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Outline

• Why do we need for distributed / parallel deep learning on HPC

• Distribution schemes: model parallelism vs data parallelism

• Steps to change your serial code to data parallel code

• Challenges and tips on data parallel training

• I/O and data management

• Science use cases 

• Hands on exercises
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Need for distributed (parallel) training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month 
doubling period).” https://openai.com/blog/ai-and-compute/

Eras:
• Before 2012 …

• 2012 – 2014: single to couple GPUs

• 2014 – 2016: 10 – 100 GPUs

• 2016 – 2017: large batch size training, 

architecture search, special hardware 

(etc, TPU)

Finishing a 90-epoch ImageNet-1k 
training with ResNet-50 on a NVIDIA M40 
GPU takes 14 days. (1018 SP Flops)

~1s on OLCF Summit (~200 
petaFlops) if it “scales ideally”
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GPT-3

Training time for GPT 3 = 3640 Days
= 9.97 Years

It would take 355 years to train GPT-3 
on a single NVIDIA Tesla V100 GPU.

OpenAI launched GPT-3 in May/2020.

Using 1,024x A100 GPUs, researchers 
calculated that OpenAI could have 
trained GPT-3 in as little as 34 days.

Estimated that it cost around $5M in 
compute time to train GPT-3.

Tom B. Brown et al, “Language Models are Few-Shot Learners”, 2020.
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Need for distributed (parallel) training on HPC
• Increase of model complexity leads to dramatic increase of computation.

• Increase of the amount of dataset makes sequentially scanning the whole 

dataset increasingly impossible.

• The increase in computational power has been mostly coming (and will 

continue to come) from parallel computing.

• Coupling of deep learning to traditional HPC simulations might require 

distributed inference.
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Parallelization schemes for distributed learning
Worker 4

Worker 3 Worker 2

Worker 1

Worker 1 Worker 4 Worker N 

…

Model parallelism Data parallelism
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Polaris
#  of River Compute  racks 40
# of Apollo Gen10+ Chassis 280
# of Nodes 560
# of AMD EPYC 7543P CPUs 560
# of  NVIDIA A100 GPUs 2240
Total GPU HBM2 Memory 87.5TB
Total CPU DDR4 Memory 280 TB
Total NVMe SSD Capacity 1.75 PB
Interconnect HPE Slingshot
# of Cassini  NICs 1120
# of Rosetta Switches 80
Total Injection BW (w/  Cassini) 28 TB/s
Total GPU DP Tensor Core Flops 44 PF

Total Power 1.8 MW
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7 Steps to Horovod
How to change a serial code into a data parallel code: 

1. Initialize Horovod

2. Pin GPU to each process

3. Checking pointing / printing training time on rank 0

4. Scale the learning rate

5. Set distributed optimizer / gradient tape

6. Broadcast the model & optimizer parameters from rank 0 to other ranks

7. Adjusting dataset loading: number of steps (or batches) per epoch, dataset sharding, etc. 

https://eng.uber.com/horovod/
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7 Steps to Horovod
Step 1. Initialize Horovod

import horovod.tensorflow.keras as hvd
hvd.init()

Step 2. Pin GPU to each process
# Pin GPU to the rank - we set one GPU per process

tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU’)

Step 3. Checkpointing on root rank
# It is important to let only one process to do the checkpointing I/O.

if hvd.rank() == 0: 

callbacks.append(tf.keras.callbacks.ModelCheckpoint('./checkpoints-km{epoch}.h5’))

if (hvd.rank()==0):

print("Hvd Procs %d Total time: %s second" %(hvd.size(),t1-t0))
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Gradient Descent

Stochastic Gradient Descent (SGD) 
update

Dataset Weight

Minibatch

Minimizing the loss: 

Model is updated at each step.  

• One minibatch is divided into many 
sub minibatches and each is feed 
into one of the workers

L

w
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7 Steps to Horovod
Step 4: Scale the learning rate with number of workers
If we keep the local batch size on each rank the same, the global batch 
size increases by n times   The learning rate should increase 
proportionally  

When the minibatch size is multiplied by k, multiply the learning rate by k. 

opt = tf.optimizers.Adam(lr * hvd.size())

Step 5 : Wrap tf.optimizer with Horovod DistributedOptimizer

opt = hvd.DistributedOptimizer(opt)

Gradients are aggregated over all the workers through MPI_Allreduce
Gradients are averaged at each step (not each epoch)

11
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Large minibatch training

Minibatch

Per node throughput of different local batch size

§ Option 1. Keeping the same 
global minibatch size with each 
worker processing B/N batch 
(strong scaling)

§ Option 2. Increasing the global 
minibatch size by N times, so that 
each worker processes batches 
of size B (week scaling)

1. Decrease of local batch size reduces the per 
node throughput; 

2. Increase of global minibatch size reduces the 
number of updates on each epoch (n=X/B); thus 
it increases the compute/communication ratio

H. Zheng, https://www.alcf.anl.gov/files/Zheng_SDL_ML_Frameworks_1.pdf
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Challenges with large batch training
• Convergence issue: at the initial stages of training, the model is far away 

from optimal solution ∇𝑙 𝑥, 𝜔!"# ∼ ∇𝑙 𝑥, 𝜔! breaks down. Training is not 
stable with large learning rate in the beginning;

• Generalization gap: large batch size training tends to be trapped at local 
minimum with lower testing accuracy (generalize worse).

“... large-batch ... converge to sharp minimizers of the training 
function ... In contrast, small-batch methods converge to flat 
minimizers” 

Performance of small-batch (SB) and large-batch 
(LB) variants of ADAM on the 6 networks 

Keskar et al, arXiv:1609.04836 
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Challenges with large batch training
Solutions: using warm up steps 
• Using a smaller learning rate at the initial stage of training (couple 

epochs), and gradually increase to 𝜂̂ = 𝑁𝜂
• Using linear scaling of learning rate (𝜂̂ = 𝑁𝜂)

No warm up Gradual warm up This scheme works up to 
8k batch size

P. Goyal et al,arXiv: 1706.02677 
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Challenges with large batch training

Predicted critical maximum 
batch size beyond which the 
model does not perform well. 
S. McCandlish, J. Kaplan, D. Amodei, 
arXiv:1812.06162

Maximum batch size place limit to 
data parallel: 

N_workers < Maximum batch size
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7 Steps to Horovod
6. Broadcast the model & optimizer parameters to other rank

callbacks = [ # broad cast 

hvd.callbacks.BroadcastGlobalVariablesCallback(0),

# Average metric at the end of every epoch

hvd.callbacks.MetricAverageCallback(),

# Warmup 

hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3,initial_lr=_lr),
]

7. Adjusting dataset loading: number of steps (or batches) per epoch, dataset sharding, etc. 

steps_per_epoch=60000/hvd.size()/batch_size

16
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Tensorflow with Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

# Horovod: initialize Horovod.
hvd.init() 
# Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
# Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
# Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0), 
tf.train.StopAtStepHook(last_step=20000 // hvd.size()), 
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

More examples can be found in https://github.com/uber/horovod/blob/master/examples/
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PyTorch with Horovod
#…
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(

optimizer, named_parameters=model.named_parameters())

More examples can be found in https://github.com/uber/horovod/blob/master/examples/
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Keras with Horovod
import keras
import tensorflow as tf
import horovod.keras as hvd
# Horovod: initialize Horovod.
hvd.init()
# Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer. 
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
# Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

More examples can be found in https://github.com/uber/horovod/blob/master/examples/
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Scaling TensorFlow using Horovod on Theta @ ALCF 
(Intel Knights Landing): batch size = 512 

AlexNet ResNet-50 Inception V3
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Overlap of communication and compute in Horovod
21

AlexNet
(batch size = 512, 

50 steps)

ResNet-50 
(batch size =64, 

50 steps)

Inception V3
(batch size =128, 

50 steps)

Increase of total time is smaller than the increase of the communication time, 
which indicates large overlap between compute and communication. 
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MPI flat profile for Horovod
(AlexNet, batch size=512, 128 KNL nodes)

22

• Majority of time is spent on MPI_Allreduce with message size ranging from KB-GB
• There is load imbalance (synchronization time)

LD_PRELOAD=/soft/perftools/hpctw/lib/libmpitrace.so mpirun -np 8 python 03_keras_cnn_concise_hvd.py --epochs 10
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Horovod Timeline
HOROVOD_TIMELINE=gpu.json mpirun -np 8 python 03_keras_cnn_concise_hvd.py 
HOROVOD_TIMELINE=cpu.json mpirun -np 8 python 03_keras_cnn_concise_hvd.py --device cpu

23
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I/O and data management
24

• Parallel IO is needed: each worker only reads part 
of the dataset they needed(using MPIIO / parallel 
HDF5)

• Preprocess the raw data (resize, interpolation, etc) 
into binary format before the training. Shuffling in 
the memory instead of in I/O

• Store the dataset in a reasonable way (avoiding 
file per sample)

• Prefetch the data (from disk; from host to device) 
Streaming I/O provided by frameworks

I/O and data 
management
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Science use case 1 - Galaxy classification using 
modified Xception model

25

~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80 
GPUs using computing resource from Cooley @ ALCF

Galaxy images

A Khan et al, Physics Letters B, 793, 70-77 (2019)



Argonne Leadership Computing Facility26

Science use case 2 - Brain Mapping: reconstruction of 
brain cells from volume electron microscopy data

26

Scaling results in terms of throughput Scaling results in terms of training 
efficiency (measured by time needed for 
the training to reach to certain accuracy) 

W. Dong et al, arXiv:1905.06236 [cs.DC]

Work done on 
Theta @ ALCF 
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Science use case 3 - CANDLE benchmarks: deep 
learning for cancer problems

27

Strong scaling study of CANDLE P1B1 on Theta and Summit 

I/O does not scale – room for 
further improvement.  

X. Wu et al SC18 Workshop on Python for High-Performance 
and Scientific Computing 
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Conclusion
28

• Increase of model complexity and the amount of dataset

• Data parallelism can scale efficiently in HPC supercomputers

• Warm up steps might be needed to stabilize the initial stage of training and to 

avoid the generation gap for large batch size training

• Distributed learning requires efficient and scalable I/O and data management.
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Hands on Exercise
ssh <username>@polaris.alcf.anl.gov

ssh <username>@ theta.alcf.anl.gov
ssh thetagpusn1

module load datascience

/lus/grand/projects/ATPESC2022/EXAMPLES/track-8-ML/Horovod_Examples_atpesc22 [Polaris]
/grand/projects/ATPESC2022/EXAMPLES/track-8-ML [Theta]

cd /lus//grand/projects/ATPESC2022/usr/<username> [Polaris]
cd /grand/projects/ATPESC2022/usr/<username> [Theta]

qsub -l select=16:system=polaris -l walltime=01:00:00 -A ATPESC2022 -q R313446 ./qsub_polaris.sc
qsub -A ATPESC2022 -q ATPESC2022 -n 16 -t 60 --attrs filesystems='home,grand,theta-fs0' ./qsub_theta.sc
qsub -A ATPESC2022 -q training-gpu -n 16 -t 60 --attrs filesystems='home,grand,theta-fs0' ./qsub_thetagpu.sc
1. https://status.alcf.anl.gov/theta/activity
2. https://github.com/argonne-lcf/ATPESC_MachineLearning
3. https://github.com/argonne-lcf/sdl_ai_workshop 4. 
4. https://github.com/argonne-lcf/ai-science-training-series

30
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Thank you!


