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Motivation

Figure: Cloud resolved weather and climate simulations are becoming a reality.
4km simulations of E3SM run over 100 forecast years require 120 million core hours
(Theta-ANL) and 12 PB of storage data (250 GB/forecast day).

Image source: Jung et al., Simulations of E3SM on ANL-Theta, 2022 (top), ECMWF Simulations on ORNL-Summit, DOE
E3SM All-hands meeting 2021.
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Emulating dynamical systems from data
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Expensive, since it involves many
simulation runs

Cheap, since training and employing
a surrogate model is not expensive
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Figure: Source - “An introduction to surrogate modeling” - Shuai Guo.
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Emulating dynamical systems from data

There may also be a requirement to construct ‘non-intrusive’
surrogate models - for example when dynamics are only partially
understood/known - i.e., No closed form governing laws
available.

This project is joint work with
» Prasanna Balaprakash (Argonne).
» Qi Tang, Joshua Burby (Los Alamos).
» Alec Linot, Mike Graham (Wisconsin).
» Varun Shankar, Vedant Puri, Venkat Vishwanathan (CMU).
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Background: Neural ordinary differential equations

da
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where © C RM is the space of trainable parameters of an arbitrary
neural network. The NODE [3, 4, 5] approximates the latent-space
evolution as a set of ordinary differential equations that can be

trained through adjoint-based (i.e., continuous) backpropagation
[3,5],i.e,
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Chaotic dynamics: The Kuramoto-Sivashinsky equation

We want to address the surrogate modeling of chaotic systems.
Traditionally, most data-driven time-series modeling techniques
suffer with deterministic chaos.
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A prototypical system to study chaotic dynamics, possesses a
dissipative nature (i.e., an attractor in the long-term limit),
challenging for state-of-the-art black-box forecasting methods.
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A novel neural ODE for capturing chaotic attractors
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Figure: A novel neural-ODE for learning chaotic dynamics.

Linot, Burby, Tang, Balaprakash, Graham, RM. arXiv:2203.15706.

7/28



A
Example: The Kuramoto-Sivashinsky equation
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Figure: A novel neural-ODE for capturing the underlying attractors for the
KS equations: Long-term stability.
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Example: The Kuramoto-Sivashinsky equation
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Figure: A novel neural-ODE for capturing the underlying attractors for the
KS equations: Attractor captured successfully!

Approximate inertial manifold theory can then be used since we have a
linear term.
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Flipping the script: A reduced-order model of a surrogate

We can also reduce the order of this neural ODE a-posteriori by using the theory of
approximate inertial manifolds [9]:

d

7’; =Ap+ PF(p+ q), ™)

d

= A+ QF(p+q), ®)
g=A"'Qp+q) = A'Qp) ©)
Q=1-P (10

If we construct P using selected eigenvectors of the learned linear term A
AV = VA,
p=vV" (1)
where V are a truncated subset of eigenvectors that promotes % =0.

Ignoring the computation of q gives us the nonlinear Galerkin ROM, computing q
with A~'Q(p) during the simulation gives us the AIM ROM and after the
simulation gives us postprocessing ROMs.
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S ———
Example: The Kuramoto-Sivashinsky equation
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Figure: A reduced-order model from the proposed full-order neural ODE.
KL-divergence of attractor statistics - model reduced to 25% of original size.
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Example: Learning the viscous Burgers equations

The viscous Burgers equations are given by the following system

ou ou 9%*u

E——Ua‘i‘l/w (12)

in a domain with length L = 1 and with periodic boundary
conditions. Our viscosity, v = 8 x 10~*. Initial conditions sampled
from superpositions of frequencies in Fourier space for the same
viscosity. Solution discretized on 512 grid points.
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A
Example: Learning the viscous Burgers equations
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Figure: The stabilized neural ODE outperforms the standard neural ODE
for learning the viscous Burgers equations.

o 13/28



S ———
Example: Learning the viscous Burgers equations
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Figure: The stabilized neural ODE outperforms the standard neural ODE
for learning the viscous Burgers equations - confirmed for an ensemble of

test predictions.
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S ———
Example: Learning the viscous Burgers equations
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Figure: The stabilized neural ODE outperforms the standard neural ODE

for learning the viscous Burgers equations - confirmed for an ensemble of
test predictions.
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S ———
Example: Learning the viscous Burgers equations
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Figure: When adding noise to the initial conditions - the stabilized neural
ODE performs more robustly

o 16/28



S ———
Example: Learning the viscous Burgers equations
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Figure: When adding noise to the initial conditions - the stabilized neural
ODE performs more robustly
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S ———
Under-resolved snapshot data? A preview.
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Figure: The stabilized NODE framework is also able to learn a stabilized
coarse-grained evolution (i.e., if snapshot resolution is inadequate). Fine-grid 4096
DOF, coarse-grid 64 DOF.
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S ———
Under-resolved snapshot data? A preview.
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Figure: The stabilized NODE framework is also able to learn a stabilized
coarse-grained evolution (i.e., if snapshot resolution is inadequate). Fine-grid 4096
DOF, coarse-grid 64 DOF.
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S ———
Under-resolved snapshot data? A preview.
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Figure: The stabilized NODE framework is also able to learn a stabilized
coarse-grained evolution (i.e., if snapshot resolution is inadequate). Fine-grid 4096
DOF, coarse-grid 64 DOF.
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A
Example: Learning the invariant manifold of the

sea-surface temperature

NOAA Ol SST V2 High Resolution Dataset

Data on and after 2016 is now v2.1

Brief Description:

« NOAA High-resolution Blended Analysis of Daily SST and Ice. Data
NOAA High Resolution SST Anomaly May 23, 2022
is from Sep 1981 and is on a 1/4 deg global grid. More Details... Son STt Z000 LTM, pnomatos Anomay

Temporal Coverage:
« Daily values from 1981/09 to present

« Sea Ice Concentration data is missing for Dec 6th 1987- Jan 10th
1988.

Spatial Coverage: ; . =
« 0.25 degree latitude x 0.25 degree longitude global grid (1440x720). 495925215 1050 05 1 15 225 3 35 4

« 89.875S - 89.875N,0.125E to 359.875E.
Figure: A sea-surface temperature dataset obtained from satellite and ship

observations.
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A
Example: Learning the invariant manifold of the

sea-surface temperature
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Figure: Test results for learning the POD coefficients of this dataset using
regular (left) and stabilized (right) neural ODEs.
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S ———
Example: Learning the invariant manifold of the

sea-surface temperature
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Figure: Preliminary results indicate that predictive dynamics do not decay
to fixed point. Probe for solution at 95 degrees latitude and 250 degrees
longitude.
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S ———
Example: Learning the invariant manifold of the

sea-surface temperature
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Figure: Comparisons on test data across different methods.
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Emulating the sea-surface temperature: Worth it?

Cost to construct our NODE-ROM: 2 node hours of CPU-only
laptop, cost to evaluate - negligible.

Cost to evaluate HYCOM: 44800 core hours per forecast day of Cray
XC40 system.

Cost to evaluate CESM: 510 million core-hours on Yellowstone,
NCAR’s high-performance computing resource.

Extensions: Interfacing SST-ROMs as a ‘boundary condition’ to
E3SM atmosphere.
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