 - 750
components ’
. share/spack/spack-completion hash 47 125 1 123 15 24 0 0 500
> Consider involving more developers in high-
var/spack/repos/builtin/packages/lvm/package py \215 19 214 12 0 0 0 0 0
- 250

churn areas that are dominated by a single e N,
person -0

I D E A S ’-;.\\ EXASCALE
I \)I—) COMPUTING

productivity \

Values: locc

21

In the zone: Entire project [count: 183971, mean;

Pattern: In the zone

WEELGEY
Tuesday

When are top contributors most Wih
productive? S
+ Consistent high productivity during -
certain times of day -

- Burnout, work-life balance

- e — - o | &
...... 0 " -
1 .= B | = B s - B]
,,,,,,] - ao0 é i _w% ——
- ..J Y . $ T .
- | * S —
-~ Pt LN - i na A
— mT — - B e RS | . - e
----- g Il [] m - o | R
— | n | | [g n 0N o e | L/mm
,,,,, m % - ! i s . EEEN
. [| s L | [| B || |
— | [_ . - o
- D =m i B . R . - B o i i
- HENSE = H —
- TN | i B m =
s CIEENEEEEE EEW Lo & > N [[|
- 0 IEEEET Eo o g - [|
- [| [| | e e
- W REET AT - T - =TT
...... I o 7 | I
s = e || o B O HE =
- [| - [| g NN BEEN
e . O [| |

8433, std: 0.488102, min: 0, max: 1]

2000
1750
1500

Peak times

1250

=
(=]
(=]
o

Values: change-size-cos (sum)

Change: cosine

|
-
o
=]

i
3
o

[v*]
o
=]

01 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 117 18 19 20 21 22 23

hour) =

3 How to compute?

I 1. Choose productivity

metric (LOCC, text
difference, # commits, #

y IE PRs, etc.)

2. Choose time period
3. Choose visualization

DEAS =\
N — \) —) Sxoscoee

pmductlwty

/

In the zone pattern: What to do? When are top contributors most A
productive?

+ Consistent high productivity during
certain times of day

> Acknowledge the consistently high- | - Burnout, work-life balance
performing developers.

© Possible actions:

Bonus: Ability to quickly “see” what people are
doing on average. Below: The average of over a
dozen ECP projects’ most active time periods.

> Recognize and acknowledge positive
change in non-top developers (e.g.,
junior or new contributors).

> Consider the timing of and number of
meetings during developers’ most
productive times.

- 30000

- 25000

20000

- 15000

Project

10000

5000

early_morning work_day after_work late_night

f
Ty \
\) EXASCAHLE
jr— COMPUTING

oroductivity W' AR

22

23

Technical Details and Examples

https://bit.ly/DevPatterns

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

https://bit.ly/DevPatterns

https://bit.ly/DevPatterns

Implementation
Example analysis workflow
| from patterns.visualizer import
Python packages Jupyter Visualizer
database patterns visualizer l notebooks vis =

— ; ol o Visualizer(project name='spack'
Local project [< VP ‘u> Lo (project_ pack™)
cache 5 i vis.get_data()

INFO: Loaded local cached copy of

- spack data.
—LJ INFO: Done computing averages.

(mtconnnﬂs: 64909 commits (code only)
Issues, email

4 https://github.com/HPCL/ideas-uo/

df =
vis.plot overall project locc(time_
range=None, log=True)

locc+ W locc-

Some currently available projects (more are being added
constantly): LAMMPS, Spack, PETSc, Nek5000, NWChem,
E3SM, QPMCPACK, gdpxx, NWChem, TAU,... Initial import
can take up to 36 hours for some larger projects, but
subsequent updates are fast and automated.

. |
& b L o - ~

=\
\ EXASCAHLE

—) COMPUTING
24 productivity \(\.-)

