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Motivation

Figure: Cloud resolved weather and climate simulations are becoming a reality.
4km simulations of E3SM run over 100 forecast years require 120 million core hours
(Theta-ANL) and 12 PB of storage data (250 GB/forecast day).

Image source: Jung et al., Simulations of E3SM on ANL-Theta, 2022 (top), ECMWF Simulations on ORNL-Summit, DOE
E3SM All-hands meeting 2021.
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Emulating dynamical systems from data

Figure: Source - “An introduction to surrogate modeling” - Shuai Guo.
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Emulating dynamical systems from data

There may also be a requirement to construct ‘non-intrusive’
surrogate models - for example when dynamics are only partially
understood/known - i.e., No closed form governing laws
available.

This project is joint work with
I Prasanna Balaprakash (Argonne).
I Qi Tang, Joshua Burby (Los Alamos).
I Alec Linot, Mike Graham (Wisconsin).
I Varun Shankar, Vedant Puri, Venkat Vishwanathan (CMU).
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Background: Neural ordinary di�erential equations

da
dt

= f (a, θ), (θ) ∈ Θ, (1)

where Θ ⊂ RNw is the space of trainable parameters of an arbitrary
neural network. The NODE [3, 4, 5] approximates the latent-space
evolution as a set of ordinary di�erential equations that can be
trained through adjoint-based (i.e., continuous) backpropagation
[3, 5], i.e.,

L(ãT ) = L(a0 +

∫ t=T

t=0
f (a(t), θ)dt) (2)

dz
dt

= −zT ∂f (a, t, θ)

∂a
, z(t) =

∂L
∂a(t)

(3)

dL
dθ

= −
∫ t=0

t=T
z(t)T

∂f (a(t), θ)

∂θ
dt. (4)
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Chaotic dynamics: The Kuramoto-Sivashinsky equation

We want to address the surrogate modeling of chaotic systems.
Traditionally, most data-driven time-series modeling techniques
su�er with deterministic chaos.

∂u
∂t

= −u∂u
∂x
− ∂2u
∂x2 −

∂4u
∂x4 (5)

u ∈ R64; x ∈ [−π, π] ⊂ R1 (6)

A prototypical system to study chaotic dynamics, possesses a
dissipative nature (i.e., an a�ractor in the long-term limit),
challenging for state-of-the-art black-box forecasting methods.
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A novel neural ODE for capturing chaotic a�ractors

Figure: A novel neural-ODE for learning chaotic dynamics.
Linot, Burby, Tang, Balaprakash, Graham, RM. arXiv:2203.15706.
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Example: The Kuramoto-Sivashinsky equation

Figure: A novel neural-ODE for capturing the underlying a�ractors for the
KS equations: Long-term stability.
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Example: The Kuramoto-Sivashinsky equation

Figure: A novel neural-ODE for capturing the underlying a�ractors for the
KS equations: A�ractor captured successfully!

Approximate inertial manifold theory can then be used since we have a
linear term.
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Flipping the script: A reduced-order model of a surrogate
We can also reduce the order of this neural ODE a-posteriori by using the theory of
approximate inertial manifolds [9]:

dp
dt

= Ap + PF (p + q), (7)

dq
dt

= Aq + QF (p + q), (8)

q = A−1Q(p + q) ≈ A−1Q(p). (9)

Q = I − P. (10)

If we construct P using selected eigenvectors of the learned linear term A

AV = VΛ,

P = Ṽ Ṽ T (11)

where Ṽ are a truncated subset of eigenvectors that promotes dq
dt = 0.

Ignoring the computation of q gives us the nonlinear Galerkin ROM, computing q
with A−1Q(p) during the simulation gives us the AIM ROM and a�er the
simulation gives us postprocessing ROMs.
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Example: The Kuramoto-Sivashinsky equation

Figure: A reduced-order model from the proposed full-order neural ODE.
KL-divergence of a�ractor statistics - model reduced to 25% of original size.
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Example: Learning the viscous Burgers equations

The viscous Burgers equations are given by the following system

∂u
∂t

= −u∂u
∂x

+ ν
∂2u
∂x2 (12)

in a domain with length L = 1 and with periodic boundary
conditions. Our viscosity, ν = 8× 10−4. Initial conditions sampled
from superpositions of frequencies in Fourier space for the same

viscosity. Solution discretized on 512 grid points.
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Example: Learning the viscous Burgers equations

Figure: The stabilized neural ODE outperforms the standard neural ODE
for learning the viscous Burgers equations.
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Example: Learning the viscous Burgers equations

Figure: The stabilized neural ODE outperforms the standard neural ODE
for learning the viscous Burgers equations - confirmed for an ensemble of
test predictions.
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Example: Learning the viscous Burgers equations

Figure: The stabilized neural ODE outperforms the standard neural ODE
for learning the viscous Burgers equations - confirmed for an ensemble of
test predictions.
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Example: Learning the viscous Burgers equations

Figure: When adding noise to the initial conditions - the stabilized neural
ODE performs more robustly
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Example: Learning the viscous Burgers equations

Figure: When adding noise to the initial conditions - the stabilized neural
ODE performs more robustly
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Under-resolved snapshot data? A preview.

