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INTRODUCTION

Why nuclear physics?
Atomic Nuclei are many-body systems governed by the strong interaction, which exhibit emergent
properties such as: shell structure, pairing and superfluidity, deformation, and self-emerging clusters.

Understanding how the properties of nuclei emerge from QCD is a long-standing goal of nuclear physics.
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NUCLEAR MANY BODY PHYSICS

At low energies, the quarks and gluons are confined within the hadrons: protons, neutrons and pions.

XH Lk
LR

Z + Y Vip+ -

1<j 1<j<k
We can approximate QCD through effective field theories, allowing us to compute observables
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PION-LESS NUCLEAR HAMILTONIAN
An Effective Field Theory with 2- and 3- body interactions

V12 = C1UA(7“12) + C2UA(?“12)012 i v123 = Dy Z UA(T12)UA(7°13)
E cyc
C, and C, fit to nucleon-nucleon ' D, fixed with the binding energy of
scattering data 3H
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THE NUCLEAR MANY-BODY PROBLEM

» The non-relativistic many body theory is solving the Schrodinger equation:

Hwn(R) — En¢n(R) R = (fl7 Sl,zaTl,z-'-)
R _,
H=V(R)- -V

» The exact solution of this is exponentially hard.

» The methods described in this talk solve this equation approximately, and while
we target Nuclear many-body systems it is broadly applicable to many-body
quantum systems.
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VARIATIONAL MONTE CARLO

» The Variational Principle of Quantum Mechanics guarantees that for any trial
wavefunction, the expectation of the energy of that wavefunction is greater than the
ground state:

7 _ W |H|Yr
vr=vr(R6)  Br= S = B

= Trial wavefunctions are parametrized in some way, and so you may optimize the trial
wavefunction to reduce the expectation of the energy.

. 0
mm(ET) : (9j — 9]' %ET
= Ultimately, the lowest energy found represents the best approximation of the ground

state.
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COMPUTING EXPECTATION VALUES

= The trial wavefunction, in just one dimension, is simple to compute numerically. But
with many-body problems in 3 dimensions, the number of dimensions in the integral
scales as 3XNpartigles-

m - [ dr@s.(r, §)prT(r 5)
[ drUs(r,0) U (r,0)

r=(r1,7r2,...TN)

= Sampling this integral in a dense or even adaptive way is computationally very very
hard!

= The central limit theorem provides a way to approximate this multi-dimensional
integral
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CENTRAL LIMIT ESTIMATES

» Let P(x) be a probability distribution, and (x4, ... xy) be drawn from P(x). For the

function f(x), you can define a new random variable:

| N
SN = N Zf(afz)
i=1

= By the central limit theorem:

SN = /de(a:)f(a:) oN = \/% [/P(m)f(:c)Qd;c—SN
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VARIATIONAL MEASUREMENTS

» The integral to estimate the energy of a trial wavefunction is:

~ Wr|Hyr) [ dRr|R) (RIH[YT)

Fr = —
L (rler) [ dR (¢r|R) (Rlyr)
= Define a quantity E (R):  FEL(R) = ffbw?;})%)
T
g _ JARW(R)PEL(R)
[ dR|Yr(R)|?
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TRIAL ENERGY ESTIMATE

= Numerically approximate the integral by sampling R from the probability
distribution P(R):

__ @®P 1
P(R) = deWT(R)P (Er) = N Z,;EL(R

= And, the integration error can be estimated just as easily:

L _ Hyr(R)
= L) BL(R) = Ty
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M(RT)2 SAMPLING

= Now that we have a tool for Computing —80—0—80—0—0—0— Initial Distribution

integrals in high dimensionality, we can VooV |
. 009 --90------- ® Random Gaussian Move
compute the energy for any trial T /
wavefunction as long as we sample x; 9 9—90—80—8— Accept/Reject
from the probability distribution P(x;). VVY /Y
= The M(RT)? algorithm* providesa I“\r J.'l """ Random Gaussian Move

technique to sample from any arbitrary o o o8 Accept/Reject
probability distribution under general

conditions.

» Referring to each sample as a “walker.”