PROJECT

https://bit.ly/DevPatterns

Impact of different “change” estimates

Entire project [count: 26532, mean: 12.7416, std: 44.8594, min: 0, max: 2114]

pid B R RSB Simple line counts in git commit diffs:

paaaaad BESCRE R R e Patterns such as ‘---+++’ are counted as edited

lines, e.qg., 3 in this example

¢ Unmatched ‘-’ and ‘+’ lines counted as lines
deleted and added, respectively

e LOCC = edited + deleted + added

12 101 0 168 300 138 0 3 186

lib/spack/spack/environment.py

lib/spack/spack/modules.py 202 0 883 5 0 472 0 0 0 3

1250
lib/spackispack/package py [REIFS 396 290 0 234 | 703 152 2 17 45

- 1000

Files

Vaue]occ

lib/spack/spack/solver/asp.py 3 70 0 0 0 0 20 0 0

lib/spack/spackispec py [FANEN 15 857 0 340 28 309 47 0 258 750
share/spack/spack-completion bash 47 [NEE[E 125 1 123 0 15 24 0 0 50
var/spackireposibuiltin/packages/llvm/package py ~ 215 19 214 12 0 48 0 0 0 0 . . .
-950 Entire project [count: 26532, mean: 0.879504, std: 2.30469, min: 0, max: 169]
var/spack/repos/builtin/packages/trilinos/package.py 29 16 22 0 0 18 0 0 538 0 lib/spack/spack/build_environmentpy 16 33 1] 10 0 1 20 4 0 1 160

D eve I O p e rS 7 lib/spack/spack/concretize py 1 28 1] 9 0 1 28 1 0 0

140

More “intelligent” estimate of the magnitude of » e B e N

changes: " masmanos N o QI 0 o o o o o
e Collect the old and new strings corresponding to %’ manane ARl BN RN LN
each commit’s diffs maneanadd | | - DN NN I
o Apply text distance metrics (based on the amaaa | BN DORRRGRE R
textdistance Python package; 30 methods) | TTTTTTT DT L T
e E.g.,, change-size-cos is the cos distance B Developers N
between the vector embeddings of o/d and new IDE ﬂS ,:\\
= COMPUTING

PROJECT

% productivity \

Impact of different “change” estimates (cont.)

Annual average code changes (change-size-cos)

3000
------ Average LOCC
—-= 3-month SMA
=R === 5-month SMA

— 10-month SMA

> Time-series git data is messy —
« Moving averages help see trends for any time period

[]
(=1
(=]
(=]

.
j=]
o
[=]

3
=]

Monthly average lines of code changed (change-size-cos)

Changes (change-size-cos)
@
3

08 : - : 0
8 .o : : i :
8 - _ i : E 2 AB D \ X D Ad 0 A
g s ah 3lEg 3 34 | 8 N SR R R AT A L L
@ 06 nOERvAS 3 T Ob B) -5 o
® R b LA AN A . ¥ « A 3. Year
g LR .-{:.\'.‘ % ¥ - :—. . S
CHVNE f A A A N2 P) R
8 S B SYNSNAF N i : Entire project [count: 97, mean: 241.381, std: 366.213, min: 0, max: 2939]
s g8 = A 20000
© 02 _. Quarterly SMA T J : ;
—— 6-month SMA : = 73 : i 17500
—— 12-month SMA ¢ i ty :
00 = _ _ _ _ 15000
- o« - ~ o«
§ g g § § 12500 . change-size-cos
S S g & S 0
Date
10000 500

Locc

1000

7500 ~ 1500
Combining different “change == = ? ‘3232

size” metrics ;
A Example on right: simple " s

- | L L AR\] =
LOCC totals and cos distance oroductivity t\(L [caveom

27

Significant events

11, 2019 [count: 30, mean:

18.3667, std: 43.1768, min: 1, max: 189]

2500
Entire project [count: 97, mean: 241.381, std: 366213, min- 0, max: 2939
20000 2000
17500 H
Project 1 |
1500 change-size-cos|
15000
O e
12500 change-size-cos 1000 80
0 120
Q
8 10000 500 160
S 0 1000 500
7500 i 1500
. 2000
5000 2500 0
2500 I\ AD Al 2H 2D a0
N oA oA o AV oA
. 3 » 3
Date
%] b) o A] A
USRI A AN SR ke p
Date
2020 [count: 12, mean: 1141.67, std: 1082.16, min: 145, max: 3564]
120000
Entire project [count: 174, mean: 278.04, std: 419.71, min: 0, max: 3564]
100000
120000 .
i 80000 .
100000 P rO j e Ct 2 change-size-cos
Q 600
. o
40000 change—s&ze—cos 9 60000 1200
) 1800
] 600 2400
S 60000 ® 1200 40000
3000
1800 9l
40000 h 2400
3000 20000 ®
20000 '
% o™ W
0 i3ls Al
Date
) WM L M G o) 0
S S " " o o oF
Date —

productivity

(&

\
\) I~

EXASCAHLE
COMPUTING
PROJECT

12

10

Project 2

[=] o =] (=] (=] o (=] o
o [=] o (=] = o
B R R R &2 & @

(soo-azis-abueyo)

