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ATPESC is the best!

You could ask me why, but just ask:

Leighton Wilson, ATPESC 2019
University of Michigan, PhD 2021

Now at Cerebras, which he first
heard about at ATPESC 2019, from
Rob Schreiber

.
—

Now a co-author of mine on a O —
Gordon Bell Finalist paper, 2023 s



What is “extreme” computing?

“Extreme” can mean:

extreme in scale (as in number of nodes or cores)

extreme in low memory bandwidth per core (as in CPUs)
extreme in low memory capacity per core (as in GPUs)
extreme in low power constraints (as in remote “edge”
devices, like telescopes)

extreme in real-time constraints (as in data-streaming apps,
like particle colliders)

extreme in long running times (as in low-scaling apps, like
some density functional theory codes)



Why an extreme computing research center?

For “extreme” applications, from
® simulation, data analytics, and machine learning

The ECRC
* develops algorithms — with theoretical backing where possible
* develops, deploys, and supports efficient portable open-source
software implementations
* develops the next generation exascale workforce

® aids scientists & engineers needing to enter extreme regimes
® collaborates with vendors who commercialize some of the software

® tracks emerging architectures (e.g., WSEs, FPGAs, quantum)



Some home-grown software targeting extremes

. e in Aramco ExaWave
in NVIDIA cuBLAS & in Cray LibSci 1
NEC NLC & NEC NLC
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=PETSc

Two PETSc developers with extensive line commits are in the ECRC:

Lisandro Dalcin Stefano Zampini
PETSc, petsc4py, mpidpy, PETSc, OpenFOAM, deal.ii,
mpidpy-fft, shem4py, ... MFEM, CEED, ...



I've been well set up by previous speakers

Tom (OLCF): One cabinet of Frontier (2022) has 10% more compute power
than Titan (2009) for 22X less electrical power

Giri (NVIDIA): Given a problem size and required accuracy, what is the lowest
total cost of ownership to get there?

Murali (ANL): Dataflow eliminates memory traffic and overhead
Kelly (NextSilicon): The next revolution in hardware is software
Mike (ANL): We no longer drive the vendors

Tim (Intel): Data movement dominates!!!

Thomas (ANL): You are young and not yet totally jaded, so | share my dream
with you!
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Conclusions, up front

As computational infrastructure demands a growing sector of research
budgets and global energy expenditure, we must all address the need for
greater efficiency

As a community, we have excelled at this historically in three aspects:
e architectures

» applications (redefining actual outputs of interest)

* algorithms

There are new algorithmic opportunities in:
* reduced rank representations
* reduced precision representations



Our journey in tuned approximation began in 2018

with these time traces...

... for factorization of a dense 54K covariance matrix on four 32-core nodes of a Cray XC-40

Dense
Tile-based
Cholesky
factorization

Tile low rank
(TLR)
Cholesky
factorization
(HICMA)

TLR scores a lower percentage of peak (after squeezing out flops)
TLR has poorer load balance (a higher percentage of idle time (red)
vs. computation (green))

TLR scales less efficiently (less able to cover data motion with
computation)

TLR is, however, 10X superior in time for required application
accuracy, at about 65% of average power compared to dense

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Computational efficiency through tuned approximation:

a journey with tile low rank and mixed precision

DDense DbP
TLR DP

C] Dense DP
. Dense SP

C] Dense HP
TLR DP

I-TLR SP
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la renaissance

business as usual

Don’t oversolve: maintain just enough accuracy for the application purpose
Economize on storage: no extra copies of the original matrix



Efficiency (“science per Joule™) improvement in HPC?

