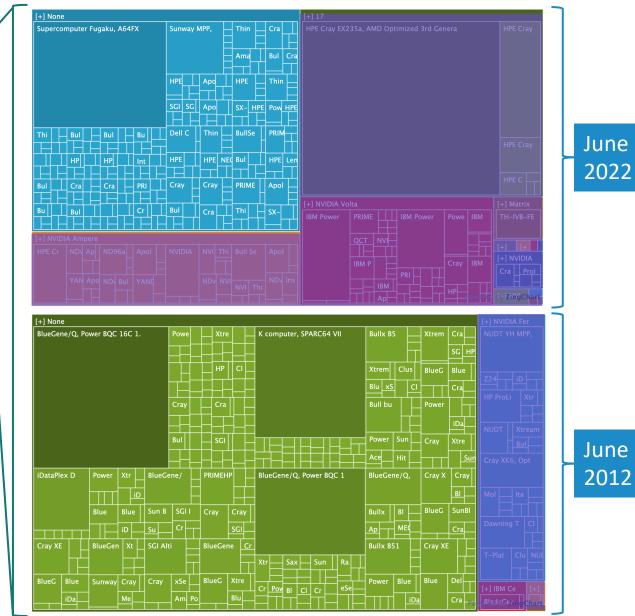


Aurora Exascale Architecture

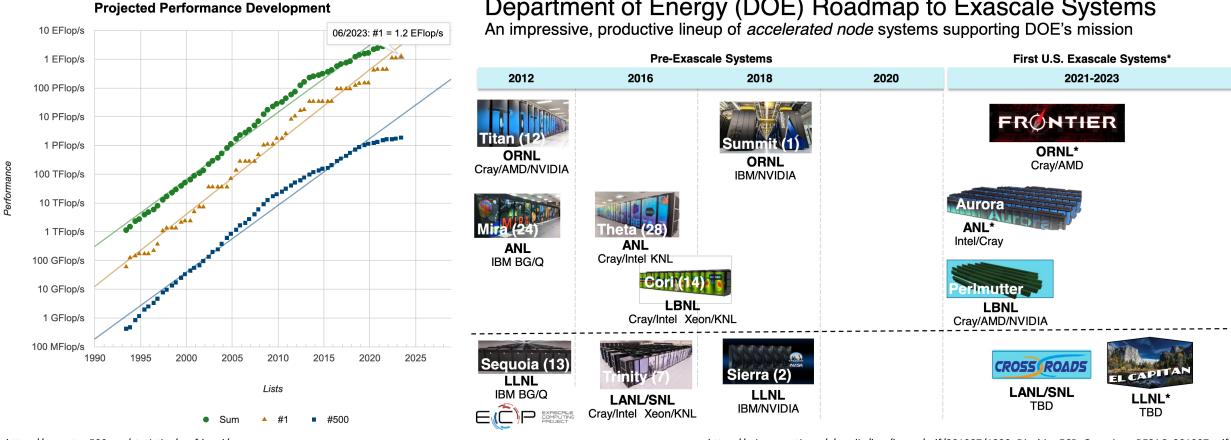
Servesh Muralidharan

Computer Scientist, Performance Engineering Team Argonne Leadership Computing Facility


PATH TO EXASCALE

Elements of a supercomputer

Processor •


- —architecturally optimized to balance complexity, cost, performance, and power
- Memory
 - —generally commodity DDR, amount limited by cost
- Node •
 - may contain multiple processors, memory, and network interface
- Network •
 - —optimized for latency, bandwidth, and cost
- IO System
 - —complex array of disks, servers, and network
- Software Stack
 - -compilers, libraries, tools, debuggers, ...
- Control System ٠
 - job launcher, system management

