
Introduction to GPU ”Low-level” Programming
How does that even work?

Thomas Applencourt (apl@anl.gov)
July 31, 2023



Disclaimer

• ”If it’s simple, it’s always false. If it’s not, it’s unusable.” Paul Valéry
• ”Trust, but verify” Russian proverb
• And sorry in advance for the 3h long lecture...1

1”Stay awhile and listen...” Deckard Cain

1/91



ToC

1. Introduction

2. Programming Model API / Runtime

3. Kernel Language / Compilation

4. Bonus: And where the fun begins

5. Conclusion

6. Q&A

2/91



Introduction



Who I Am

• Part of the Performance Engineer Group at Argonne2

• Main focus on Aurora Compiler and Runtime
• So Expertise in Intel Toolchain, the rest will be more hand-wavy...3

• Member of the SYCL committee

2Like Vitali and Servesh
3I’m sure some people in the audience will be able to answers any AMD/NVIDIA question

3/91



Non-Goals of this lecture

• Teach you CUDA, Hip, Level Zero4

• You are all smart, if you need to learn it you can find super nice tutorial
online

4But maybe I will teach you some OpenCL...

4/91



Goal of this lecture

• Give you some foundation to understand the difference and similitude
between multiple low-level programming models (”Any fool can know. The
point is to understand.” Ernest Kinoy)

• Make clear the layering approach of current toolchains

5/91




	Introduction
	Programming Model API / Runtime
	Runtime and Runtimes
	Main concepts (shared)
	Memory Allocation
	Kernel Submission
	Wrapping Up: Going thought an OpenCL Example
	Notes on Performance

	Kernel Language / Compilation
	Compilation
	Kernel Language: GPU programming 101

	Bonus: And where the fun begins
	High Level versus Low-level: Interoperability
	Tracer: How to?
	Tracer Example: THAPI
	Building an Hip Runtime: One example

	Conclusion
	Q&A