* We consider 3 categories of efficiency o "‘:'““" |
improvement e
- from architectures, applications, algorithms .
* |n 2022 & 2023 Gordon Bell finalist papers o

i Runoff /

 Efficiency improvements in kernel linear
algebra operations from exploiting

- rank structure (related to correlation
smoothness)

- precision structure (related to correlation
magnitudes)

time series evapotranspiration




Time-to-solution addresses the energy “elephant” W

Frontier (#1 on Top500) delivers about 1 Exaflop/s at about 50 Gigaflop/s per Watt
* 20 MegaWatts consumed continuously

Representative electricity cost in US is S 0.20 per KiloWatt-hour

* $200 per MegaWatt-hour

Powering an exaflop/s system costs about $ 4,000 per hour

* 10 Kilohour per year (8,760, to be more precise)

-> $40 million annual electricity bill for an exaflop/s system

Carbon footprint of a KiloWatt-hour is about 0.5 kg CO2-equivalent
* 10,000 kg CO2e hourly carbon footprint for an exaflop/s system

* 100,000 metric tons CO2e annually

-> equivalent to 20,000 typical passenger cars in the USA

A 10% improvement: A 10X improvement: 10X or more is
saves S4M/year saves $S36M/year achievable in many
takes 2,000 cars off the road takes 18,000 cars off the road use cases




is a matter of
planetary
stewardship
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Running on Frontier versus flying commercially

* Carbon footprint of a KiloWatt-hour is 0.5 kg CO2-equivalent
- 10,000 kg CO2e hourly carbon footprint for an exaflop/s system (10 metric

tons)

* Carbon footprint of one passenger-hour of commercial cruise
Mach flight is about 0.25 metric tons CO2e

- 1 hour of exaflop/s is roughly equivalent to 40 passenger-hours of flight

3 3% W

These 39 passengers cost about
the same per hour as Frontier

uuuuuuuuuuuuuuuuuu

O § fatatetatatata s el

5% [E5E)

nnnnnnnnnnn

BT EEEEEE ML e

éiiigéiﬁﬁﬁﬁiﬁ RHHHEHHRRES

from Jeddah to Chicago at the
cost of one hour of Frontier

Justify your flight to
ATPESC by efficient
programming!

Better yet, please
justify mine ©




Architecture efficiency tracked by the Green 500

60 https://en.wikipedia.org/wiki/Green500

Gigaflop/s per Watt
40 1 for #1 on the Green 500

> 15X in ten years

Energy efficiency

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Years



Application efficiency from redefining the objective

Sometimes, the output of interest from a
computation is not a solution to high
accuracy everywhere, but a functional of
the solution to a specified accuracy, e.g.
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* compute the convective heat flux
across a fluid-solid boundary,
obtainable without globally uniform
accuracy

e use low fidelity surrogates in early
inner iterations of “outer loop

problems” ‘

Machiels, Peraire & Patera, A posteriori FE Output Bounds for the temperature conservative output bound
Incompressible NS Equations, (2001), J. Comp. Phys. 172:401 contour mesh mesh (flux to 1%)
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HPC algorithmic efficiency tracked by Poisson solvers

Consider a Poisson solve in a 3D n x n x n box; natural ordering gives bandwidth of n?2

Year Method Reference Storage Flops
1947 GE (banded) | Von Neumann & Goldstine n’
1950 Optimal SOR | Young n3
1971/77 | MILU-CG Reid/Van der Vorst n3
1984 Full MG Brandt n3

If n =64, thisimplies an overall reduction in flops of ~¥16 million

*Six months is reduced to 1 second (recall: 3.154 x 107 seconds per year)



“Algorithmic Moore’s Law”

HPC progresses even 10° ' ' , ‘ ' ‘ ,
faster in algorithms O(NV) Ful MG 4
than in hardware: i
example of Poisson’s 10° o e
equation in a 3D box o
with 2nd-order FD : Sl .
relative 10" 36 years means |
64 Speedup -~ Moore's Law| 24 doublings =
4 Gauss-SéideI 16 million-fold
10°} /
Vau=f |t
— 3= 3
N=nm=(Vh) 0 Banded & OV ) | | | |
0 5 10 15 20 25 30 35

Keyes et al., SCaLeS Rpt. Vol. 1 (2003), https://www.pnnl.gov/scales/ year



“Algorithmic Moore’s Law” for fusion energy simulations

Magnetic Fusion Energf\.(: “Effective speed” increases
came from both faster hardware and improved algorithms