12

10

— 2020
Project 1

s 2019

(=] o (=] o [=] o o
o o (=] (=] (=] m
w [Te] [=] wn o

(8] o = -

(soo-azis-abueyo) abueyo apo2 |ejo} Alyjuopy

How do projects weather interesting times?
A

Average
Month

2020
Project 4

3 q 8 & - ©

abueyo spoo [B10} AIUOW (g09-5715-BUBUD) BBUBLD 800D 101 AILILOIA

12

10

Project 3

o o o o

g 8 8 § §
(soo-azis-abueyo) abueyo apoo |ejo} A|YIuop

EXASCAHLE
COMPUTING
PROJECT

product?fi\t'; t\(\E =

[- .

29

30

Where is development effort going?

600 E3SM — FLASH -
w wn
g Science Doc. s i 80001 Science B 250 Science
{.:51 500 Math External g ® 7000 Math o 200 Math m———
. 1]
2 400- Infrastr. Other - § 6000 Infrastr. 2 Infrastr.
= 5000 Tests =150 Tests -
L 4000 V Doc.
o o
& 3000+ S 1007 External
G 2000 % Other
w0 7] 50 /_‘///
§ 1000, @ /Jf,_éﬁ/
c
3 0 = 0= . .
N - O RN T SN R\
P A T T P
= LAMMPS - gqdpxx = QMCPACK
n
% 5000 Science) B 250 Science 24000 Science Doc. —
4 Math q 200 Math g 3500 Math External _:jf_':—;-f”
9 4000 Infrastr. - é Infrastr. 230009 Infrastr. Other !
£ 3000 Tests B = 150 Tests e e — A R = 25001 Tests ;
i Doc. / - m Doc L Y |
8 2000+ External / | S 100 External B e 31 v,
Y= Other) 39 - Other 1 o S 1
g 1000 i 5 5o S | :
= LY c
5 e © 4 o e 2w 5o W N N 3
& & O P o F &L &SP
v v Vv 2 " S Y

Grannan, A., Sood, K., Norris, B., & Dubey, A. (2020). Understanding the landscape of scientific software used on high-performance
computing platforms. The International Journal of High Performance Computing Applications. https://doi.org/10.1177/1094342019899451

IUEAOD
productivity

v —

(&

\
EXASCAHLE
\) I—) COMPUTING

PROJECT

https://doi.org/10.1177/1094342019899451

31

Example Tool: MeerCAT
Using git data to improve developer processes and
efficiency

IDEAS =&

productivity \

EEEEEEEE
CCCCCCCCC
EEEEEEE

32

A Draft PR iS Created t.o / ::i::tvja::isttr::n:et:;ﬁifnzmiit into main from file_explorer_test Ll,j
merge feature branch into

ma'n branCh j uomeercat commented 19 hours ago - edited by jprideaux ~ Collaborator | (@) -+
MeerCat report:

e The one file in the PR has problems with its docstring. | can help fix it.
« The changes to the file will likely cause issues with existing test cases. | can identify those cases and suggest changes.

The M ee rcat P RA tr|ggers o | can help add useful labels to the PR.
a nd a nalyzes fi Ie Cha nges I « | found the following people who may wish to join the discussion before the PR is accepted:

@jprideaux - past committer and expert on the file.
and reports back.
@Juan-Pablo-Flores - reviewer of past accepted PRs including the file.

@fickas - major committer to files in the same directory.

Please see my Pull-Request Assistant for more details.

Add more commits by pushing to the file_explorer_test branch on fickas/anl_test_repo.

O Some checks were not successful Hide all checks

2 successful and 1 failing checks

g v O CodeQL / Analyze (python) (pull_request) Successful in 1m — Analyze (python) Details
More traditional Code
. . — X 3 ci/circleci: build-and-test — Your tests failed on CircleClI Details
Quality and testing tools . | | |
v O Code scanning results [CodeQL Successful in 4s — No new or fixed alerts Details
trigger and report results.
This pull request is still a work in progress Ready for review

Draft pull requests cannot be merged.

Merge pull request v You can also open this in GitHub Desktop or view command line instructions.