*named for N. Metropolis, A. Rosenbluth, M. Rosenbluth, A.
https://github.com/Nuclear-Physics-with-Machine-
Teller, E. Teller Learning/Al4NP_School/blob/main/Lectures/MLNP _school I.pdf
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https://github.com/Nuclear-Physics-with-Machine-Learning/AI4NP_School/blob/main/Lectures/MLNP_school_I.pdf

PRACTICAL CONSIDERATIONS

= The M(RT)?2 algorithm has some nice properties:
— We can sample nearly any function;
— It is numerically and analytically fairly simple;
— It is easily parallelized up to however many configurations we want

= Also: The M(RT)?algorithm has some unfortunate convergence properties:
— It takes a large number of steps to converge to the target distribution,
especially initially.
— Subsequent samples are often frequently correlated with each other,
requiring intermediate steps to re-thermalize.
— Discarding sampled configurations initially and with each re-thermalization is
quite wasteful.
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ENERGY MINIMIZATION

= Recall the wavefunction, and the values we must compute:

o Hyr(R)
vr=vr@ 0 B = @y
= So,
o(Er) _ 5 <<3i¢T|H|¢T> B, <57:¢T|¢T>>
00, (Yr|Yr) (Yr|Yr)
= Define:
7 0 N 7 I (E 7 7
O (RB) = Dur(R) G =TT =2((0'H) - (Br) (0)

nnnnnnnnnnnnnnnn



CALCULUS INTERLUDE

» So far, we’ve encountered a number of derivatives:
— The Hamiltonian operator requires a second derivative to compute the energy
of the trial model, as a function of the inputs.
— The Gradient Calculation requires derivatives of the trial model as a function
of the parameters.

= \We can either figure out these derivates analytically (hard), numerically (slow), or
leverage a machine learning framework that has automatic differentiation.
— Which one?

» In short: represent our “trial wavefunction” with a machine learning neural
network.
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ANTI-SYMMETRY

= A wavefunction of many fermions must be anti-symmetric under the exchange of
any two particles. We enforce this directly in the network with the Slater
determinant, in combination with a fully-symmetric DeepSets based correlator

(U)
(1]C1)  (x2|Cr) .o (2N]C)

| @lG) (2lG) o (eNlG) _ ((@1|Rip 1) (w2|Rip 1)
S = . . . Sdeuteron — ((xl ’RQTL T> (x2|R2n T>>

X; is a generalized coordinate of
spatial position, spin, and isospin.

@len) (walen) ... (awln)

1Gi) = |Ri) |sa) |73)
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NEURAL NETWORK QUANTUM STATES

» In general, we need a wavefunction of the form (S is matrix):

W(7, .. 7y) = eV TN det(S)

= |In practice, we enforce full symmetry of the correlator under exchange of
particles using the DeepSets formalism:

U(Th,...,Ta) = pu (Z¢U(ﬁ;)) ¢,p=ANN

= Each particle’s location is mapped to a latent space, and the latent space of all
particles is summed to destroy individual interactions, then mapped to a single
value.
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NEURAL NETWORK PHYSICALITY

» The neural network implementation must also obey physical constraints: must be
twice differentiable, continuous in the first derivative, and for a bound state must
go to 0 at infinity.

= |In practice, we enforce this with select activation functions (yes to tanh/sigmoid,
no to ReLU!). A correlator function U is also augmented with a confinement term
(goes to 0 at infinity):

U(T1,...,Ta) = pu (Z ¢U(Fz)> - O‘Zf?

T -y
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STOCHASTIC RECONFIGURATION

» The gradients computed above can be improved via “Stochastic Reconfiguration”
— https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103

Smn _ <Om0n> <Om> <On> S]?i,le = (SR —I—]IE)_l
= Effectively, this flattens the space of optimization and is a 2" order approach

”ZSReae

= But, thls requwes the jacobian matrix of the network!
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.241103

ALGORITHM SUMMARY 1

= For a trial wavefunction, create sets of Ny gkers 1O
use for a numerical integration.

= Thermalize the walkers for Ny, iterations at
the start; between each measurement use N,q
steps to remove correlations in measurements.

= For each set of thermalized, de-correlated
walkers, compute the observable properties:
— E5, it's variational derivatives, the
reconfiguration matrix S;;.
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ALGORITHM SUMMARY 2

= Accumulate the observables for
Nops iterations;

Equilibrate O(1000) steps)

. 0(Er) p ; Measurement of G, S

¢ = 00; (O"H) = (Er) (O)) De-correlate O(200) steps)
mn . m " Measurement of G, S

Sp" =(070") = {0™){0%) De-correlate O(200) steps)
» Update the wave function according Measurement of G, S

to the accumulated observables and
the update rule:

0, — 0, — Z G 660 De-correlate O(200) steps)
Measurement of G, S
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COMPUTATIONAL EFFICIENCY

» This algorithm can (and has been) implemented in there DL frameworks (TF,
Torch, Jax). Jax is the clear winner for computational efficiency.