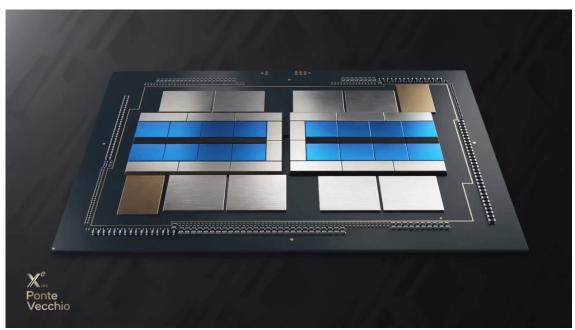
https://www.top500.org/statistics/treemaps/

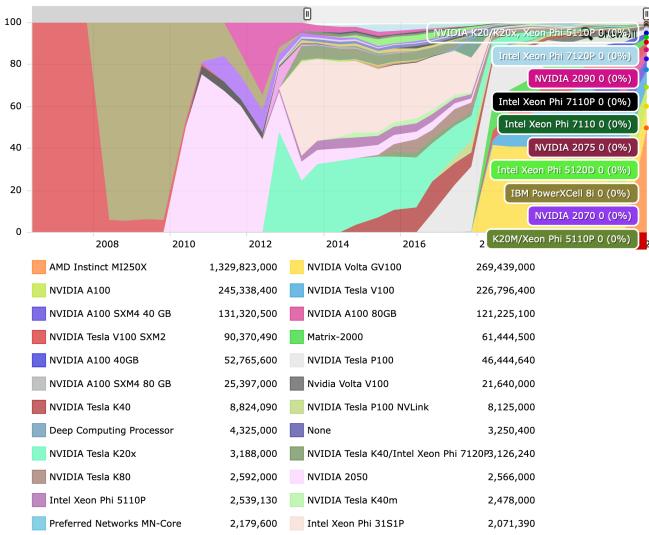
3

Exascale Computing Project

Department of Energy (DOE) Roadmap to Exascale Systems

https://www.top500.org/statistics/perfdevel/


https://science.osti.gov/-/media/bes/besac/pdf/201907/1330 Diachin ECP Overview BESAC 201907.pdf


Path to Exascale Computing

Share

- Era of data parallel computing
 - Dominated by GPUs
 - Exploit SIMT/SIMD Parallelism
- Architectural Challenges
 - Multichip Packaging
 - -Next generation technologies

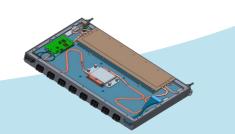
Intel's HPC GM Trish Damkroger Keynote ISC 2021 <u>https://www.youtube.com/watch?v=PuEcCRJLrvs</u> https://download.intel.com/newsroom/2021/data-center/Intel-ISC2021-keynote-presentation.pdf Accelerator/Co-Processor - Performance Share

https://www.top500.org/statistics/overtime/

AURORA: HARDWARE

Aurora High-level System Overview

AURORA SYSTEM DAO 166 Compute racks IO 10,624 Nodes IO GPU: 8.16 PB HBM CPU: 1.36 PB HBM, 10.9 PB DDR5 DAOS: 64 racks, 1024 nodes 230 PB (usable), 31 TB/s

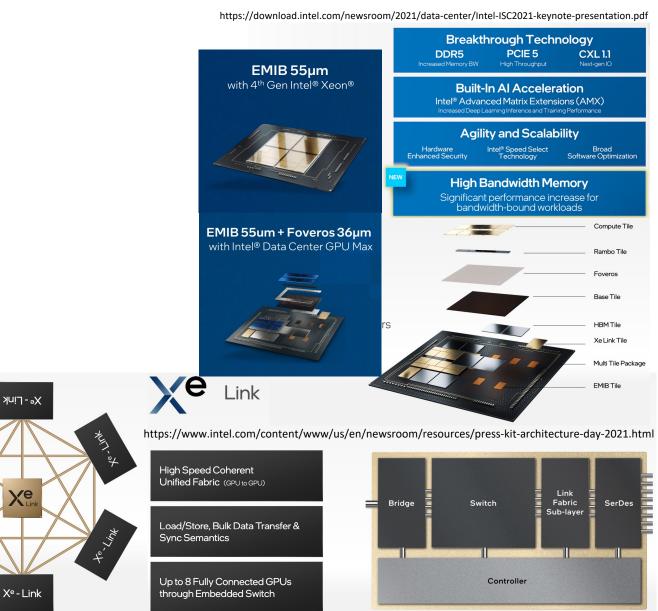

System Service Nodes (SSNs) User Access Nodes (UANs) DAOS Nodes (DNs) Gateway Nodes (GNs) IOF service, scalable library loading DAOS <-> Lustre data mover