. o 108
GKT in §' M'Sftérot:turbuler:’ce I *
effective spee « AFSRTIT
red s ive sp Global MHD Semi-implicit”:
o 105 ol Earth improved +~ effective speed
MHDin 2 g e eloctron — _ All waves treated
= (Japan) models improved implicitly, but still
© 104 ~ linear c y,_ .
green = solvers stability-limited by
=] . high-order
Moore’s & 103} elements ranspor
[=3 delta-f
i *» magnetic i “Partially implicit”:
Law In g 1000 NERSC coordinates isrﬁgnlilcit - y P
blue £ 102 @ 5P3 processors < Fastest waves
© (typical) Yro- ) .
] inetics FffecﬂvedSPeed filtered, but still
o 10 f—cray oo o el | improvements stability-limited by
£ - implicit alone slower waves
LI&‘.)I 100 ‘_CrayYMP | ! | ]
1970 1980 1990 2000 2010

Calendar Year
Keyes et al., SCaLeS Rpt. Vol 2 (2004), https://www.pnnl.gov/scales/



“Algorithmic Moore’s Law” for combustion simulations

Complex
kinetics in
maroon

CFD in
green

Moore’s
Law in blue

Log Effective GigaFLOPS
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Keyes et al., SCaLeS Rpt. Vol. 2 (2004), https://www.pnnl.gov/scales/



Algorithms improve exponents; Moore only adjusts the base

* To scale to extremes, one must start with algorithms with optimal
asymptotic complexity, O(N log? N),p=0, 1, 2

* These are typically (not exclusively) recursively hierarchical

* Some such algorithms through the decades:

— Fast Fourier Transform (1960’s): N? — Nlog N

— Multigrid (1970’s): N3 1log N - N

— Fast Multipole (1980’s): N > N

— Sparse Grids (1990’s): N¢ — N (log N)4!
— H matrices (2000’s): N3 — k% N (log N)?
— MLMC (2000’s): N2 — N (log N)?

— Randomized matrix algorithms (2010’s): N3 — N2 log k
— ?2?2?7(2020'): 299 _, 999



Hints for contributions for the 2020’s

A You are going to replace woefully inefficient first-order
) convergent neural network training methods by, e.g.,

— communication-reduced hierarchically preconditioned second-
order methods

— nonlinear matrix-free acceleration methods

( f You are going master hybridized mod-sim/ML workflows

- — use few instances of high fidelity, high resolution simulations
supplemented by many instances of machine-learned

surrogates

“With great computational power comes great algorithmic responsibility.”
— Longfei Gao, ALCF (PhD 2013, KAUST)
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Improving the “science per Joule”

(or per unit time) involves:

application algorithm/software

architecture
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In a fortunate world

employ the best algorithm on the most efficient hardware.



Lessons from the 1D Laplacian

Two concepts we need to understand in our pursuit of computational
efficiency in linear algebra:

* conditioning (implications on precision)
* rank structure (implications on sparsification)

can be motivated with reference to the 1D Laplacian (to be precise, its
negative —A ), discretized here to second-order in FD, FE, or FV:
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Laplacian ill-conditioned stresses precision

Let n = 1/h and consider Dirichlet end conditions with n-1 interior points. Then:

A =2[1-cos n/n] ~ (n/n)?

Ap1=2[1-cos (n-1)a/n] ~ 4
As n gets large and the mesh resolves more Fourier components, the condition number
grows like the square of the matrix dimension (inverse mesh parameter):

K = A,/ ~ (4/m?) n?
In single precision real arithmetic, x approaches the reciprocal of macheps (10-7) for an
n as small as 210 (~ 103). Laplacian-like operators arise throughout modeling and
simulation (diffusion, electrostatics, gravitation, stress, graphs, etc.), implying O(1)

error in the result, so HPC has traditionally demanded double precision by default.
GPUs were accepted only when they offered hardware DP (2008, NVIDIA GTX 280).

