First Steps

1. Login and submit an interactive job (on Polaris):

 $ ssh <username>@polaris
 $ # ATPESC queue: -q R313446 (in general: -q prod)
 $ qsub -A ATPESC2022 -q R313446 -l select=1 -l walltime=01:00:00

 this will launch a job with 1 rank (×4 GPUs) for 1 hour
 (more on queues / scheduling)

2. From the interactive job, clone the github repo:

 ATPESC_MachineLearning

 $ hostname
 x3002c0s31b0n0
 $ git clone https://github.com/argonne-lcf/ATPESC_MachineLearning
 $ cd ATPESC_MachineLearning/00_statisticalLearning/
Setup / Install

Goal: Use functions located in common.py and utils.py from within our Jupyter notebook.

To do this we:

1. Create a python venv which we will use to launch our jupyter notebook
2. From within this venv, perform a local (editable) install `python3 -m pip install -e .`
Jupyter Notebooks

1. Load base conda environment (as a starting point):

   ```bash
   $ module load conda/2022-07-19  # from our interactive job
   $ conda activate base
   ```

2. Create (isolated) venv and perform local install:

   ```bash
   $ cd ATPESC_MachineLearning/00_statisticalLearning/
   $ python3 -m venv venv --system-site-packages
   $ source venv/bin/activate
   $ # will install `atpesc` into the `venv`
   $ python3 -m pip install -e .
   ```

3. Install Jupyter kernel and launch notebook

   ```bash
   $ python3 -m pip install ipykernel
   $ python3 -m ipykernel install --user --name="2022-07-19-ATPESC" \
            --display-name="2022-07-19 ATPESC"
   $ jupyter notebook --port=8899 --no-browser > /tmp/jlab8899.log 2>&1 &
   $ hostname
   x3002c0s31b0n0
   ```
Port Forwarding

1. ssh -L localhost:$PORT:localhost:$PORT <username>@polaris
2. ssh -L localhost:$PORT:localhost:$PORT x3002c0s31b0n0

✅
Port Forwarding

Connect localhost to compute node running Jupyter.

6. Starting from your **local machine**

 # 1: localhost <---> polaris-login-01
 ssh -L localhost:8899:localhost:8899 <username>@polaris.alcf.anl.gov
 # 2: polaris-login-01 <---> compute node
 ssh -L localhost:8899:localhost:8899 <username>@x3002c0s31b0n0

7. From a web browser on your local machine, navigate to: **https://localhost:8899/**

⚠️ **Warning!**

Only **one** port (8899 in this example) can be used at a time. Because of this, if someone is already using the port you try and specify, your connection **WILL NOT WORK**

To remedy this, (randomly?) choose a different port (e.g. 8891, 8873, etc.)
Linear Regression
Line Fitting

Linear regression via *stochastic gradient descent* (SGD).

1. Load data into pandas DataFrame:

   ```python
   import pandas as pd
   from pathlib import Path
   from atpesc.common import DATA_DIR
   data_file = Path(DATA_DIR).joinpath('realestate_train.csv')
   df = pd.read_csv(data_file)
   ```

2. Extract total home square footage

   ```python
   area = sum([
               df['1stFlrSF'],
               df['2ndFlrSF'],
               df['TotalBsmtSF']
             ])
   area.name = 'SqFt'
   price = df['SalePrice']
   ```
Sale Price vs. Square Footage

```
sns.jointplot(x=area, y=price, alpha=0.33)
```
Linear Regression

• We can fit the data with a line in order to estimate future sale prices based on home size.
• Assume a simple linear relationship \(y = m \cdot x \)

\[
\text{price} = m \cdot \text{area}
\]

How does our prediction fit the data?

In order to evaluate how well our predictions match the data, we can use the Mean Squared Error (MSE):

\[
\text{MSE} \equiv \delta(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2
\]
def predict_price(slope, area):
 return slope * area

def evaluate(slope, area, true_price):
 prediction = predict_price(slope, area)
 return np.mean((true_price - prediction) ** 2)
Recall our prediction is given by $y = m \cdot x$, where:

- m is the **slope** (randomly initialized)
- \hat{y} is the **true price**
- y is the **predicted price**
- x is the **input area**
- α is the **learning rate**

We update our slope m using the update policy:

$$
m \leftarrow m - \alpha \nabla \delta (y, \hat{y})$$

$$= m - \frac{\alpha}{n} \nabla \left\{ \sum_{i=1}^{n} (y_i - \hat{y})^2 \right\}$$

$$= m - \frac{\alpha}{n} \sum_{i=1}^{n} 2 (y_i - \hat{y}) \cdot \frac{\partial y_i}{\partial m}$$

$$= m - \frac{\alpha}{n} \sum_{i=1}^{n} 2 (y_i - \hat{y}) \cdot x_i$$
def learn(area, slope, true_price, lr = 0.000001):
 prediction = predict_price(slope, area)
 dfdx = 2. * np.mean((prediction - true_price) * area)
 new_slope = slope - learning_rate * dfdx
 return new_slope
Stochastic Gradient Descent

- Each application of the learn function updates the slope and the learning_rate dampens that update.
 - This iterative method helps to find the value of x that minimizes the gradient $\frac{df}{dx}$.

- The learning_rate controls the size of the update step when updating x.

Too Large! (overshooting)

Too small! (stuck in local min)
Data Clustering
Data Clustering
Data Clustering

Normalization

Always a good idea to normalize your data
K-Means Clustering

• **Goal**: Partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.
K-Means: Step 1

1. \(k \) initial means (in this case, \(k = 3 \)) are randomly generated within the data domain (shown in color)
K-Means: Step 2

2. Calculate distance to each centroid:\(^1\)
 1. \(k\) clusters are created by associating every observation with the nearest mean.
 2. Find nearest cluster for each point.

1. The partitions here represent the Voronoi diagram generated by the means.
K-Means: Step 3

- Calculate the new centroids
 - The centroid of each of the k clusters becomes the new mean
K-Means: Step 4
Repeat until convergence
Hands-On / Live Demo

- slides
- argonne-lcf/ATPESC_MachineLearning/
 - 00_statisticalLearning
 - statistical_learning.ipynb