IEAS =P
productivity \(\~_ i

EXASCAHLE
COMPUTING
PROJECT

3 : Draft Update arithmetic.py #24
° fickas wants to merge 1 commit into main from file_explorer_test Lg]

The MeerCat PRA provides |
the following analysis:

uomeercat commented 19 hours ago - edited by jprideaux « Collaborator | () «+»

MeerCat report:

1. Are required docstrings
in place and actually

''''''''''''''''''''' =« The one file in the PR has problems with its docstring. | can help fix it.

N g The changes to the file will likely cause issues with existing test cases. | can identify those cases and suggest changes.

match the code? 7 can hlp ad seful el to th PR
—— e | can help add useful labels to the PR.
2. If ch to files will .- v
. If changes to files will ~___.--- , S .
. . =9 ’,a’ ¢ | found the following people who may wish to join the discussion before the PR is accepted:
cause existing test
,/’ @jprideaux - past committer and expert on the file.
cases to become
. . ’,,/ P 4 @Juan-Pablo-Flores - reviewer of past accepted PRs including the file.

misaligned.

3 P t t ” f | | b |S’// ,,/ @fickas - major committer to files in the same directory.
. otentally usetul labe et
7 Please see my Pull-Request Assistant for more details.
to add to the PR for A
other tools to use
. e e
//’ // Add more commits by pushing to the file_explorer_test branch on fickas/anl_test_repo.
4. Suggests other people.--
L] L] ,’ .
tO add tO the d|SCUSS|On g O Some checks were not successful Hide all checks
g |Ven thel r prIOF rO|eS ,z'l 2 successful and 1 failing checks
td
7’
7’
7’
. 0 0 . . .
related to flIeS |n thls ,,,/ v CodeQL / Analyze (python) (pull_request) Successful in 1m — Analyze (python) Details
7’
P R ,,’, X 3 ci/circleci: build-and-test — Your tests failed on CircleCl Details
" ’
7’
a v Code scanning results | CodeQL Successful in 4s — No new or fixed alerts Details

The “nk WI” ta ke the user to A9 This pull request is still a work in progress Ready for review

the Meercat PRA S|te fOr' Draft pull requests cannot be merged.
further refinement of the PR
(see next slide).

Merge pull request v You can also open this in GitHub Desktop or view command line instructions.

34

Once the user is at the PRA
site, several aids are
available.

After analysis, the PRA finds
that one commit has
removed a parameter from a
function sub, but there is
been no change to the
documentation, i.e., code
and documentation are
misaligned.

Here the PRA editor is
highlighting the Numpy
docstring code that needs to
be changed and why.

Documentation Helper

Suggestions highlighted for file folderi/arithmetic.py

9
10
11
12
13
14
15
16
17
18
19

Parameters

: int, real, complex
first operand
: int, real, complex
second operand
round: positive int, optional
If N

Parameter not in function definition. result to places specified, e.g., 2.

Returns

Download Patch

The user can download
changes made to a Git
Patch file and then easily
merge in with existing PR.

o
\
IDE ‘AS — \)) St

productivity \(\-

PROJECT

35

The PRA can also search
the repo for test files that
reference the now changed
sub function.

It discovers one such file
(now misaligned) and
suggests changes in the
editor. Once the user
removes the now invalid
cases, the PRA will add the
test file (and commits) to
the existing Pull Request
through the Patch
mechanism.

Suggestions highlighted for file folder1/test_arithmetic.py

1 from arithmetic import sub
2
3 #Unit tests for sub function
4 def test_sub():
5 assert sub(2,1)==1
assert sub(4,2)==2
assert sub(.3333, .1111, round=4)==.2222
22

Test cases no longer valid.

6
7
8 assert
9
0

1

The user can download
changes made to a Git
Patch file and then easily
merge in with existing PR.

IDEAS

productivity

Download Patch

—
\ EXASCALE
) =) COMPUTING

PROJECT

36

MeerCAT: File Explorer

1. MeerCat does analysis and leaves

comment in GitHub PR

2. If user clicks link, she is taken to the

PRA tool (previous slides).

3. From the PRA, click on a specific file

to get to the file explorer.

Benefits:
+ Problems detected early, don’t have to
wait for Cl failure
+ Better overall documentation, testing

Suggestions highlighted for file folder1/test_arithmetic.py
from arithmetic import sub

#Unit tests for sub function
def test_sub():
assert sub(2,1)==1
assert sub(4,2)==2
assert sub(.3333, .1111, round=4)==.2222
assert 22

Test cases no longer valid.

