

DEEP LEARNING METHODS (TALK/HANDS-ON)

TANWI MALLICK

Assistant Computer Science Specialist Mathematics and Computer Science Division Argonne National Laboratory

12 August 2022

VOICE ENABLED PERSONAL ASSISTANT

VOICE ENABLED PERSONAL ASSISTANT

Source: https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-machine-learning-vs-deep-learning

TRAFFIC PREDICTION

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://arxiv.org/pdf/2108.11482.pdf

NLP FOR CLIMATE RESEARCH

Topic 2

Topic 3

WHAT IS DEEP LEARNING

Argonne 🕻

WHY DEEP LEARNING AND WHY NOW?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn underlying feature directly from the data?

Low level features

Lines and edges

Mid level features

Eyes, nose, and ears

High level features

Facial structure

WHY DEEP LEARNING AND WHY NOW?

Neural networks date back decades, so why the resurgences?

- 1. Hardware
 - Graphics processing units (GPUs)
 - Massively parallelizable

- 2. Big Data
 - Large dataset
 - Easier collection
 and storage
- 3. Software
 - New models
 - Easley usable packages

CATEGORIES OF LEARNING PROBLEMS OR PARADIGMS

- Supervised learning (this talk)
 - Regression: output variable is continuous
 - Classification: output variable is discrete (categorical)
- Unsupervised learning
 - Clustering
 - Association
- Semi-supervised learning
- Reinforcement learning

HOW DOES IT WORK?

Backward pass

BRAIN AND NEURONS

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Input Weight Sum Non-Linearity Output

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Activation Function

$$\hat{y} = \sigma \left(w_0 + X^T W \right)$$

Example: Sigmoid function

COMMON ACTIVATION FUNCTIONS

IMPORTANCE OF AN ACTIVATION FUNCTION

Introduce non-linearity into the network

What if you want to build a neural network to separate green and red points

IMPORTANCE OF AN ACTIVATION FUNCTION

Linear activation function produce linear decision

Non-linear activation function can approximate arbitrarily complex function

Input Weight Sum Non-Linearity Output

PERCEPTRON SIMPLIFIED

MULTILAYER PERCEPTRON

DEEP NEURAL NETWORK

Number of hidden layers > 1

BACKWARD PASS: COMPUTE LOSS

The loss of network measures the cost incurred from the incorrect prediction

BACKWARD PASS: COMPUTE LOSS

The loss of network measures the cost incurred from the incorrect predictions

BINARY CROSS ENTROPY LOSS

$$J(W) = -\frac{1}{n} \sum_{i=1}^{n} y^{i} \log(f(x^{i}; W)) + (1 - y^{i}) \log(1 - f(x^{i}; W))$$

MEAN SQUARE ERROR

Want to find network weights that achieve the lowest loss

$$W^* = \operatorname{argmin}_{W} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^i; W), y^i)$$
$$W^* = \operatorname{argmin}_{W} \int_{W} \int_{W} \int_{W} \int_{W} W^*$$
Remember:
$$W = \{W^0, W^1, ...\}$$

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Randomly pick the initial (W_0, W_1)

Take a step in the opposite direction of the gradient

Repeat until convergence

GRADIENT DESCENT

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

3. Compute gradient,
$$\frac{\partial J(W)}{\partial W}$$

4. Update weights,
$$\boldsymbol{W} \leftarrow \boldsymbol{W} - \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$$

BACKPROPAGATION

BACKPROPAGATION

Repeat this for every weight of the network using gradient from previous layer

Train a Neural Network

Argonne Argonne Argonational Laboratory

Écologice.