= Torch is imperative: the "walk” algorithm is too slow, and makes terrible use of
the GPU.
— LibTorch is better, but has concurrency issues when computing the Jacobian
matrix.
— Generally torch is great when each GPU op is Big. It falls over when there
are many many small ops.

» Tensorflow is better, but it's graph compilation stage can be tedious and
detrimental to start-up times as the problem size scales up.
— Has excellent scaling properties, though!

T -y
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COMPUTATIONAL EFFICIENCY (2)

» The non-traditional derivatives of this algorithm also are a challenge:
— Need a second derivative with respect to input variables, AND a jacobian.
— No simple vectorization and poor performance with both TF (jacobian) and
Torch (both!)

» Jax offers a solution to all of this:
— Easy to compile the many-small-ops Metropolis algorithm
— Easy to vectorize the gradient of the wavefunction over all parameters
(Jacobian)
— Easy to vectorize the 2nd derivatives.

= |In short: if you have a “weird” algorithm using machine learning, Jax is awesome.
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SOLVING THE DEUTERON

I
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NUCLEI UP TO A=6

Nucleus Potential ANN HH Exp.
E (MeV) reh (fm)  E(MeV)  rep (fm) E (MeV)  rep (fm)
2H NN —2242(1) 2.120(5) —2.242 2.110(2) -2.225  2.128
NN  —9511(1) 1.658(4) —9.744 1.656(4)
3 _
H SN —8232(1) 1.750(3) —8.475 1.747(6) o470 1.755(86)
NN —8800(1) 1.845(3) —9.035 1.848(6)
3 _
He SN —7564(1) 1.961(3) —7.811 1.969(8) 18 1.964(1)
NN —36.841(1) 1.484(3) —37.06 1.485(4)
4 —
He 3N —27.903(1) 1.643(2) —28.17 1.646(4) 230  L678
NN —37.25(4) 1.895(2) —37.96(8) 1.71(1)
6 —
He SN —2746(2) >4.89(1) —27.41(8) >273 2927 205(1)
. NN —42.04(1) 2.248(3) —42.51(5) 2.09(2)
6 —
Li SN —30.82(3) 3.049(2) —31.00(8) >274 o199 2.54(3)

Table 1 from https://link.springer.com/article/10.1007/s00601-021-01706-0
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https://link.springer.com/article/10.1007/s00601-021-01706-0

CONVERGENCE OF HELIUM

—— GFMC

1.21 f ANN The point-nucleon

Lol density of ‘He

' 1074 compared to the
=08 el classical, Green’s
@06 field Monte Carlo
g 10 X Technique —

0.4 5 accurate over 4

0] 19300 225 250 275 300 325 350 375 4.00 orders of

magnitude.
0.0/
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r (fm)
Figure 2 from https://journals.aps.org/prl/abstract/10.1103/PhysRevl ett.127.022502
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502

OPTIMIZATION TRICKS

» The iterative update of parameters requires several hyperparameters,
particularly the learning rate and the regularization parameter for the inversion of
the Stochastic Reconfiguration matrix.

» Instead of picking hyperparameters, we can experiment:
— Set values for the parameters, ensure the changes in the wavefunction are
small.
— update the wavefunction, recompute the energy
« Because updates are constrained to be small, the previous walk can be
reused by rescaling the probability (psi_new? / psi_old?)
— Choose the step with the best “next” energy
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OPTIMIZATION TRICKS

' T 7 T
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The “AdaptiveEta” (learning rate) quickly out-performs the standard
algorithm with minimal additional computational cost (10% slower).
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SCALABLE MACHINE LEARNING

» The algorithm, as designed, is

easily scalable to multiple
compute systems:

— We compute the
observables a total number
of Ngps times

— This can be trivially

._
=
|

Time per iteration [s]

Ideal
Strong Scaling
Weak Scaling

distributed across M GPUSs, ol
as long as Ny,s / M is an ]

integer. T

» Nearly perfect weak scaling up
to hundreds of A100 GPUs.

............................................
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ONGOING WORK

= \We continue to develop these techniques with the aim of solving bigger and
bigger systems.
— We intend to solve the Calcium nucleus on Polaris this year.

= QOur software is open source and available on github with minimial software
requirements (tensorflow) and no input requirements:
— https://github.com/Nuclear-Physics-with-Machine-Learning
— This also includes a tutorial session on these numerical techniques presented
at the 2021 Al-in-Nuclear-Physics winter School
* (Including hands-on exercises in Tensorflow, if you want to try this out — we
solve the hydrogen atom with machine learning)
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https://github.com/Nuclear-Physics-with-Machine-Learning

THANK YOU!
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