COMPUTE BLADE

2x Intel Xeon Max Series w HBM 6x Intel Data Center GPU Max Series GPU: 768 GB HBM CPU: 128 GB HBM, 1024 GB DDR5

COMPUTE RACK 64 Compute blades 32 Switch blades GPU: 49.1 TB HBM CPU: 8.2 TB HBM, 64 TB DDR5

SWITCH BLADE 1 Slingshot switch 64 ports Dragonfly topology

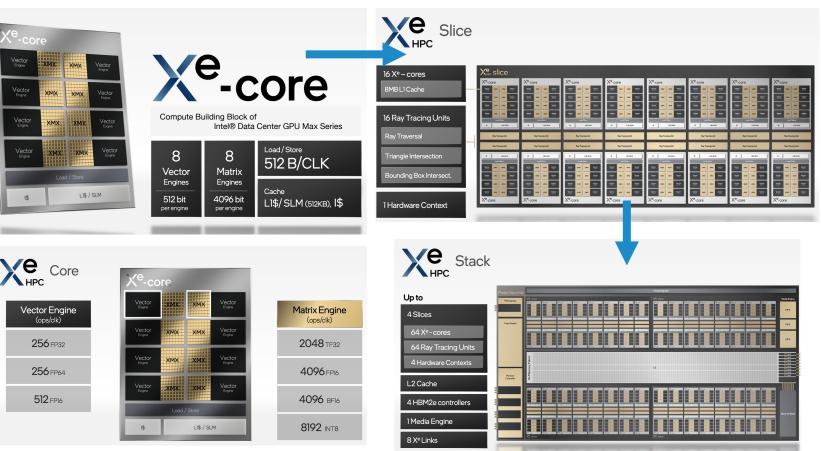

Aurora Exascale Compute Blade - Components

te. Link

te-Link

Xe

- Intel Xeon Max Series CPU w HBM
 - DDR5 and HBM
 - PCle Gen5
- Intel Data Center Max Series GPU
 - Multi Tile architecture
 - Compute Tile
 - Xe Cores
 - L1 Cache
 - **Base Tile**
 - PCIe Gen5
 - HBM2e Main Memory
 - MDFI
 - EMIB
- GPU GPU Interconnect
 - Xe Link