Download Patch

MeerCAT

logged in as

File Explorer

file on GitHub

File name: folder1/arithmetic.py - Go to

Functions/Subroutines defined in file:

Signature

Doc String Doc String Comments

Calling functions (test in red)

sub(x, y):

Yes ARGUMENTS match

Go to folderi/arithmetic.py. to find list_sub on GitHub

Go to folder1/test arithmetic.py to find test sub on GitHub

list_sub(list1:list, list2: list) -> list:

No docstring found

check_fum():

No docstring found

mult(x, y): Yes ARGUMENTS match
Developers:
Total number of Total lines
Author commits changed Date of last commit Link to last commit
fickas - fickas@cs.uoregon.edu " 182 Nov. 3, 2021, 11:24 Go to commit on
a.m. GitHub
Jason Prideaux - 1 2 May 6, 2022, 10:31 Go to commit on
jprideau@cs.uoregon.edu a.m. GitHub
Juan-Pablo-Flores - 2 96 June 6, 2022, 3:22 Go to commit on
jpfloresd.97@gmail.com p.m. GitHub
Change History
Go to file blame on GitHub
Included in Pull Requests:
PR # PR URL PR Issue link Notes
12 Go to PR on GitHub " TBD
13 Go to PR on GitHub " 1B
14 Go to PR on GitHub [" B
16 Go to PR on GitHub " 1B
17 Go to PR on GitHub [" 1B
22 Go to PR on GitHub " 1B

Related to Issues:

In progress.

Interested Parties:

37

Part ll: Analyzing Code

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
EEEEEEE

Defects that code analyses can catch

©

Security: Buffer overruns, improperly validated input.

©

Memory safety: Null dereference, uninitialized data.

©

Resource leaks: Memory, OS resources.

©

API Protocols: improper use of APIs, incomplete/incorrect implementations

©

Exceptions: Arithmetic/library/user-defined

©

Encapsulation: Accessing internal data, calling private functions.

©

Data races: Two threads access the same data without synchronization

Key idea: check compliance with (mostly) simple, mechanical design rules.

Standard: ISO/IEC 5055:2021(E): Information technology — A .
Software measurement — Software quality measurement — I D E 4 S ("'\\I —) exescae
*® Automated source code quality measures productivity =" =

39

General-purpose tools for code checking (bugs, style)

> (C/C++

Run a bunch of general analyses with scan-check
(wrapper around clang --analyze, which is uses the static analyzer below)
o Minimally invasive, not very customizable
o Works great with CMake and Autoconf builds
Clang static analyzer component: extensible analysis

framework for bug finding
o Can do more complex analyses (path-sensitive, inter-procedural
analysis based on a symbolic execution technique)
o Requires more compiler knowledge to extend
Clang-tidy: extensible (libTooling-based) framework for

diagnosing typical programming errors or style issues
o Checking and enforcing of simple coding conventions
o Modular, provides API for implementing new checks
o Relatively easy to integrate into Cmake

> Fortran

Flang (compiler front-end to LLVM)
Fortran-linter (limited)

[N N [home/users/norris/test/hypre, X + °

Bx)® 0 ®x

1084
1085 #undef _ FUNC__

86 #define _ FUNC__ "Mat_ dhTranspose"
1087 void Mat_dhTranspose(Mat_dh A, Mat_dh *Bout)
1088 | {
START FUNC_DH
1090 Mat_dh B;

1 'B'declared without an initial value — J

1092 if (np_dh > 1) { SET_V_ERROR("only for sequential"); }

2 ¢ Assuming'np_dh'is<=1 — ’

(3« Taking false branch — '

1093
1094 Mat_dhCreate(&B); CHECK V_ERROR;

4« Calling 'Mat_dhCreate' — J

9 + Returning from 'Mat_dhCreate' — J

10 + Assuming 'errFlag_dh'is false = J

(11 + Taking false branch — J

1095 *Bout = B;

12 + Assigned value is garbage or undefined J

1096 B->m = B->n = A->m;

1097 mat_dh transpose private(A->m, A->rp, &B->rp, A->cval, &B->cva 1,
1098 A->ava. 1, &B->aval); CHECK_V_ERROR;
1099 END_FUNC_DH

1100 | }

IDEAS =
— \) R

productivity \

PROJECT

https://clang.llvm.org/docs/ClangStaticAnalyzer.html
https://clang.llvm.org/extra/clang-tidy/