Figure: The stabilized NODE framework is also able to learn a stabilized
coarse-grained evolution (i.e., if snapshot resolution is inadequate). Fine-grid 4096
DOF, coarse-grid 64 DOF.
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Under-resolved snapshot data? A preview.

Figure: The stabilized NODE framework is also able to learn a stabilized
coarse-grained evolution (i.e., if snapshot resolution is inadequate). Fine-grid 4096
DOF, coarse-grid 64 DOF.
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Under-resolved snapshot data? A preview.

Figure: The stabilized NODE framework is also able to learn a stabilized
coarse-grained evolution (i.e., if snapshot resolution is inadequate). Fine-grid 4096
DOF, coarse-grid 64 DOF.
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Example: Learning the invariant manifold of the
sea-surface temperature

Figure: A sea-surface temperature dataset obtained from satellite and ship
observations.
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Example: Learning the invariant manifold of the
sea-surface temperature

Figure: Test results for learning the POD coe�icients of this dataset using
regular (le�) and stabilized (right) neural ODEs.
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Example: Learning the invariant manifold of the
sea-surface temperature

Figure: Preliminary results indicate that predictive dynamics do not decay
to fixed point. Probe for solution at 95 degrees latitude and 250 degrees
longitude.
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Example: Learning the invariant manifold of the
sea-surface temperature

Figure: Comparisons on test data across di�erent methods.
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Emulating the sea-surface temperature: Worth it?

Cost to construct our NODE-ROM: 2 node hours of CPU-only
laptop, cost to evaluate - negligible.

Cost to evaluate HYCOM: 44800 core hours per forecast day of Cray
XC40 system.

Cost to evaluate CESM: 510 million core-hours on Yellowstone,
NCAR’s high-performance computing resource.

Extensions: Interfacing SST-ROMs as a ‘boundary condition’ to
E3SM atmosphere.

25 / 28



Acknowledgements

U.S. Department of Energy, Advanced Scientific Computing Research
(DOE-FOA2493: Data intensive scientific machine learning, PI-Maulik)

U.S. Department of Energy, Advanced Scientific Computing Research
(SCIDAC-RAPIDS Institute, PI-Ross)

Argonne Leadership Computing Facility
For compute resources and Margaret Butler Fellowship

(DE-AC02-06CH11357)

Thanks for listening!

romit-maulik.github.io

26 / 28



References I
Lawrence Sirovich.

Turbulence and the dynamics of coherent structures. i. coherent structures.
�arterly of applied mathematics, 45(3):561–571, 1987.

AE Deane, IG Kevrekidis, G Em Karniadakis, and SA0746 Orszag.

Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders.
Physics of Fluids A: Fluid Dynamics, 3(10):2337–2354, 1991.

R Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hudson.

Discrete-vs. continuous-time nonlinear signal processing of cu electrodissolution data.
Chemical Engineering Communications, 118(1):25–48, 1992.

Ramiro Rico-Martinez and Ioannis G Kevrekidis.

Continuous time modeling of nonlinear systems: A neural network-based approach.
In IEEE International Conference on Neural Networks, pages 1522–1525. IEEE, 1993.

Ricky TQ Chen, Yulia Rubanova, Jesse Be�encourt, and David Duvenaud.

Neural ordinary di�erential equations.
arXiv preprint arXiv:1806.07366, 2018.

Sepp Hochreiter and Jürgen Schmidhuber.

Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Alex Sherstinsky.
Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.
Physica D: Nonlinear Phenomena, 404:132306, 2020.

27 / 28



References II

Romit Maulik, Arvind Mohan, Bethany Lusch, Sandeep Madireddy, Prasanna Balaprakash, and Daniel Livescu.

Time-series learning of latent-space dynamics for reduced-order model closure.
Physica D: Nonlinear Phenomena, 405:132368, 2020.

Michael S Jolly, IG Kevrekidis, and Edriss S Titi.

Approximate inertial manifolds for the kuramoto-sivashinsky equation: analysis and computations.
Physica D: Nonlinear Phenomena, 44(1-2):38–60, 1990.

Sebastian Mika, Bernhard Schölkopf, Alexander J Smola, Klaus-Robert Müller, Ma�hias Scholz, and Gunnar Rätsch.
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