Intel Data Center GPU Max Series Architectural Components

Xe Cores

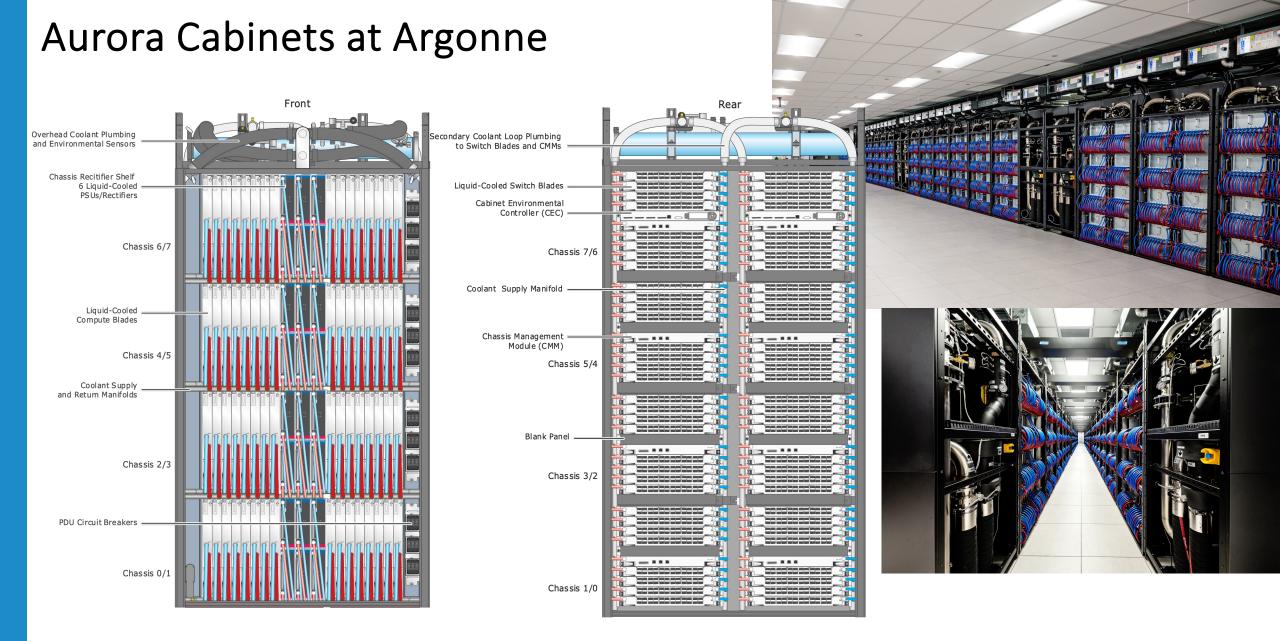
- Vector Engine
 - Traditional compute pipeline
- Matrix Engine
 - Low precision systolic pipeline
- L1 Data Cache
 - Shared Local Memory
- Instruction Cache
- Xe Slice
 - Hardware Context
 - -Offload Units
- Xe Stack
 - —LLC
 - -HBM2e controllers

—Xe link

- —Cache Memory Fabric
- PCIe Endpoint
- Hardware specific engines
- -Stack to Stack Interconnect
- —Xe links
 - Multi GPU Interconnect


Aurora Exascale Compute Blade

NODE CHARACTERISTICS


- 6 GPU Intel Data Center GPU Max Series (#)
- 2 CPU Intel Xeon CPU Max Series (#)
- 768 GPU HBM Memory (GB)
- 19.66 Peak GPU HBM BW (TB/s)
- 128 CPU HBM Memory (GB)
- 2.87 Peak CPU HBM BW (TB/s)
- 1024 CPU DDR5 Memory (GB)
- 0.56 Peak CPU DDR5 BW (TB/s)
- ≥ 130 Peak Node DP FLOPS (TF)
- 200 Max Fabric Injection (GB/s)
- 8 NICs (#)

IONAL LABORATO

Network Switch

Consistent, Repeatable Application Performance

- Advanced congestion control
- Fine grained adaptive routing
- Very low average and tail latency

Extremely Scalable RDMA Performance

- Connectionless protocol
- Fine grained flow control
- MPI HW tag matching & progress engine
- Dragonfly topology 3 switch hops (typical)

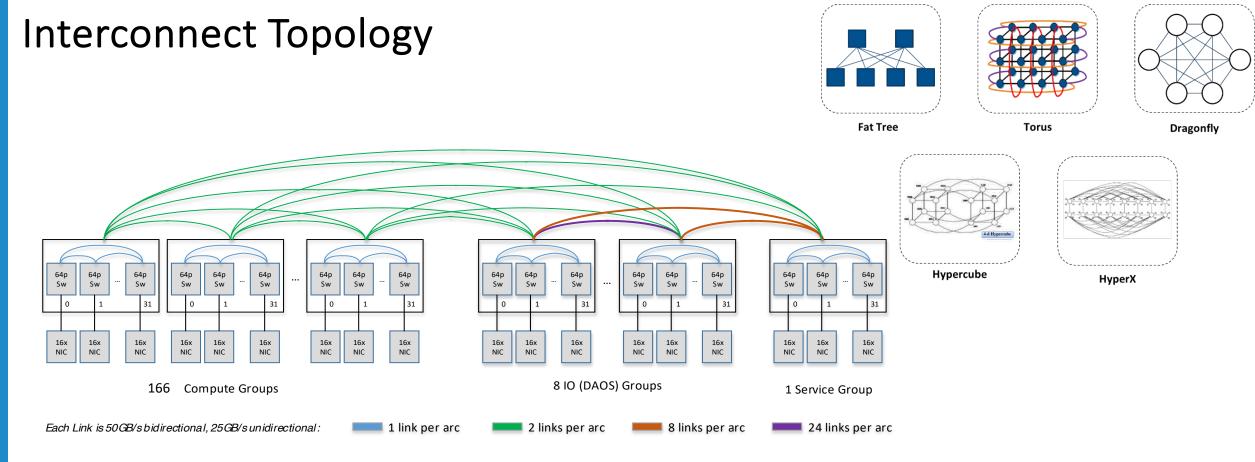
Native Ethernet

- Native IP no encapsulation
- High-scale bandwidth integration to campus

HPE Slingshot Switches - 64 ports @ 200 Gbps

HPE Slingshot NICs - 200 Gbps

HPE NIC ASIC



PCIe Adapters

100% DLC NIC Mezz

- 1-D Dragonfly Topology 175 total groups (166 compute + 8 IO + 1 Service),
- All the global links are optical, all the local links in compute groups are electrical
- 2 global links between any two compute groups
- 24 links between any two IO groups, 8 links between the Service group and each IO group
- Total injection bandwidth: 2.12PB/s
- Total bisection bandwidth: 0.69PB/s

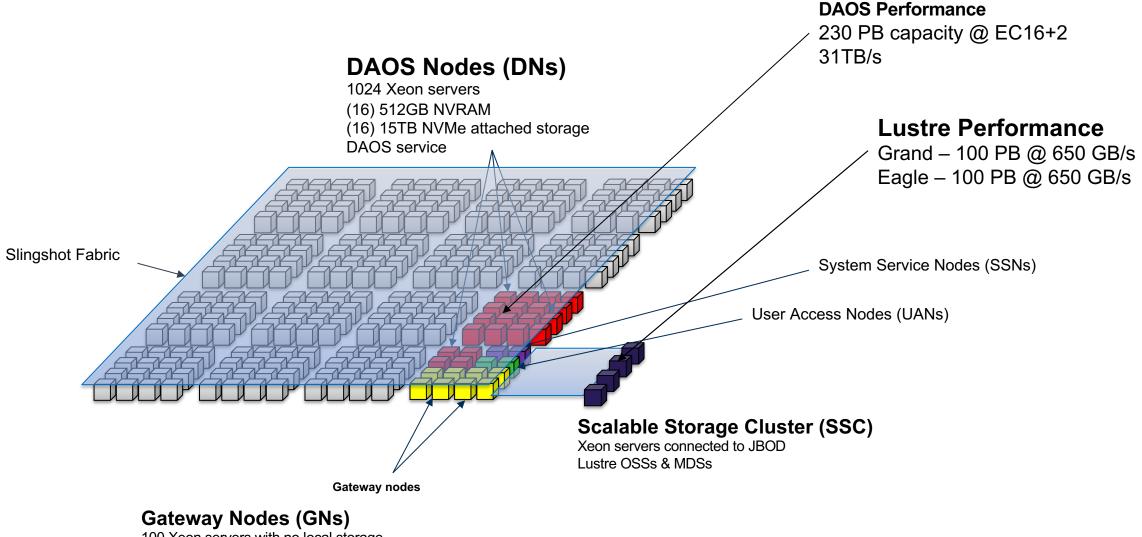
Aurora Storage Systems

- DAOS provides Aurora's main "platform" high performance storage system
- Aurora leverages existing Lustre storage systems, Grand and Eagle, for center-wide data access and data sharing

System	Capacity	Performance
Aurora DAOS	 230 PB @ EC16+2 250 PB NVMe 8 PB Optane PMEM 	31 TB/s Read & Write
Eagle	100 PB @ RAID6	> 650 GB/s Read & Write
Grand	100 PB @ RAID6 • 8480 HDD • 40 Lustre MDT	> 650 GB/s Read & Write

- Intel Coyote Pass System
 - —(2) Xeon 5320 CPU (Ice Lake)
 - —(16) 32GB DDR4 DIMMs

 - —(16) 15.3TB Samsung PM1733
 - —(2) HPE Slingshot NIC


- 1024 Total Servers
 - Each node will run 2 DAOS engines
 - -2048 DAOS engines

Aurora Storage Overview

100 Xeon servers with no local storage Access to external storage

Peak Performance ≥ 2 Exaflops DP

Intel GPU Intel[®] Data Center GPU Max Series 1550

Intel Xeon Processor Intel[®] Xeon Max Series 9470C CPU with High Bandwidth Memory

Platform HPE Cray-Ex

Compute Node

2x Intel[®] Xeon Max Series processors 6x Intel[®] Data Center GPU Max Series 8x Slingshot11 fabric endpoints

GPU Architecture

Intel XeHPC architecture High Bandwidth Memory

Node Performance >130 TF

System Size 166 Cabinets 10,624 Nodes 21,248 CPUs 63,744 GPUs

System Memory

1.36PB HBM CPU Capacity10.9PB DDR5 Capacity8.16PB HBM GPU Capacity

System Memory Bandwidth

30.58PB/s Peak HBM BW CPU 5.95PB/s Peak DDR5 BW 208.9PB/s Peak HBM BW GPU

High-Performance Storage

230PB 31TB/s DAOS bandwidth 1024 DAOS Nodes

System Interconnect HPE Slingshot 11 Dragonfly topology with adaptive routing

System Interconnect BW Peak Injection BW 2.12PB/s Peak Bisection BW 0.69PB/s

Network Switch

25.6 Tb/s per switch (64x 200 Gb/s ports) Links with 25 GB/s per direction

Programming Environment

- C/C++, Fortran
- SYCL/DPC++
- OpenMP 5.0
- Kokkos, RAJA

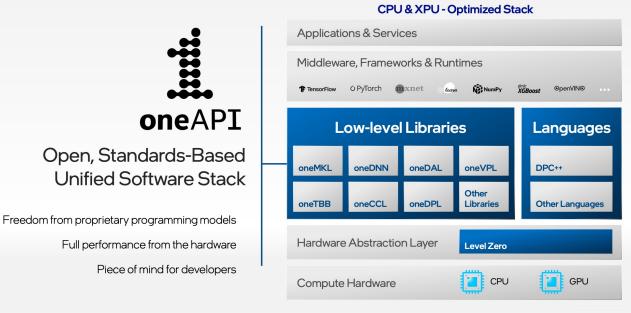
AURORA: SOFTWARE

Three Pillars of Aurora

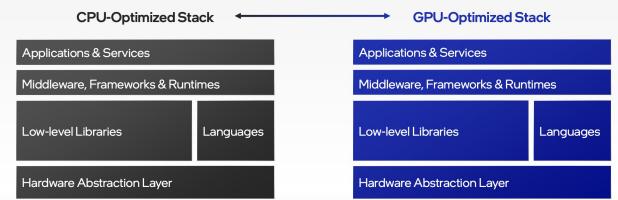
Simulation	Data	Learning	
HPC Languages	Productivity Languages	Productivity Languages	
Directives	Big Data Stack	DL Frameworks	
Parallel Runtimes	Statistical Libraries	Statistical Libraries	
Solver Libraries	Databases	Linear Algebra Libraries	
Compilers, Performance Tools, Debuggers			
Math Libraries, C++ Standard Library, libc			
I/O, Messaging			
Containers, Visualization			
Scheduler			
Linux Kernel, POSIX			

18 Argonne Leadership Computing Facility

Introducing oneAPI Ecosystem

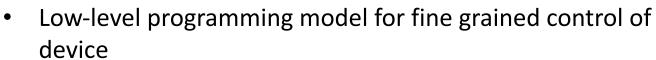

"oneAPI is a cross-industry, open, standards-based unified programming model that delivers a common developer experience across accelerator architectures—for faster application performance, more productivity, and greater innovation."

Three Components


- Language
 - DPC++
- Libraries
 - oneMKL, oneDAL, ...
- Hardware Abstraction Layer
 - Level Zero (L0)

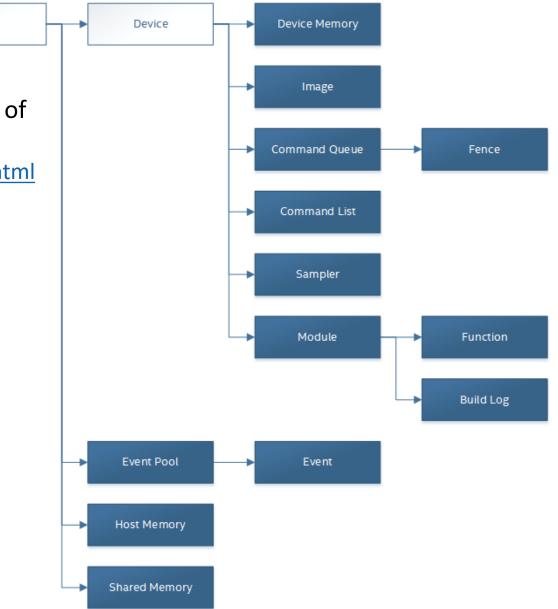
Set of specifications that any one can implement

Intel has their own implementations https://software.intel.com/ONEAPI https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-programming-guide.pdf


Overcoming Separate CPU and GPU Software Stacks

https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html

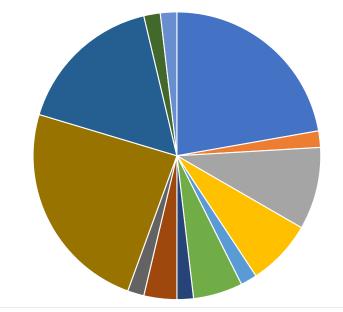
rgonne 🍊


Level Zero (LO)

• <u>https://spec.oneapi.com/versions/latest/oneL0/index.html</u>

Driver

- Management of:
 - Device memory
 - Synchronization
 - Command queue and command lists
 - And more

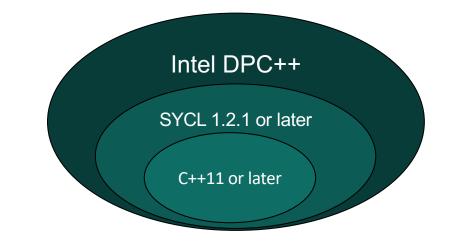


Aurora Programming Models

- Aurora applications may use
 - DPC++/SYCL
 - OpenMP
 - Kokkos
 - Raja
 - OpenCL
- Experimental
 - HIP
- Not available on Aurora
 - CUDA
 - OpenACC

Early Science Application Programming Model Distribution

- DPC++/SYCL
- HIPLZ
- Intel Python Framework
- Kokkos
- Kokkos/OpenMP
- Kokkos/SYCL
- LLVM-JIT
- MKL
- OCCA/SYCL
- OpenMP


DPC++ (SYCL)

<u>DPC++</u>

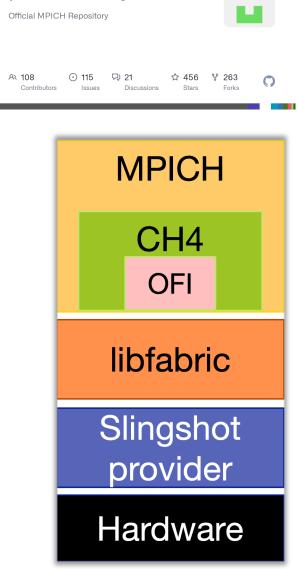
- Intel implementation of SYCL standard
- Add language or runtime extensions as needed to meet user needs
- Incorporates SYCL 1.2.1 specification and Unified Shared Memory
- Part of Intel oneAPI specification

<u>SYCL</u>

- Khronos standard specification
- SYCL is a C++ based abstraction layer (standard C++11)
- Based on OpenCL concepts (but single-source)
- SYCL is designed to be as close to standard C++ as possible
- Current Implementations of SYCL:
 - ComputeCPP[™] (www.codeplay.com)
 - Intel SYCL (github.com/intel/llvm)
 - triSYCL (github.com/triSYCL/triSYCL)
 - hipSYCL (github.com/illuhad/hipSYCL)
 - Runs on today's CPUs and nVidia, AMD, Intel GPUs

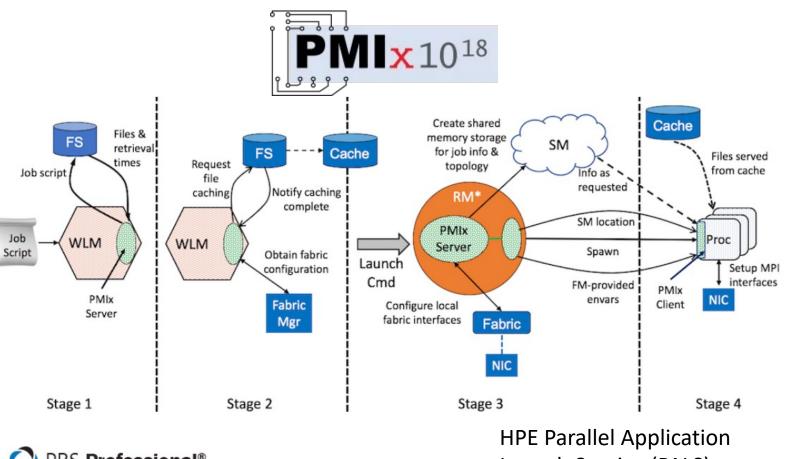
Extensions	Description	
Unified Shared	defines pointer-based memory accesses and	
Memory (USM)	management interfaces.	
In-order queues	defines simple in-order semantics for queues, to simplify common coding patterns.	
Reduction	provides reduction abstraction to the ND-range form of parallel_for.	
Optional lambda name	removes requirement to manually name lambdas that define kernels.	
	defines a grouping of work-items within a work-	
Subgroups	group.	
Data flow pipes	enables efficient First-In, First-Out (FIFO) communication (FPGA-only)	
https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table		

OpenMP 4.5/5


- OpenMP 5 constructs will provide directives based programming model for Intel GPUs
- Available for C, C++, and Fortran
- A portable model expected to be supported on a variety of platforms (Aurora, Frontier, Perlmutter, ...)
- Optimized for Aurora
- Integration with MKL for GPU offload

https://www.openmp.org/

- Based on open source MPICH with new features to support Aurora
- Uses OFI (Open Fabrics Interface) to communicate with the Slingshot Interconnect
- Redesigned to reduce instruction counts and remove non-scalable data structures
- Innovative collective algorithms optimized for Dragonfly network topology
- GPU aware for Intel GPUs
 - It is built on top of oneAPI Level Zero
 - It supports point to point, one-sided, and collectives
 - Support for different data types through the Yaksa library
- Intel GPUs and all-to-all connectivity across the GPUs inside the node
- Multiple NICs on the same node
 - Distribution of processes to NICs
 - Striping (a single rank distributes a single message across multiple NICS)
 - Hashing (a single rank sends different messages through different NICs, e.g., depending on the communicator or the target rank)
 - Efficient multithreading support to use multiple NICs



pmodels/mpich

Launching jobs on Aurora

- Workload manager (WLM)
 - -Handles allocations of nodes to Jobs
 - PBS Pro
- Application Launcher
 - Provides a service to launch applications on the allocated nodes
 - HPE PALS
- Process Management
 - Process Management Interface -Exascale (PMIx)
 - Scalable workflow orchestration by defining an abstract set of interfaces

🔿 PBS Professional®

Launch Service (PALS)

QUESTIONS?

www.anl.gov