
Introduction to GPU ”Low-level” Programming
How does that even work?

Thomas Applencourt (apl@anl.gov)
July 31, 2023

Disclaimer

• ”If it’s simple, it’s always false. If it’s not, it’s unusable.” Paul Valéry
• ”Trust, but verify” Russian proverb
• And sorry in advance for the 3h long lecture...1

1”Stay awhile and listen...” Deckard Cain

1/91

ToC

1. Introduction

2. Programming Model API / Runtime

3. Kernel Language / Compilation

4. Bonus: And where the fun begins

5. Conclusion

6. Q&A

2/91

Introduction

Who I Am

• Part of the Performance Engineer Group at Argonne2

• Main focus on Aurora Compiler and Runtime
• So Expertise in Intel Toolchain, the rest will be more hand-wavy...3

• Member of the SYCL committee

2Like Vitali and Servesh
3I’m sure some people in the audience will be able to answers any AMD/NVIDIA question

3/91

Non-Goals of this lecture

• Teach you CUDA, Hip, Level Zero4

• You are all smart, if you need to learn it you can find super nice tutorial
online

4But maybe I will teach you some OpenCL...

4/91

Goal of this lecture

• Give you some foundation to understand the difference and similitude
between multiple low-level programming models (”Any fool can know. The
point is to understand.” Ernest Kinoy)

• Make clear the layering approach of current toolchains

5/91

One big question

• Why one ”need” to use CUDA for NVIDIA hardware, Hip for AMD, and L0 for
Intel?5

(a) Level Zero (b) Cuda (c) HIP

5But then how can OpenCL be portable?

6/91

Programming Language for GPU

• Programming Model / Runtime6

• Kernel Language, and Kernel Execution

6This is the only thing who matter, this rest is trivial

7/91

Programming Model API / Runtime

Programming Model API / Runtime

Runtime and Runtimes

What is a runtime

A runtime is a implementation of a programming language’s execution model

8/91

Just a layer of Programming Model / Runtime!

”All problems in computer science can be solved by another level of indirection”
David Wheeler

9/91

Proprietary / Native Tool-chains

Cuda Runtime Cuda Driver Linux Driver (Nouveau) Nvidia HW

Hip HSA Linux Driver (AMDGPU) AMD HW

Level Zero Linux Driver (i915) Intel HW

10/91

Comment on this diagram

• The Linux Drivers are the ”lower-level” we will discuss. Huge effort to
implement.7

• The level on top (CUDA Driver, HSA, Level Zero) abstracts away a little bit
more of the hardware, but still provides a lot of control 8

• The last level (Cuda Runtime, HIP) are ”fully” hardware independent

7See nice blog post about the Linux M4 drivers
8Sweet spot to write higher-lever runtime

11/91

Taking about higher-level Programming model

Kokkos OpenMP offload

OpenCL

Sycl

Level Zero

hip

hsa

Cuda Runtime

Cuda Driver

12/91

Example of Paths

• OpenCL -> *9

• OpenMP Offload -> HSA
• Kokkos -> Cuda Runtime -> Cuda Driver
• HIP -> L010

9Yes, I Like OpenCL... Soon you will too!
10Maybe more surprising, we will talk about this more at the end

13/91

Hierarchy of programming model

• In short we have a ”High Level” programming model. Used by Application.
• A ”low-level” programming model that the high-level runtime is written with
• Each layer of abstraction is a trade-off between flexibility/performance and
convenience/productivity

All of this is relative to who you are talking with.

14/91

”Sad” Truth

• No technical reason for having so much ”intermediate” programming model
• hipcc was a perl script that did ‘s/cu/hip/g‘ to avoid copyright infringement11

• Always hard to have a standard (*insert XKCD*)
• OpenCL is the standard, but low-adoption by vendors
• Please don’t let vendors make the same mistake with new ML accelerators!

11Not a lawyer, but the ”recent” supreme court Google vs Oracle may help

15/91

Controversial Opinion

Hip and Cuda Runtime should not be used anymore.

• Too low-level for Application who want to use nice C++ construct12

• Too high-level for people who have advance use-cases.

Kokkos, Sycl OpenMPOffload already bypass HIP / CUDA runtime, so no
”overhead” by using those programming models

12Come on, who wants to cast the output of malloc...

16/91

My dream world

Kokkos Sycl

OpenMP offload

OpenCL Level Zero

HSA

Cuda Driver

You are young and not yet totally jaded, so I share my dream with you!