For the biharmonic, even double precision gives out at n = 21, Some multiscale codes
require quadruple precision, often available only in software.



Laplacian off-diagonal smoothness relaxes ranks

A is full-rank, but
its off-diagonal
blocks have low

rank
N {7 @
s inverse |fs 6 12
dense, but it 51110
o L1
inheritsthe A4 =gx 418
same rank g 2
structure

] 12




A renaissance in numerical linear algebra (1)

It turns out that many formally dense matrices arising

from
* integral equations with smooth Green’s functions
e covariances in statistics '

* Schur complements within discretizations of PDEs
e Hessians from PDE-constrained optimization
* nonlocal operators from fractional differential

equations

* radial basis functions from unstructured meshing

* kernel matrices from machine learning DP!}ﬂb i []nb
applications o s

have exploitable low-rank structure in “most” their off-
diagonal blocks (if well ordered)



A renaissance in numerical linear algebra (2)

It turns out that many matrices arising in
applications have blocks of relatively small norm
and can be replaced with reduced precision.

Mixed precision algorithms have a long history,
e.g., iterative refinement (1963, Wilkinson), where
multiple copies of the matrix are kept in different
precisions for different purposes.

There are many such new algorithms; see Higham B opies| | seites [l He iles
& Mary, Mixed precision algorithms in numerical
linear algebra, Acta Numerica (2022).



A renaissance in numerical linear algebra (3)

. ) 0
Moreover, these ideas can be combined, BB Dense FP64
as in this 1M x 1M dense symmetric 50 EEE Dense FP32
Il Dense FP16

covariance matrix:

* Originalin DP: 4 TB

* Replacement: 0.915TB

Smaller workingsets mean larger 200

problems fit in GPUs and last-level caches 55,

on CPUs, for data movement savings

* Also, net computational savings

* Data structures and programs are 350
more complex

100 Low-rank FP64

Low-rank FP32
150

300

0 50 100 150 200 250 300 350



Complexities of rank-structured factorizations

e “Straight” LU or LDL
= | Operations O(/V3)
- | Storage O(V?)
o Tile low-rank (Amestoy, Buttari, L'Excellent & Mary, SISC, 2016)
= | Operations O(k"> N?)
- | Storage O(k"> N'-5)

= for uniform blocks with size chosen optimally for max rank k of any compressed block, bounded
number of uncompressed blocks per row

e Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003)
« | Operations O(k? N log2N)
« | Storage O(k N)

= for strong admissibility, where k is max rank of any compressed block




Rank: a tuning knob

®* Replace dense blocks with reduced rank representations, whether “born

dense” or as arising during matrix operations
- use high accuracy (high rank) to build “exact” solvers
- use low accuracy (low rank) to build preconditioners

®* Consider hardware parameters in tuning block sizes and maximum rank
parameters, to complement mathematical considerations
- e.g., cache sizes, warp sizes

* Select from already broad and ever broadening algorithmic menu to form
low-rank blocks (next slide)
- traditionally a flop-intensive vendor-optimized GEMM-based flat algorithm

* Implement in “batches” of leaf blocks
- flattening trees in the case of hierarchical methods



Low-rank approximations for compressible tiles

Options for forming data sparse representations of the amenable
off-diagonal blocks

standard SVD: O(n3), too expensive, especially for repeated compressions
after additive tile manipulations

randomized SVD (Halko et al., 2011): O(n?log k) for rank k, requires only a
small number of passes over the data, saving over the SVD in memory
accesses as well as operations

adaptive cross approximation (ACA) (Bebendorf, 2000): O(k*n log n),
motivated by integral equation kernels

matrix skeletonization (representing a matrix by a representative collection
of row and columns), such as CUR, sketching, or interpolatory
decompositions based on proxies



Algorithmic opportunities

With such new algorithms, today’s HPC can extend many applications
that possess

memory capacity constraints (e.g., geospatial statistics,
PDE-constrained optimization)

power constraints (e.g., remote telescopes)
real-time constraints (e.g., wireless communication)
running time constraints (e.g., chemistry, materials,

genome-wide associations)