40

Example development workflow that considers code quality

Example “make commit” workflow (easy in C/C++, and hopefully possible soon for
Fortran):

e clang-format passes and reformats the code

e clang-tidy passes and enforces coding conventions

e clang static analyzer compiles debug and production builds (check errors)

e Project-specific analysis for debug and production build (check errors)

e debug/production builds get compiled and unit tests launched (check errors)

e production build + unit tests run under valgrind (check errors)

e production build gets compiled and unit test launched (check errors)

e production build with --coverage gets compiled and unit test launched against llvm-
cov (write unit-test coverage stats)

IDEAS = S\o won
— I) CCCCCCCCC

productivity TR g

41

Our goals and approach

Make it easy(-ish) to define and apply static and dynamic program analysis
techniques to identify quality-related problems in HPC codes.

How? Two parts:
A. By integrating general static and dynamic program analyses into the HPC
software development process: mainly through documentation and examples.
B. By creating easy interfaces to custom analyses, with examples.

Why?
> Abstraction

o Elide details of a specific implementation.
o Capture semantically relevant details; ignore the rest.

> Programs as data
e Programs are just trees/graphs!
e ...and we have lots of ways to analyze trees/graphs I D E ﬂS —

productivity \

EEEEEEE

Static program analysis is...

QO

Examples:
e clang-tidy
e Clang static analyzer

Systematic examination of an
abstraction of program state space.

A

- TDE - b — (—.\\)l_)
productivity \

EEEEEEEE
CCCCCCCCC
EEEEEEE

Dynamic program analysis is...

Examples:

e Valgrind

o Clang/LLVM
sanitizers (better!)

Partial examination of an abstraction of
a single execution path at runtime.

4

IDEAS = &\ o
[)I_) CCCCCCCCC

productivity TR g

46

Example: Using scan-build with HYPRE

hypre/src/cmbuild$ scan-build cmake ..
hypre/src/cmbuild$ scan-build make

week4 — ssh -AY apollo — 95x20

[99%] Building C object CMakeFiles/HYPRE.dir/sstruct_ls/sys_pfmg_setup_interp.c.o
[99%] Building C object CMakeFiles/HYPRE.dir/sstruct_ls/sys_pfmg_setup_rap.c.o
[99%] Building C object CMakeFiles/HYPRE.dir/sstruct_ls/sys_pfmg_solve.c.o
/home/users/norris/test/hypre/src/sstruct_ls/sys_pfmg_solve.c:157:25: warning: The left operand
of '>' is a garbage value [core.UndefinedBinaryOperatorResult]
if (b_dot_b > 09)
~~~~~~~ A
/home/users/norris/test/hypre/src/sstruct_ls/sys_pfmg_solve.c:168:22: warning: The right operan
d of '/' is a garbage value [core.UndefinedBinaryOperatorResult]

o ot Pl Pt o Pt

2 warnings generated.

[ 99%] Building C object CMakeFiles/HYPRE.dir/sstruct_1ls/sys_semi_interp.c.o
[ 99%] Building C object CMakeFiles/HYPRE.dir/sstruct_ls/sys_semi_restrict.c.o

[100%] Linking C static library 1ibHYPRE.a

[100%] Built target HYPRE

scan-build: Analysis run complete.

scan-build: 1136 bugs found.

scan-build: Run 'scan-view /tmp/scan-build-2021-05-27-073157-25436-1' to examine bug reports.
norris@apollo:~/test/hypre/src/cmbuild$ i

\

THYPRE: Scalable Linear Solvers and Multigrid Methods. https://github.com/hypre-space/hypre

IDE A S f;\\\ _) EXESERLEE
jr— )I COMPUTING

productivity {



https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods

Example: hypre (cont.)

/home/users/norris/test/hypre, X +

hypre/src/cmbuild$ scan-view /tmp/scan-build-2021-05-27-073157-25436-1 > C (01270

1083 |}
1084
1085  #undef _ FUNC__
cmbuild - scan-build results x4 1086 #define _ FUNC__ "Mat dhTranspose"
1087  void Mat_dhTranspose(Mat_dh A, Mat_dh *Bout)
C | ® 127.0.0. 1088 {
cmbuild - scan-build results SULE STARTEEUNCEDH
1090 Mat_dh B;
User: norris@apollo
Working Directory: /home/users/norrisitest/hypre/src/cmbuild 1 'B' declared without an initial value = J
Command Line: make
Clang Version: clang version 13.0.0 (https://github.com/livm/llvm-project.git b7911e80d6926f9280ceb23d4e86e25c29370904) Soes
1092 i > " 1 "y
- Thu May 27 07:31:57 2021 if (np_dh 1) { SET_V_ERROR("only for sequential"); }
Bug Summary 2 ¢ Assuming'np_dh'is<=1 — J
Bug Type Quantity Display?
All Bugs 1136 . + Taking false branch — J
Logic error .
details
Array subscript is undefined 3
R Mat_dhCreate(&B); CHECK V_ERROR;
Assigned value is garbage or undefined 33
Branch condition evaluates to a garbage value 9 4 + Calling 'Mat_dhCreate' — J
Dereference of null pointer 378
Dereference of undefined pointer value 131 9 ¢+ Returning from 'Mat_dhCreate' — J
Division by zero 2
Garbage return value 2 E e k' TOO muc h 100 + Assuming 'errFlag_dh' is false — J
Result of operation is garbage or undefined 66 . f .
Uninitialized argument value 56 I n O rl I I atl O n ] Ca n
. + Taking false branch — J
Unused code th H |ﬂn
Dead assignment 387 Syn eSIZe a Ore 1095 *Bout = Bj;
Dead increment 10 t 1 b I r't
G a C IO n a e re po " 12 + Assigned value is garbage or undefined J
Dead initialization 57 |
Dead nested assignment 1096 B->m = B->n = A->m;
1097 mat_dh_transpose_private(A->m, A->rp, &B->rp, A->cval, &B->cval,
1098 A->aval, &B->aval); CHECK V_ERROR;
1099 END FUNC_DH
1100  }



48

What about project-specific requirements?

Do you need to be a compiler expert to implement new program checks?

Thankfully -- no!

IDEAS - = ...
— \) P e

productivity TR g




49

Implementation approach: Part B

Develop custom static and dynamic checking based on project-specific
requirements.

> (C/C++

e Static: use and extend existing APIs (Clang static analyzer, clang-tidy); implement
custom AST traversals and matchers (more details next)

e« Dynamic: use Clang sanitizer APls; python for simplicity and easy of extensions by HPC
software developers

> Fortran
o Static: need to write new Flang-based checkers only for things that Fortran developers
actually care about
e Dynamic: do we need anything?

IDEAS =\
— \) ) sxose

productivity \




50

Example: Checking for violations of
PETSc developer rules

From PETSc Style and Usage Guide: htips://petsc.org/release/developers/style/

IDEAS =

productivity \

EEEEEEEE
CCCCCCCCC
EEEEEEE


https://petsc.org/release/developers/style/

Examples of project-specific rule violations (PETSc 3.14)

s Rules from: https://petsc.org/release/developers/style/

PETSc PETSc Construct Description path Line Colu
Rule mn
Rule-1 Function definition in PetscErrorCode ~/petsc-3.14.3/src/vec/vscat/impls/mpi3/vpscat.h | 249 16
the library PETSCMAP1(VecScatterBeginMPI3Node)(VecScatter ctx,Vec
xin,Vec yin,InsertMode addv,ScatterMode mode)
Rule-2 Macro in the library #define ~/petsc-3.14.3/include/petsc/mpiuni/mpiunifdef.n | 118 2
mpi_reduce_scatter PETSC_MPI_REDUCE_SCATTER
Rule-3 Function declaration PETSC_INTERN PetscErrorCode ~/petsc-3.14.3/include/petsc/private/matimpl.h 494 29
in the library MatFactorFactorizeSchurComplement_Private(Mat);
Function declaration PETSC_EXTERN PetscErrorCode ~/petsc-3.14.3/include/petscmat.h 1245 29
in the library MatFactorFactorizeSchurComplement(Mat);
Rule-4 Function definition in PETSC_EXTERN PetscErrorCode ~/petsc-3.14.3/include/petscdmda.h 113 29
the library DMDAVecGetArray(DM,Vec,void *)
Function call in the ierr = VecGetArray(y,yv) ~/petsc-3.14.3/include/petscvec.h 545 10
application
Rule-5 Function call in the ierr = PetscFEPushforwardGradient(fe, fegeom, 1, ~/petsc- 332 10
library interpolantGrad); 3.14.3/include/petsc/private/petscfeimpl.h
Rule-6 If in the library if (p == 0) return node; ~/petsc-3.14.3/src/dm/impls/plex/gmshlex.h 231 3
Rule-7 Macro in the library #ifndef PETSC4PY_COMPAT_MUMPS_H ~/petsc- 1 1
3.14.3/src/binding/petsc4py/src/include/compat/

mumps.h
IDEAS =&

productivity \

EXASCAHLE

—) COMPUTING

PROJECT



https://petsc.org/release/developers/style/

54

Example results for a subset of the PETSc rules

Rule violation counts (over 20 years)
100 B Rule-7
R Rule-6
73 = — . Rule-5
‘ _‘—’_l_ B Rule-4
50 o — —
Rule-3
- B Rule-2-A
: B Rule-1-A
0
A o B B N Sl S N S R S S B R e
s ¥ ob kY 6T gAY gt ob ob AT ne FoowT &
nfl'-:} A A T ) -3 - - g 2 ' r.;" r.::'" n;,':" n;:b n;" n;"
& &ﬂ}* gf’L G g 55;-‘* ETE;F* 55;-‘* G@‘* &c;-‘* -l SR - S - N - R -
. N M. M N
Qé" Q Qq Q Q Q Q Q g T Q87 o8 B P Q::-ES‘* o
PETSC Release
_—
productivity =



Capabilities summary

Type of Data/Analysis Database | Examples | Repository Location

Git data: commits _
- s : AT-SDK
changes (lines, files, etc.) N \/ github.com/CAT-SDK/GremCat/

Github and Gilab issues

and associated metadata github.com/CAT-SDK/GremCat/

Code quality checkers o github.com/HPCL/code-analysis (dynamic)
>< e github.com/HPCL/llvm-project/tree/xsdk-

dynamic & static
(dy ) uo/clang-tools-extra/clang-tidy/petsc (static)

Not publicly available yet, contact

Mailing lists
norris@cs.uoregon.edu

productivity




Summary

> We introduced a flexible, efficient, and usable software framework for acquiring,
storing, manipulating, and visualizing development-related data.

> We demonstrated a few of its capabilities here; a growing number of analyses and tools
are continuously being developed.

o Contributions and/or requests welcome! https://github.com/CAT-SDK/GremCat

> Acknowledgments: DOE ECP IDEAS Productivity Project

o Carter Perkins, Bosco Ndemeye, Stephen Fickas, University of Oregon
e Armando Acosta and Kanika Sood, California State University, Fullerton
e Anshu Dubey and Lois Curfman Mclnnes, Argonne National Laboratory

Thank you!

ECP projects that may be present in examples in this presentation: Spack, LAMMPS, PETSc, Nek5000
E3SM, QMCPACK, QDPXX, LATTE NAMD, HYPRE, fast-export, Enzo, TAU2, xpress-apex, LATTE, NWChem

IDEAS =\
— YO sxe=e

” productivity TR g



https://github.com/CAT-SDK/GremCat

	Understanding Your Software Development�(through git repository data mining and code analysis)
	License, Citation and Acknowledgements
	Motivation
	Motivation
(Am I just making things up?)
	Other software-related factors
	Murphy-Hill et al. study conclusions
	What we are trying to do
	What this module is about
	Part I: Mining development metadata


Part II: Analyzing code
	Part I: Mining your development data
	Questions that can be answered (in part) with IDEAS data analysis tools
	Common patterns with known implications
	Common patterns with known implications
	Example metrics
	Example pattern: Domain champion
	Domain champion pattern: How do we detect it?
	Domain Champion Pattern: What, if anything, should we do?
	Another example pattern: Unusually high churn
	Unusually high churn pattern: How do we detect it?
	Unusually high churn pattern: What to do?
	Pattern: In the zone
	In the zone pattern: What to do?
	Technical Details and Examples
	Implementation 
	Impact of different “change” estimates
	Impact of different “change” estimates (cont.)
	Significant events
	How do projects weather interesting times?
	Where is development effort going?
	Example Tool: MeerCAT�Using git data to improve developer processes and efficiency
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	MeerCAT: File Explorer
	Part II: Analyzing Code
	Defects that code analyses can catch
	General-purpose tools for code checking (bugs, style)
	Example development workflow that considers code quality
	Our goals and approach
	Static program analysis is...
	Dynamic program analysis is...
	Example: Using scan-build with HYPRE1
	Example: hypre (cont.)
	What about project-specific requirements?
	Implementation approach: Part B
	Example: Checking for violations of PETSc developer rules
	Examples of project-specific rule violations (PETSc 3.14)
	Example results for a subset of the PETSc rules
	Capabilities summary
	Summary