17/91

Programming Model API / Runtime

Main concepts (shared)

They all have good old C API

Pointer Everywhere (output is the return error code, Cuda Driver Example)13

1 int count;
2 err = cuDeviceGetCount(&count);

API can be called twice (OpenCL Example, similar in L0)
1 // Get number of platorm
2 cl_uint platformCount;
3 clGetPlatformIDs(0, NULL, &platformCount);
4 cl_platform_id* platforms = (cl_platform_id*) malloc(sizeof(cl_platform_id) *

platformCount);↪→
5 // Populate the newly allocated array
6 errr = clGetPlatformIDs(platformCount, platforms, NULL);

13cu* == cuda driver, cuda* == cuda runtime.

18/91

And Pointer of Pointer, and strut!

In C, malloc return a null pointer when it fail. Not in cuda!
1 CUresult cuMemAllocHost (void** pp, size_t bytesize)

Some API use struct to avoid 200 parameters
1 ze_command_queue_desc_t commandQueueDesc = {
2 ZE_STRUCTURE_TYPE_COMMAND_QUEUE_DESC,
3 NULL,
4 computeQueueGroupOrdinal,
5 0, // index
6 0, // flags
7 ZE_COMMAND_QUEUE_MODE_DEFAULT,
8 ZE_COMMAND_QUEUE_PRIORITY_NORMAL
9 };

10 ze_command_queue_handle_t hCommandQueue;
11 errno = zeCommandQueueCreate(hContext, hDevice,
12 &commandQueueDesc, &hCommandQueue);

19/91

What are a GPU Runtime’s Main Goals?

• Find devices, load your kernels
• Allocate GPU Memory
• Transfer Memory: From and To the device
• Execute your commands

Not that hard!

20/91

A picture is Worth a Thousand Words 15

• OpenCL view of the world 14

• All other programming models are
roughly the same

• (Please ignore MemObject and
Sampler)

14Picture from the OpenCL Doc
15Maybe more when it’s a UML diagram

21/91

Platform and Device. Easy

Platform: a collection of Device sharing some property
1 cl_int clGetPlatformIDs(cl_uint num_entries,
2 cl_platform_id* platforms,
3 cl_uint* num_platforms);
4
5 ze_result_t zeDriverGet(uint32_t *pCount,
6 ze_driver_handle_t *phDrivers)
7
8 CUresult cuDeviceGetCount (int* count)
9 CUresult cuDeviceGet (CUdevice* device, int ordinal)

10
11 % Always fun to change the naming convension
12 cudaError_t cudaGetDeviceCount (int* count)
13 cudaError_t cudaGetDevice (int* device)

22/91

Context: Important

• Devices are bound to a Context
• The context holds all the management data to control and use the device.

1 % One Device
2 CUresult cuCtxCreate_v3 (CUcontext* pctx, CUexecAffinityParam* paramsArray,
3 int numParams, unsigned int flags, CUdevice dev)
4 % All the Device in the Platform
5 ze_result_t zeContextCreate(ze_driver_handle_t hDriver,
6 const ze_context_desc_t *desc,
7 ze_context_handle_t *phContext)

23/91

Context Restriction

For example in L0, it’s forbidden to exchange memory between different contexts
(whether they share the same device or not)16

• Any ”advanced” use cases (multi-device, multi-process, interface with other
library) need to be aware of context.

16I think it’s the same in CUDA...

24/91

Note on CUDA: contexts are one of the major differences between runtime and
driver APIs

• CUDA driver is a state machine. You pop and push context on a stack
1 CUresult cuCtxSetCurrent (CUcontext ctx)

• And are not exposed to the runtime API (uses an implicit primary context). So
be careful!

25/91

Quote of Official CUDA Doc

[...] for example, because if all plug-ins run in the same process, they will
all share a context but will likely have no way to communicate with each
other. So, if one of them calls cudaDeviceReset() after finishing all its CUDA
work, the other plug-ins will fail because the context they were using was
destroyed without their knowledge. 17

17https:
//docs.nvidia.com/cuda/cuda-runtime-api/driver-vs-runtime-api.html

26/91

https://docs.nvidia.com/cuda/cuda-runtime-api/driver-vs-runtime-api.html
https://docs.nvidia.com/cuda/cuda-runtime-api/driver-vs-runtime-api.html

Queue / Stream

Submit ”command” to queue/stream. Commands can be

• Memory Copy
• Kernel Submission
• Synchronization
• ...