Example: covariance matrices from spatial statistics

Climate and weather applications have many measurements located regularly
or irregularly in a region; prediction is needed at other locations

®* Modeled as realization of Gaussian or Matérn spatial random field, with
parameters to be fit

Leads to evaluating, inside an optimization loop, the log-likelihood function
involving a large dense (but data sparse) covariance matrix 2

() = —%ZTz—l(e)z = %log|2(0)|

* Apply inverse 2! and determinant | X' | with Cholesky



Synthetic scaling test

Random coordinate generation within the unit square or unit cube with

Matérn kernel decay, each pair of points connected by square exponential
decay, a; ~ exp (-clx;- x;|?)




HICMA TLR vs. Intel MKL on shared memory

* Gaussian kernel to accuracy 1.0e-8 in each tile
» Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)

+ Two generations of linear algebra (classical dense and tile low rank)

NB: log scale
10°

classical

tile low rank
w/StarPU

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Time(s)

Red arrows:
speedups from
hardware,
same algorithm
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Memory footprint for TLR fully DP matrix of size 1M

NB: log scale 104 ¢

— iiii 418 A\
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— T 500~ | | accuracy (x-axis)

101 ;
10° 103 10°® 10~° 10712 10715

Accuracy Threshold

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, EuroPar 2018



HICMA TLR vs. ScaLAPACK on distributed memory

NB: log scale  10*

T I T I T
==Om== SCalAPACK 16 nodes

m=Om== ScalAPACK 32 nodes

=—=O=== SCcalLAPACK 64 nodes Green arrow:
5 === ScalAPACK 128 nodes :
10% 1 e SCalAPACK 256 nodes | & speedup from
== HICMA-TLR Cholesk% algorithm,
P
_ 7.4 same 16 nodes
0 8
@ 102 / Ve
g0 T
= f&/
Vog ‘lﬁ
s / /SA
7 'S
10! o5 <
i P
—
. el

10°

54K 81K 108KL35K 189K 270K351K 459K594K
Matrix size

Shaheen Il at KAUST: a Cray XC40 system with 6,174 compute nodes, each of which has two 16-core Intel Haswell CPUs
running at 2.30 GHz and 128 GB of DDR4 main memory

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Extreme Tile Low Rank

Cholesky factorization of a TLR matrix derived from Gaussian covariance of random

distributions, up to 42M DOFs, on up to 4096 nodes (131,072 cores) of a Cray XC40
* would require 7.05 PetaBytes in dense DP (using symmetry)

* would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

NB: log scale
64000

40

Fully dense
computation
would have cost
about $1.03M in
electricity and
generated about
2500 metric tons
Os-90-%aem  of CO2e
0 10 20 a0 prS

Millions of DOFs

Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky Factorization Toward Climate
and Weather Prediction Applications. PASC20 (ACM)

32000 A

16000 -

Time (s)

8000 4

40004 16
16




Two motivations for mixed precision

+ Mathematical: (much) better than “no precision”

— Statisticians often approximate remote diagonals as zero after performing a diagonally clustered
space-filling curve ordering, so their coefficients must be orders of magnitude down from the
diagonals

— not just smoothly decaying in the low-rank sense, but actually small
* Computational: faster time to solution
— hence lower energy consumption and higher performance, especially by exploiting heterogeneity

Peak Performance in TF/s V100 NVLink A100 NVLink H100 SXM
7.5 9.7 34

FP64

FP32 19.5 67

FP64 Tensor Core 15 19.5 67

FP32 Tensor Core 8x 156 16x 495 16x
FP16 Tensor Core 120 312 989

rel. 2017 rel. 2020 rel. 2023



Mixed precision geospatial statistics on GPUs

» Gaussian kernel to accuracy 1.0e-9 in each tile
* Three generations of NVIDIA GPU (Pascal, Volta, Ampere)
» Two generations of linear algebra double precision and mixed DP/HP)

35 T

»—= A100 Mixed DP/HP
+— V100 Mixed DP/HP

-t e

I
30l T Yo e e - - o
&« -2 A100 DP(2020) : l A : Red Arrow:
e -e V100 DP(2017) ; : ! speedup from
25 = -a P100 DP (2014) === T hardware, same
. ! algorithm
w» 20} ;
3 |
s 1 |10X4 Green Arrows:
(S 15k 1 nl--] speedup from
|‘ algorithm, same
: hardware
100 -—-—+ A~ e e e = = | - — rigl p—
| 1 | |
Blue Arrow:
7z =1 ___‘____._-—. - -
B 4P gl - :\', — t ___________ i)
5 :_'::__.,.. _1.___.___ ‘-‘_‘;f‘-’ IL from both

) | I R

1 | 1 I 1 I )
1 L 1 1 1

18000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Matrix Sizes

Ltaief, Genton, Gratadour, K. & Ravasi, 2022, Responsibly Reckless Matrix Algorithms for HPC Scientific
Applications, Computing in Science and Engineering



2022 Gordon Bell Finalist paper

Reshaping Geostatistical Modeling and Prediction
for Extreme-Scale Environmental Applications

Qinglei Cao*®, Sameh Abdulah'=>, Rabab Alomairy'~, Yu Pei*®, Pratik Nag', George Bosilca>’,
Jack Dongarra®3*7 Marc G. Genton'”, David E. Keyes', Hatem Ltaief', and Ying Sun'?

II. PERFORMANCE ATTRIBUTES

Performance Attributes

Our submission

Problem Size

Category of achievement
Type of method used
Results reported on basis of
Precision reported

System scale

Measurement mechanism

Nine million geospatial locations'
Time-to-solution and scalability
Maximum Likelihood Estimation (MLE)
Whole application

Double, single, and half precision

16K Fujitsu A64FX nodes of Fugaku!
Timers; FLOPS; Performance modeling




GB’22 collaborators

KAUST Supercomputing Core Lab, HLRS-Stuttgart, Oak Ridge LCF, RIKEN, and:

LICL
INNOVATIVE

COMPPUTING LABORATORY

George Boslica Jack Dongarra
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Rabab Alomairy Pratik Nag Sameh Abdulah Hatem Ltaief Ying Sun Marc Genton



App: spatial & spatio-temporal environmental statistics

Space and space-time modeling using Maximum Likelihood Estimation
(MLE) on two environmental datasets

S

2D soil moisture data

at the top layer of the
Mississippi River basin

2021 monthly evapotranspiration (ET)
over Central Asia

[means are subtracted out in these plots]



Statistical “emulation” (complementary to simulation)

Predicts quantities directly from data (e.g., weather, climate)

— assumes a correlation model

— data may be from observations or from first-principles simulations

— statistical alternative to large-ensemble simulation averages

Relied upon for economic and policy decisions

— predicting demands, engineering safety margins, mitigating hazards,

siting renewable resources, etc.

— such applications are among principal supercomputing workloads
Whereas simulations based on PDEs are usually memory

bandwidth-bound, emulations based on covariance matrices are
usually compute-bound (achieve a high % of bandwidth peak)



The computational challenge

« Contemporary observational datasets can be huge

— Collect p observations at each of nlocations Z,(x,y,z,t,)

— Find optimal fit of the observations Z to a plausible function

— Infer values at missing locations of interest
« Maximum Likelihood Estimate (MLE)

— model for estimating parameters required to perform inference
« Complexity:

— Arithmetic cost: solve systems with and calculate determinant of n-by-n
covariance matrix

— 0((pn)?) floating-point operations and 0((pn)?) memory

— Memory footprint: 10 locations require 4 TB memory (double precision,
invoking symmetry, for p=1)



The computational ehalenge opportunity

« Contemporary observational datasets can be huge

— Collect p observations at each of nlocations Z,(x,y,z,t,)

— Find optimal fit of the observations Z to a plausible function

— