Statistical Learning

Sam Foreman

ATPESCH>)

EXTREME-SCALE CQMPUT!NG

N N

https://github.com/argonne-lcf/ATPESC_MachineLearning
https://www.samforeman.me/
https://www.github.com/saforem2/ATPESC-StatisticalLearning
https://www.twitter.com/saforem2

First Steps

1. Login and submit an interactive job (on Polaris):

ssh <username>@polaris

gsub -A ATPESC2022 -q R313446 -1 select=1 -1 walltime=01:00:00 -I

this will launch a job with 1 rank (x4 GPUs) for 1 hour

2. From the interactive job, clone the github repo:

hostname

x3002c0s31b0n0
git clone https://github.com/argonne-1cf/ATPESC MachineLearning
cd ATPESC MachineLearning/00 statisticalLearning/

https://argonne-lcf.github.io/user-guides/polaris/queueing-and-running-jobs/job-and-queue-scheduling/
https://github.com/argonne-lcf/ATPESC_MachineLearning

Setup / Install

tree ATPESC MachineLearning/00 statisticalLearning/
™ src/
L ™ atpesc/
£ common.py
L ™ notebooks/
L N statistical learning.ipynb
L ™ utils/
L — & plots.py

e Goal: Use functions located in common.py and
utils.py from within our Jupyter notebook.

e To do this we:
1. Create a python venv which we will use to launch
our jupyter notebook
2. From within this venv, perform a local (editable)
install python3 -m pip 1nstall -e .

Jupyter Notebooks

1. Load base conda environment (as a starting point):

module load conda/2022-07-19
conda activate base

2. Create (isolated) venv and perform local install:

cd ATPESC_ MachineLearning/00 statisticalLearning/
python3 -m venv venv --system-site-packages
source venv/bin/activate

python3 -m pip install -e .

3. Install Jupyter kernel and launch notebook

python3 -m pip install ipykernel
python3 -m ipykernel install --user --name="2022-07-19-ATPESC" \
--display-name="2022-07-19 ATPESC"
jupyter notebook --port=8899 --no-browser > /tmp/jlab8899.log 2>&l &
hostname
x3002c0s31b0n0

Port Forwarding

polaris-login

Port Forwarding

Connect localhost to compute node running Jupyter.
6. Starting from your local machine

ssh -L localhost:8899:1localhost:8899 <username>@polaris.alcf.anl.gov

ssh -L localhost:8899:1ocalhost:8899 <username>@x3002c0s31b0n0

/. From a web browser on your local machine, navigate
to:

A Warning!

Only one port (8899 in this example) can be used at a time.

Because of this, if someone is already using the port you try and specify, your
connection WILL NOT WORK

To remedy this, (randomly?) choose a different port (e.g. 8891, 8873, etc.)

https://localhost:8899/

Linear Regression

Line Fitting

Linear regression via (SGD).
1. Load data into pandas DataFrame:

import pandas as pd

from pathlib import Path

from atpesc.common import DATA DIR

data file = Path(DATA DIR).joinpath('realestate train.csv')
df = pd.read csv(data file)

2. Extract total home square footage

area = sum([
df['1stFlrSF'],
df['2ndFlrSF'],
df['TotalBsmtSF']
1)
area.name = 'SqgFt'
price = df['SalePrice']

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Sale Price vs. Square Footage
sns.jointplot(x=area, y=price, alpha=0.33)

SalePrice

SqFt

Linear Regression

e We can fit the data with a line in order to estimate
future sale prices based on home size.

e Assume a simple linear relationship (y = m - x)
price = m - area

© How does our prediction fit the data?

In order to evaluate how well our predictions match the data,
we can use the (MSE):

MSE = §(y,9) = + Zfll (yi — @)2

https://en.wikipedia.org/wiki/Mean_squared_error

Linear Regression

def predict _price(slope, area):
return slope * area

def evaluate(slope, area, true price):
prediction = predict price(slope, area)
return np.mean((true price - prediction) ** 2)

Linear Regression

o Recall our prediction is given by y = m - , where:
o 1 is the slope (randomly initialized)
o is the true price
o Y is the predicted price
o x is the input area
o ¢ is the learning rate

» We update our slope 11 using the update policy:

m%m—aVcS(y,Q)

Linear Regression

def learn(
area,
slope,
true price,
lr = 0.000001,

prediction = predict price(slope, area)

dfdx = 2. * np.mean((prediction - true price) * area)
new slope = slope - learning rate * dfdx

return new_ slope

Stochastic Gradient Descent

e Each application of the learn function updates the slope and the

learning_rate dampens that update.
o This iterative method helps to find the value of x that

minimizes the gradient Z—i.

e The learning_rate controls the size of the update step when
updating x.

Linear Regression

lteration: 9, Current Slope: 70.95609

800000
600000

400000

SalePrice

200000

0) e101010 10000
SqFt

Data Clustering

10

Data Clustering

) \,

{',‘::‘ a .‘.., ®
2%000 _ g¥%0g ©
Ap)‘!/.' f‘.w.‘:?;.*
SOOI AR

TSN d®

”: 5.'4(.

0,

10

Data Clustering

Always a good idea to normalize your data

Original Normalized

10 -2 -1 0 1

|
Ul
(@)
ul

K-Means Clustering

e Goal: Partition n observations into k clusters in
which each observation belongs to the cluster
with the nearest mean.

s o« s
7

| o

o e "

YUy U

K-Means: Step 1

1. k initial means (in this case, kK = 3) are randomly
generated within the data domain (shown in color)

\.
\ 4

K-Means: Step 2

2. Calculate distance to each centroid:’
1. k clusters are created by associating every observation with
the nearest mean.
2. Find nearest cluster for each point.

1. The partitions here represent the Voroni diagram
generated by the means

K-Means: Step 3

e Calculate the new centroids
o The centroid of each of the k clusters becomes
the new mean

.

%
7

)
Yl

/ ¢

K-Means: Step 4

Hands-On / Live Demo
. M

https://saforem2.github.io/ATPESC-StatisticalLearning
https://github.com/argonne-lcf/ATPESC_MachineLearning
https://github.com/argonne-lcf/ATPESC_MachineLearning
https://github.com/saforem2/ATPESC_MachineLearning/blob/master/00_statisticalLearning/src/atpesc/notebooks/statistical_learning.ipynb