27/91

Differences between programming models

• In L0, queues are out-of-order18

• In CUDA runtime and driver and HIP, streams are in-order19

• In OpenCL, they can be both
• In HSA, it’s a ring buffer of packets

• Out-of-order queues can be a source of error20

18Just checked, the latest L0 version we know have a ZE_COMMAND_QUEUE_FLAG_IN_ORDER flags.
19For more complex use cases, use cuda-graph
20But are powerful, will see later

28/91

Command Submission

Commands can be submitted Asynchronously or in blocking manner
1 CUresult cuMemcpy (CUdeviceptr dst, CUdeviceptr src,
2 size_t ByteCount) % Where is my stream?!
3 CUresult cuMemcpyAsync (CUdeviceptr dst, CUdeviceptr src, size_t ByteCount,

CUstream hStream)↪→
4
5 cl_int clEnqueueSVMMemcpy(
6 cl_command_queue command_queue,
7 cl_bool blocking_copy,
8 void* dst_ptr,
9 const void* src_ptr,

10 size_t size,
11 cl_uint num_events_in_wait_list,
12 const cl_event* event_wait_list,
13 cl_event* event);

• Async is a common source of error

29/91

Synchronization: Event / Barrier

If it’s asynchronous you need to synchronize

• via Event (specify dependencies for fine grained synchronization)
• via Barrier (for coarse synchronization)

30/91

Event

OpenCL, L021:
1 zeCommandListAppendMemoryCopy(..., &e1) // e1 will be signaled at completion
2 zeCommandListAppendMemoryCopy(..., &e2) // e2 will be signaled at completion
3 ze_event_t depend_in [2] {e1,e2};
4
5 zeCommandListAppendMemoryCopy(..., 2, depend_in, &e3) // Inputs and output
6 zeEventHostSynchronize(e)

1 hipMemcpyAsync // Hip, Cuda have optional Async, default blocking
2 hipEventRecord
3 hipEventSynchronize

(for more fancy use cases, use cuda-graph)

21So elegant

31/91

Synchronization

Wait on queue / stream (wait until all the work has been done)
1 zeCommandQueueSynchronize
2 cudaStreamSynchronize
3 cudaDeviceSynchronize % Whoa?

Coarse grain. Use with caution.

32/91

Programming Model API / Runtime

Memory Allocation

Types of GPU Memory25

• Device Memory: Accessible only on the particular device22

• Shared Memory: Accessible by both the host and the device23

• This may impact performance, Different migration strategies
• Can be migrated via prefetching24

• Host memory
• ”Pinned” memory. CPU memory but has been registered by the runtime.
• May required for some optimizations / performance

• Malloc-ed Memory
22Read the documentation to know if it’s accessible by OTHER devices. Context, wink, wink
23Nvidia calls it ”Managed”
24Do not confuse with prefetch of memory inside a kernel
25OpenCL has buffer, but lets not go that way...

33/91

But future GPUs will be integrated!

• Doesn’t matter,
• NUMA is bad, Locality is good.
• Please don’t use shared everywhere...

34/91

Saying that...

• Wrong data-transfer is the number one bug when doing GPU programming.
• Start with shared-allocation, then trace/profile and optimize26

• Premature Optimization is the root of all evil, but not profiling is eviler!

26SYCL has a nice buffer/accessors to solve the data-transfer problem

35/91

Nice quote from the CUDA doc about host memory

Allocates size bytes of host memory that is page-locked and accessible
to the device. The driver tracks the virtual memory ranges allocated with
this function and automatically accelerates calls to functions such as cu-
daMemcpy(). Since the memory can be accessed directly by the device,
it can be read or written with much higher bandwidth than pageable
memory obtained with functions such as malloc(). Allocating excessive
amounts of pinned memory may degrade system performance, since it
reduces the amount of memory available to the system for paging. 27

27https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.htm

36/91

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.htm

Best Case Scenario

• All data fit on the GPU
• move everything over
• do a ton of computation
• move back

You should aim for thim. If you cannot, we will discuss other strategies latter.28.
Memory transfers are expensive. Don’t do it! Or at least try...

28Please not that it’s the same in CPU. Keep data in cache

37/91

Programming Model API / Runtime

Kernel Submission

Kernel: CUDA Runtime / HIP

Magic / Syntactic sugar29

1 mykernel<<<blocks, threads, shared_mem, stream>>>(args);

But just call HSA / Cuda Driver behind the scenes.

29Haha, no lambda. Haha, new non C syntax...

38/91

behind the seen: OpenCL Cuda

1 cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
2 cl_kernel kernel,
3 cl_uint work_dim,
4 const size_t *global_work_offset,
5 const size_t *global_work_size,
6 const size_t *local_work_size,
7 cl_uint num_events_in_wait_list,
8 const cl_event *event_wait_list,
9 cl_event *event)

10
11 CUresult cuLaunchKernel (CUfunction f, unsigned int gridDimX, unsigned int

gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int
blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream
hStream, void** kernelParams, void** extra)

↪→
↪→
↪→

39/91

Behind the seen: Level zero, HSA

1
2 % Similar in L0, Count versus Size, and by kernel
3 zeKernelSetGroupSize(hKernel, groupSizeX, 1, 1);
4 ze_group_count_t groupCount = { numGroupsX, 1, 1 };
5 zeCommandListAppendLaunchKernel(hCommandList, hKernel, &groupCount, NULL, 0,

NULL);↪→
6
7 % HSA Werited you get a packet from queue and then signaling, but still same idea
8 typedef struct hsa_kernel_dispatch_packet_s { uint16_t header ;
9 uint16_t setup;

10 uint16_t workgroup_size_x ; uint16_t workgroup_size_y ; uint16_t workgroup_size_z;
uint16_t reserved0;↪→

11 uint32_t grid_size_x ;
12 uint32_t grid_size_y ;
13 uint32_t grid_size_z;
14 uint32_t private_segment_size; uint32_t group_segment_size;
15

40/91

Launching Kernel

30

30From ”Design of OpenCL Framework for Embedded Multi-core Processors”

41/91

Loading GPU Kernel

• Your code was split between hosts and GPU code
• Your kernels need to loaded by the GPU runtime!

1 clCreateProgramWithSource
2 clCreateProgramWithIL
3 clCreateProgramWithBinary
4 zeModuleCreate (ZE_MODULE_FORMAT_IL_SPIRV | ZE_MODULE_FORMAT_NATIVE)
5 cuModuleLoad

42/91

Programming Model API / Runtime

Wrapping Up: Going thought an OpenCL
Example

Example of OpenCL

• ”Low-level” Code (I will guess that cuda-driver will be similar, L0 more
verbose, and HSA ever more)

43/91

Load Platform and Device

1 cl_uint platform_idx = (cl_uint) atoi(argv[1]);
2 cl_uint device_idx = (cl_uint) atoi(argv[2]);
3
4 clGetPlatformIDs(0, NULL, &platform_count);
5
6 cl_platform_id* platforms = (cl_platform_id*)malloc(sizeof(cl_platform_id) *

platform_count);↪→
7 clGetPlatformIDs(platform_count, platforms, NULL);
8
9 cl_platform_id platform = platforms[platform_idx];

10
11 cl_uint device_count;
12 clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL , 0, NULL, &device_count);
13
14 cl_device_id* devices = (cl_device_id*)malloc(sizeof(cl_device_id) *

device_count);↪→
15 clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL , device_count, devices, NULL);
16
17 cl_device_id device = devices[device_idx];

44/91

Context, Queue, and Kernel

1 // A context is a platform with a set of available devices for that platform.
2 cl_context context = clCreateContext(0, device_count, devices, NULL, NULL,

&err);↪→
3 cl_command_queue queue = clCreateCommandQueue(context, device,

CL_QUEUE_PROFILING_ENABLE, &err);↪→
4 // Create the program
5 cl_program program = clCreateProgramWithSource(context, 1, &kernelstring,

NULL, &err);↪→
6 clBuildProgram(program, device_count, devices, "", NULL, NULL);
7 cl_kernel kernel = clCreateKernel(program, "hello_world", &err);

45/91

Submission and Sync

1 #define WORK_DIM 1
2 size_t global0 = (size_t) atoi(argv[3]);
3 const size_t global[WORK_DIM] = { global0 };
4 size_t local0 = (size_t) atoi(argv[4]);
5 const size_t local[WORK_DIM] = { local0 };
6 % No vent
7 clEnqueueNDRangeKernel(queue, kernel, WORK_DIM, NULL,
8 global, local, 0, NULL, NULL);
9 clFinish(queue);

46/91

Programming Model API / Runtime

Notes on Performance

Async is Key to good performance

• You want to keep the GPU busy
• When the GPU is computing something, the CPU should start preparing the
next batch of work

• Importance of asynchronously

Async: [OpenMP][AMDGPU] Switch host-device memory copy to asynchronous
version (real thing: https://reviews.llvm.org/D115279)

47/91

https://reviews.llvm.org/D115279

Overlapping is Key to good performance

• PCI is damn slow!31

• PCI 64 GB/s (unidirectional)
• HBM 410 GB/s
• GPU 50 TFlops+

• Recompute is better than to load
• Overlap compute and data-transfers
• PCI is bidirectional so please do H2D and D2H at the same time!
• Avoid over-synchronization!

31And for integrated architectures, you have NUMA so same things... Data-movement will always be
more expensive than compute

48/91

So how to achieve concurrency?

Importance of asynchronously!32

• Submit kernels to multiple stream / queue
• Submit kernels to an out-of-order queue.

32Or use multiple thread / process but this is cheating

49/91

Example

50/91

Example

51/91

Summary

• You see, all the same. And lot of Bridge betweem them!
• Context, Queue, Execution Space, synchronize
• Some are less verbose more high level (HIP/CUDA runtime) but you loose
some flexibility33

• IMO HIP/CUDA runtime are in a weird intermediate level.

33And need to deal with some state-machine...

52/91

But does this matter? This sounds trivial

Real Time Experience (controversial)

• Experience: The runtime performance is far more important than the kernel
performance

• Improving Kernel performance will give you a few percent; doing too much
data-tranfer will slowdown you code 100x.

53/91

Kernel Language / Compilation

Kernel Language / Compilation

Compilation

GPU code

• The GPU code needs to be loaded!
• Let’s see how they are compiled

54/91

Compiling: At the beginning

Cuda C PTX ?? Nvidia HW

Hip Kernel Language Syntax HSA IL AMDGCN AMD HW

OpenCL C SPIRV genASM Intel HW

55/91

How to write GPU programming

1 % Cuda HIP
2 __global__ void cuda_hello(){
3 printf("Hello World from GPU!\n");
4 }
5 % OpenCL
6 __kernel void hello_world() {"
7 printf("Hello World from GPU!\n");
8 };

So much difference!

• What can you put in device code has limitation depending on the Hardware /
Compiler

• No dynamic allocation, No throw, No recursion, No virtual Functions, ...

56/91

Compiling: A little more

C

C++

Fortran

LLVM IR PTX

AMDGCN

SPIRV genASM

(Note that GCC bypass LLVM IR to generate PTX and AMDGCN 34)

34or nobody generate AMDGCN and everybody HIP IL, not clear...

57/91

Moving to Single Source

1 #pragam omp target
2 printf("Hello World!\n");
3
4 // Lambda
5 Q.single_task([] {printf(Hello World!\n");}}.wait();

Ask yourself how can you implement this, what ”low-level” call you need? We will
see it in the Bonus part!

58/91

Kernel Language / Compilation

Kernel Language: GPU programming 101

Memory GPU

59/91

Terminology: Credit Derek Hower

60/91

GPU

• Just think of the GPU as a CPU with lots of threads executing SIMD instruction
• GPU programs are pretty boring:

• Use Shared Local Memory35 when possible to not read from the Main Memory
• Be careful of register pressure
• ”Nothing Special”36
• GPU are fast because they force you to NOT synchronize between threads that
live in difference work-group. Freedom versus Performance.

35Shared Memory in cuda
36”coalescing memory” == Don’t do random access...

61/91

Not about branching (don’t want to displease Nvida people)

• In SIMD, conditional are implemented as masking, and then execute both
branch37

• Same in GPU, But Some GPU have some ”thread divergence” capability38

Volta independent thread scheduling enables interleaved execution of
statements from divergent branches. This enables execution of fine-grain
parallel algorithms where threads within a warp may synchronize and
communicate.

37Both branch if both branch are needed. This is why is better to sort your data...
38After votla for Nvidia

62/91

Synchronization Possibilities

From An Introduction to the OpenCL Programming Model by Jonathan A.
Thompson

63/91

Index space

From ”An Introduction to the OpenCL Programming Model” by Jonathan A.
Thompson

64/91

Atomic

• Progress Forward guarantees are complicated...
• I really don’t want to open this can of worms.
• Advice: Please don’t use atomic to synchronize
• For an overview of the fun see:
TowardsAlignmentofParallelisminSYCLandISOC++ by John
Pennycook

65/91

Towards Alignment of Parallelism in SYCL and ISO C++

Conclusion

• GPUs do not have the same ISA as CPU, so two compilation phases
• GPU are fast because they are stupid, and they are just a big SIMD 10k
threads CPU

• Lots of good tutorials online for GPU Kernel Programming

66/91

Bonus: And where the fun begins

Bonus: And where the fun begins

High Level versus Low-level: Interoperability

So if I’m High Level Language I will be slow?

• Maybe, Maybe not
• Depends on your usage
• Depends on the quality of the runtime
• IMO Cuda Runtime is at the same level as SYCL

67/91

Runtimes are not magic

• Don’t be afraid of the runtime
• They have bugs and performance bugs39

• Please benchmark, trace, and report
• If you find bugs, just use interopts!

39But maybe less than your code, just because more people use them...

68/91

Interopts

All (at least I hope so) ”high-level” can (SHOULD!) should interoperate with some
low-level runtime.

1 #OpenMP interop with L0
2 omp_interop_t interop;
3 #pragma omp interop device(id) , targetsync : o)
4 auto hPlatform = static_cast<ze_driver_handle_t>(
5 omp_get_interop_ptr(o, omp_ipr_platform, &err)
6);
7
8 #Sycl interopt with CUDA
9 cuStream_T s = get_native<backend::cuda>(Q);

69/91

Best of both worlds

• Use high-level by default
• Go down when required

70/91

Bonus: And where the fun begins

Tracer: How to?

The world of tracer

• Tracing the runtime is mandatory to understand what is going one
• And it’s fun. Like the satisfaction of putting clarity in life full of chaos

• Does Cuda Runtime ”foo«»” really call cuda driver ”Launch Kernel”?
• Does memcopy use Copy Engine or Compute kernel?
• Why is my code is slow after my 1M gpu device alloc?

71/91

What does Tracer do?

• Dump Arguments and timestamp before and after the call
• Provide some analysis tools

1 clEnqueueMemcpyINTEL_entry:
2 { command_queue: 0x181a540, blocking: CL_FALSE,
3 dst_ptr: 0xffffc001ffd80000, src_ptr: 0x00007f5b20088280, size: 64,

num_events_in_wait_list: 0,↪→
4 event_wait_list: 0x0, event: 0x7ffc4ac01378, event_wait_list_vals: [] }
5 clEnqueueMemcpyINTEL_exit:
6 { errcode_ret_val: CL_SUCCESS, event_val: 0x1dffb30 }

72/91

How to create callback? intersect API call!

• But How to intercept API call?
• Some APIs provide Callback
• You can always write you own intercept layers!

73/91

Interception

Application Library
API

Preloaded
Library

malloc
free

strdup

malloc
free

Famous Example: Inte’s Intercept Layer for OpenCL Applications
https://github.com/intel/opencl-intercept-layer
Nice explanation by Rafal Cieslak https://rafalcieslak.wordpress.com/
2013/04/02/dynamic-linker-tricks-using-ld_
preload-to-cheat-inject-features-and-investigate-programs/

74/91

https://github.com/intel/opencl-intercept-layer
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/

Interception, hello-world

Please replace rand by some some of your favorite API calls
1 % cat main.cc
2 #include <stdio.h>
3 #include <stdlib.h>
4 int main(){
5 printf("%d\n",rand()%100);
6 }
7 $ gcc -shared -fPIC inspect_rand.c -o inspect_rand.so -ldl
8 $./a.out
9 42

How can we intercept this call?

75/91

PRELOAD + dlopen = <3

1 $ cat inspect_rand.c
2 #define _GNU_SOURCE
3 #include <dlfcn.h>
4 #include <stdio.h>
5 typedef int (*rand)(void);
6 int rand(void)
7 {
8 printf("Rand_begin");
9 orig_rand_f_type orig_rand;

10 orig_rand = (orig_rand_f_type)dlsym(RTLD_NEXT,"open");
11 int o = orig_rand();
12 printf("Rand_end");
13 return o;
14 }
15 $ gcc -shared -fPIC inspect_rand.c -o inspect_rand.so -ldl
16 $ LD_PRELOAD=$PWD/inspect_rand.so ./a.out
17 Rand_begin
18 99
19 Rand_end

76/91

In reality, don’t do that!

• Of course, a little more complicated in real life, but this is what some tools
are doing. For example THAPI/iprof that we will show later

• But more and more APIs provide a clean callback mechanism

77/91

The clean way: Loader

Application
Driver 1

OpenCL
ICD Loader

Driver 2
func 1
func 2

Layer 1 Layer n
func 1
func 2func 2

...

78/91

OpenCL Example

https://github.com/Kerilk/OpenCL-Layers-Tutorial
1 static CL_API_ENTRY cl_int CL_API_CALL clGetPlatformIDs_wrap(
2 cl_uint num_entries,
3 cl_platform_id* platforms,
4 cl_uint* num_platforms) {
5 fprintf(stderr, "clGetPlatformIDs(num_entries: %d)\n", num_entries);
6 cl_int res = tdispatch->clGetPlatformIDs(num_entries, platforms, num_platforms);
7 if (res == CL_SUCCESS && num_platforms)
8 fprintf(stderr, ", *num_platforms: %d\n", *num_platforms);
9 return res;

10 }
11
12 static void _init_dispatch() {
13 dispatch.clGetPlatformIDs = &clGetPlatformIDs_wrap;
14 }

And then just put this library and your path, and your tada.

79/91

https://github.com/Kerilk/OpenCL-Layers-Tutorial

Bonus: And where the fun begins

Tracer Example: THAPI

Why yet another tracer?

• At the beginning no tracer for Level Zero
• Still not one common tracer for low-level-programming
• So we wrote one!

• THAPI Support: Cuda Runtime, Cuda Driver, HIP, L0, OpenCL, OpenMP-T

80/91

Fabulous tool: Trace

1 > ./iprof -t ./a.out
2 { thread_type: ompt_thread_initial, thread_data: 0x00007f5b0cf0ac48 }
3 ompt_callback_target:
4 { kind: ompt_target, endpoint: ompt_scope_end, device_num: 0, task_data: 0x0000000000000000,
5 target_id: 1, codeptr_ra: 0x00007f5b26fa47e0 }
6 [...]
7 ompt_callback_target_data_op_intel:
8 { endpoint: ompt_scope_begin, target_id: 1, host_op_id: 7, optype:

ompt_target_data_transfer_to_device,↪→
9 src_addr: 0x00007f5b20088280, src_device_num: -10, dest_addr: 0xffffc001ffd80000,

10 dest_device_num: 0, bytes: 131072, codeptr_ra: 0x00007f5b26fa47e0 }
11 clEnqueueMemcpyINTEL_entry:
12 { command_queue: 0x181a540, blocking: CL_FALSE,
13 dst_ptr: 0xffffc001ffd80000, src_ptr: 0x00007f5b20088280, size: 64, num_events_in_wait_list: 0,
14 event_wait_list: 0x0, event: 0x7ffc4ac01378, event_wait_list_vals: [] }
15 clEnqueueMemcpyINTEL_exit:
16 { errcode_ret_val: CL_SUCCESS, event_val: 0x1dffb30 }
17 ompt_callback_target_data_op_intel:
18 { endpoint: ompt_scope_end, target_id: 1, host_op_id: 7, optype:

ompt_target_data_transfer_to_device,↪→
19 src_addr: 0x00007f5b20088280, src_device_num: -10, dest_addr: 0xffffc001ffd80000,
20 dest_device_num: 0, bytes: 131072, codeptr_ra: 0x00007f5b26fa47e0 }

81/91

Tally
1 $iprof ./target_teams_distribute_parallel_do.out # Using Level0 backend of OpenMP
2 Trace location: /home/tapplencourt/lttng-traces/iprof-20210408-204629
3 BACKEND_OMP | 1 Hostnames | 1 Processes | 1 Threads |
4 Name | Time | Time(%) | Calls | Average | Min | Max |
5 ompt_target | 3.65ms | 100.00% | 1 | 3.65ms | 3.65ms | 3.65ms |
6 Total | 3.65ms | 100.00% | 1 |
7
8 BACKEND_OMP_TARGET_OPERATIONS | 1 Hostnames | 1 Processes | 1 Threads |
9 Name | Time | Time(%) | Calls | Average | Min | Max |

10 ompt_target_data_alloc | 1.97ms | 54.19% | 4 | 491.63us | 847ns | 1.12ms |
11 ompt_target_data_transfer_to_device | 1.26ms | 34.63% | 5 | 251.37us | 112.60us | 460.90us |
12 ompt_target_data_transfer_from_device | 250.76us | 6.91% | 1 | 250.76us | 250.76us | 250.76us |
13 ompt_target_submit_intel | 155.04us | 4.27% | 1 | 155.04us | 155.04us | 155.04us |
14 [...]
15 Total | 3.63ms | 100.00% | 11 |
16
17 BACKEND_ZE | 1 Hostnames | 1 Processes | 1 Threads |
18 Name | Time | Time(%) | Calls | Average | Min | Max |
19 zeModuleCreate | 846.26ms | 96.89% | 1 | 846.26ms | 846.26ms | 846.26ms |
20 zeCommandListAppendMemoryCopy | 10.73ms | 1.23% | 12 | 893.82us | 12.96us | 5.33ms |
21 [...]
22 Total | 873.46ms | 100.00% | 117 |
23
24 Device profiling | 1 Hostnames | 1 Processes | 1 Threads | 1 Devices |
25 Name | Time | Time(%) | Calls | Average | Min | Max |
26 zeMemoryCopy(DM) | 64.48us | 7.14% | 1 | 64.48us | 64.48us | 64.48us |
27 __omp_offloading_33_7d35e996_MAIN___l9 | 27.84us | 3.08% | 1 | 27.84us | 27.84us | 27.84us |
28 [...]
29 Total | 902.72us | 100.00% | 13 |

82/91

Timeline

83/91

Bonus: And where the fun begins

Building an Hip Runtime: One example

Quine and Multiquine

• LLVM OpenMP is build on top of HSA
• SYCL is build on top of L0
• Can we build Hip on top of L0?

84/91

A detour on Quine and Multi-quine

> A quine is a computer program which takes no input and produces a copy of its
own source code as its only output.

>>> c = 'c = %r; print(c %% c)'; print(c % c)
c = 'c = %r; print(c %% c)'; print(c % c)

Multi-quine
(https://github.com/rvantonder/pentaquine/tree/master/src):

1 $ python pentaquine.py py | diff pentaquine.py -
2 $ python pentaquine.py cc > pentaquine.c ; cc pentaquine.c
3 $./pentaquine cc | diff pentaquine.c -
4 $./pentaquine py | diff pentaquine.py -

85/91

https://github.com/rvantonder/pentaquine/tree/master/src

HIP on top of Level ZERO

• As a proof of concept lets see how can we mimic Allocate Host
• Real ECP project ChipStart lead by Brice Videau
https://github.com/CHIP-SPV/chipStar

• In real life, far more complicated. (see source code for more fun)

86/91

https://github.com/CHIP-SPV/chipStar

Allocate Host Memory

1 hipError_t hipMallocHost(void **ptr, size_t size) ^^I^^I

Level Zero Equivalent
1 zeMemAllocDevice(ze_context_handle_t hContext, const ze_device_mem_alloc_desc_t

*device_desc, size_t size, size_t alignment, ze_device_handle_t hDevice, void
**pptr)

↪→
↪→

• Hip implicit initializes and terminates the runtime. Not the case for L040

• Hip has no explicit concept or device41

40And HSA, and cuda driver
41State machine :(, like Cuda Driver

87/91

Alogirthm

• Singleton to initialize the level zero runtime42

• Replicate the HIP state-machine: Create a default context, with a default
device43

• Use this context and device to allocate memory 44

42What about race conditions in multi-threaded?
43Or all the devices?
44Alignment? Option to pass to ze_device_mem_alloc_desc_t?

88/91

zeInit Real World Related Example: SYCL Runtime L0 Backend

1 // We must only initialize the driver once, even if urPlatformGet() is called
2 // multiple times. Declaring the return value as "static" ensures it's only
3 // called once.
4 static ze_result_t ZeResult = ZE_CALL_NOCHECK(zeInit, (0));

Since C++ 11 also check std::call_once and once_flag

89/91

Conclusion

• Nothing is impossible
• Can always climb up or down the abstraction ladder
• Hip on top of Level Zero is a valid path

90/91

Conclusion

Frame Title

• Layers of Programming Model45

• Sharing some common concept (loading kernel, async commands, nd-range,
queue/stream)

• You may want to use High-Level Language (OpenMP, Kokkos, SYCL) and use
interopt to lower-level (L0, Cuda Driver, HSA) if required

• Trace, play with the runtime!46

45Soon to be a complete graph
46And on Intel Platform, just email me

91/91

Q&A

	Introduction
	Programming Model API / Runtime
	Runtime and Runtimes
	Main concepts (shared)
	Memory Allocation
	Kernel Submission
	Wrapping Up: Going thought an OpenCL Example
	Notes on Performance

	Kernel Language / Compilation
	Compilation
	Kernel Language: GPU programming 101

	Bonus: And where the fun begins
	High Level versus Low-level: Interoperability
	Tracer: How to?
	Tracer Example: THAPI
	Building an Hip Runtime: One example

	Conclusion
	Q&A

