
www.anl.gov

Data Parallel Deep Learning
Huihuo Zheng, Kaushik Velusamy

Argonne Leadership Computing Facility
August 12, 2022

huihuo.zheng@anl.gov,
kaushik.v@anl.gov

mailto:huihuo.zheng@anl.gov
mailto:kaushik.v@anl.gov

Argonne Leadership Computing Facility2

Outline

• Why do we need for distributed / parallel deep learning on HPC

• Distribution schemes: model parallelism vs data parallelism

• Steps to change your serial code to data parallel code

• Challenges and tips on data parallel training

• I/O and data management

• Science use cases

• Hands on exercises

Argonne Leadership Computing Facility3

Need for distributed (parallel) training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month
doubling period).” https://openai.com/blog/ai-and-compute/

Eras:
• Before 2012 …

• 2012 – 2014: single to couple GPUs

• 2014 – 2016: 10 – 100 GPUs

• 2016 – 2017: large batch size training,

architecture search, special hardware

(etc, TPU)

Finishing a 90-epoch ImageNet-1k
training with ResNet-50 on a NVIDIA M40
GPU takes 14 days. (1018 SP Flops)

~1s on OLCF Summit (~200
petaFlops) if it “scales ideally”

Argonne Leadership Computing Facility4

GPT-3

Training time for GPT 3 = 3640 Days
= 9.97 Years

It would take 355 years to train GPT-3
on a single NVIDIA Tesla V100 GPU.

OpenAI launched GPT-3 in May/2020.

Using 1,024x A100 GPUs, researchers
calculated that OpenAI could have
trained GPT-3 in as little as 34 days.

Estimated that it cost around $5M in
compute time to train GPT-3.

Tom B. Brown et al, “Language Models are Few-Shot Learners”, 2020.

Argonne Leadership Computing Facility5

Need for distributed (parallel) training on HPC
• Increase of model complexity leads to dramatic increase of computation.

• Increase of the amount of dataset makes sequentially scanning the whole

dataset increasingly impossible.

• The increase in computational power has been mostly coming (and will

continue to come) from parallel computing.

• Coupling of deep learning to traditional HPC simulations might require

distributed inference.

Argonne Leadership Computing Facility6

Parallelization schemes for distributed learning
Worker 4

Worker 3 Worker 2

Worker 1

Worker 1 Worker 4 Worker N

…

Model parallelism Data parallelism

Argonne Leadership Computing Facility7

Polaris
of River Compute racks 40
of Apollo Gen10+ Chassis 280
of Nodes 560
of AMD EPYC 7543P CPUs 560
of NVIDIA A100 GPUs 2240
Total GPU HBM2 Memory 87.5TB
Total CPU DDR4 Memory 280 TB
Total NVMe SSD Capacity 1.75 PB
Interconnect HPE Slingshot
of Cassini NICs 1120
of Rosetta Switches 80
Total Injection BW (w/ Cassini) 28 TB/s
Total GPU DP Tensor Core Flops 44 PF

Total Power 1.8 MW

Argonne Leadership Computing Facility8

7 Steps to Horovod
How to change a serial code into a data parallel code:

1. Initialize Horovod

2. Pin GPU to each process

3. Checking pointing / printing training time on rank 0

4. Scale the learning rate

5. Set distributed optimizer / gradient tape

6. Broadcast the model & optimizer parameters from rank 0 to other ranks

7. Adjusting dataset loading: number of steps (or batches) per epoch, dataset sharding, etc.

https://eng.uber.com/horovod/

Argonne Leadership Computing Facility9

7 Steps to Horovod
Step 1. Initialize Horovod

import horovod.tensorflow.keras as hvd
hvd.init()

Step 2. Pin GPU to each process
Pin GPU to the rank - we set one GPU per process

tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU’)

Step 3. Checkpointing on root rank
It is important to let only one process to do the checkpointing I/O.

if hvd.rank() == 0:

callbacks.append(tf.keras.callbacks.ModelCheckpoint('./checkpoints-km{epoch}.h5’))

if (hvd.rank()==0):

print("Hvd Procs %d Total time: %s second" %(hvd.size(),t1-t0))

Argonne Leadership Computing Facility10

Gradient Descent

Stochastic Gradient Descent (SGD)
update

Dataset Weight

Minibatch

Minimizing the loss:

Model is updated at each step.

• One minibatch is divided into many
sub minibatches and each is feed
into one of the workers

L

w

Argonne Leadership Computing Facility11

7 Steps to Horovod
Step 4: Scale the learning rate with number of workers
If we keep the local batch size on each rank the same, the global batch
size increases by n times The learning rate should increase
proportionally

When the minibatch size is multiplied by k, multiply the learning rate by k.

opt = tf.optimizers.Adam(lr * hvd.size())

Step 5 : Wrap tf.optimizer with Horovod DistributedOptimizer

opt = hvd.DistributedOptimizer(opt)

Gradients are aggregated over all the workers through MPI_Allreduce
Gradients are averaged at each step (not each epoch)

11

Argonne Leadership Computing Facility12

Large minibatch training

Minibatch

Per node throughput of different local batch size

§ Option 1. Keeping the same
global minibatch size with each
worker processing B/N batch
(strong scaling)

§ Option 2. Increasing the global
minibatch size by N times, so that
each worker processes batches
of size B (week scaling)

1. Decrease of local batch size reduces the per
node throughput;

2. Increase of global minibatch size reduces the
number of updates on each epoch (n=X/B); thus
it increases the compute/communication ratio

H. Zheng, https://www.alcf.anl.gov/files/Zheng_SDL_ML_Frameworks_1.pdf

Argonne Leadership Computing Facility13

Challenges with large batch training
• Convergence issue: at the initial stages of training, the model is far away

from optimal solution ∇𝑙 𝑥, 𝜔!"# ∼ ∇𝑙 𝑥, 𝜔! breaks down. Training is not
stable with large learning rate in the beginning;

• Generalization gap: large batch size training tends to be trapped at local
minimum with lower testing accuracy (generalize worse).

“... large-batch ... converge to sharp minimizers of the training
function ... In contrast, small-batch methods converge to flat
minimizers”

Performance of small-batch (SB) and large-batch
(LB) variants of ADAM on the 6 networks

Keskar et al, arXiv:1609.04836

Argonne Leadership Computing Facility14

Challenges with large batch training
Solutions: using warm up steps
• Using a smaller learning rate at the initial stage of training (couple

epochs), and gradually increase to 𝜂̂ = 𝑁𝜂
• Using linear scaling of learning rate (𝜂̂ = 𝑁𝜂)

No warm up Gradual warm up This scheme works up to
8k batch size

P. Goyal et al,arXiv: 1706.02677

Argonne Leadership Computing Facility15

Challenges with large batch training

Predicted critical maximum
batch size beyond which the
model does not perform well.
S. McCandlish, J. Kaplan, D. Amodei,
arXiv:1812.06162

Maximum batch size place limit to
data parallel:

N_workers < Maximum batch size

Argonne Leadership Computing Facility16

7 Steps to Horovod
6. Broadcast the model & optimizer parameters to other rank

callbacks = [# broad cast

hvd.callbacks.BroadcastGlobalVariablesCallback(0),

Average metric at the end of every epoch

hvd.callbacks.MetricAverageCallback(),

Warmup

hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3,initial_lr=_lr),
]

7. Adjusting dataset loading: number of steps (or batches) per epoch, dataset sharding, etc.

steps_per_epoch=60000/hvd.size()/batch_size

16

Argonne Leadership Computing Facility17

Tensorflow with Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

Horovod: initialize Horovod.
hvd.init()
Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Argonne Leadership Computing Facility18

PyTorch with Horovod
#…
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)
Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(

optimizer, named_parameters=model.named_parameters())

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Argonne Leadership Computing Facility19

Keras with Horovod
import keras
import tensorflow as tf
import horovod.keras as hvd
Horovod: initialize Horovod.
hvd.init()
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

More examples can be found in https://github.com/uber/horovod/blob/master/examples/

Argonne Leadership Computing Facility20

Scaling TensorFlow using Horovod on Theta @ ALCF
(Intel Knights Landing): batch size = 512

AlexNet ResNet-50 Inception V3

Argonne Leadership Computing Facility21

Overlap of communication and compute in Horovod
21

AlexNet
(batch size = 512,

50 steps)

ResNet-50
(batch size =64,

50 steps)

Inception V3
(batch size =128,

50 steps)

Increase of total time is smaller than the increase of the communication time,
which indicates large overlap between compute and communication.

Argonne Leadership Computing Facility22

MPI flat profile for Horovod
(AlexNet, batch size=512, 128 KNL nodes)

22

• Majority of time is spent on MPI_Allreduce with message size ranging from KB-GB
• There is load imbalance (synchronization time)

LD_PRELOAD=/soft/perftools/hpctw/lib/libmpitrace.so mpirun -np 8 python 03_keras_cnn_concise_hvd.py --epochs 10

Argonne Leadership Computing Facility23

Horovod Timeline
HOROVOD_TIMELINE=gpu.json mpirun -np 8 python 03_keras_cnn_concise_hvd.py
HOROVOD_TIMELINE=cpu.json mpirun -np 8 python 03_keras_cnn_concise_hvd.py --device cpu

23

Argonne Leadership Computing Facility24

I/O and data management
24

• Parallel IO is needed: each worker only reads part
of the dataset they needed(using MPIIO / parallel
HDF5)

• Preprocess the raw data (resize, interpolation, etc)
into binary format before the training. Shuffling in
the memory instead of in I/O

• Store the dataset in a reasonable way (avoiding
file per sample)

• Prefetch the data (from disk; from host to device)
Streaming I/O provided by frameworks

I/O and data
management

Argonne Leadership Computing Facility25

Science use case 1 - Galaxy classification using
modified Xception model

25

~ 5 Hrs using 1 K80 GPU to 8 mins using 64 K80
GPUs using computing resource from Cooley @ ALCF

Galaxy images

A Khan et al, Physics Letters B, 793, 70-77 (2019)

Argonne Leadership Computing Facility26

Science use case 2 - Brain Mapping: reconstruction of
brain cells from volume electron microscopy data

26

Scaling results in terms of throughput Scaling results in terms of training
efficiency (measured by time needed for
the training to reach to certain accuracy)

W. Dong et al, arXiv:1905.06236 [cs.DC]

Work done on
Theta @ ALCF

Argonne Leadership Computing Facility27

Science use case 3 - CANDLE benchmarks: deep
learning for cancer problems

27

Strong scaling study of CANDLE P1B1 on Theta and Summit

I/O does not scale – room for
further improvement.

X. Wu et al SC18 Workshop on Python for High-Performance
and Scientific Computing

Argonne Leadership Computing Facility28

Conclusion
28

• Increase of model complexity and the amount of dataset

• Data parallelism can scale efficiently in HPC supercomputers

• Warm up steps might be needed to stabilize the initial stage of training and to

avoid the generation gap for large batch size training

• Distributed learning requires efficient and scalable I/O and data management.

Argonne Leadership Computing Facility29

References
• https://horovod.readthedocs.io/en/stable/

• Sergeev, A., Del Balso, M. (2017) Meet Horovod: Uber’s Open Source Distributed Deep Learning Framework for
TensorFlow. Retrieved from https://eng.uber.com/horovod/

• Sergeev, A. (2017) Horovod - Distributed TensorFlow Made Easy. Retrieved from
https://www.slideshare.net/AlexanderSergeev4/horovod-distributed-tensorflow-made-easy

29

https://eng.uber.com/horovod/

Argonne Leadership Computing Facility30

Hands on Exercise
ssh <username>@polaris.alcf.anl.gov

ssh <username>@ theta.alcf.anl.gov
ssh thetagpusn1

module load datascience

/lus/grand/projects/ATPESC2022/EXAMPLES/track-8-ML/Horovod_Examples_atpesc22 [Polaris]
/grand/projects/ATPESC2022/EXAMPLES/track-8-ML [Theta]

cd /lus//grand/projects/ATPESC2022/usr/<username> [Polaris]
cd /grand/projects/ATPESC2022/usr/<username> [Theta]

qsub -l select=16:system=polaris -l walltime=01:00:00 -A ATPESC2022 -q R313446 ./qsub_polaris.sc
qsub -A ATPESC2022 -q ATPESC2022 -n 16 -t 60 --attrs filesystems='home,grand,theta-fs0' ./qsub_theta.sc
qsub -A ATPESC2022 -q training-gpu -n 16 -t 60 --attrs filesystems='home,grand,theta-fs0' ./qsub_thetagpu.sc
1. https://status.alcf.anl.gov/theta/activity
2. https://github.com/argonne-lcf/ATPESC_MachineLearning
3. https://github.com/argonne-lcf/sdl_ai_workshop 4.
4. https://github.com/argonne-lcf/ai-science-training-series

30

mailto:kaushikvelusamy@polaris.alcf.anl.gov
http://theta.alcf.anl.gov/
https://status.alcf.anl.gov/theta/activity
https://github.com/argonne-lcf/ATPESC_MachineLearning
https://github.com/argonne-lcf/sdl_ai_workshop%204
https://github.com/argonne-lcf/ai-science-training-series/tree/main/06_distributedTraining

Argonne Leadership Computing Facility31

Thank you!

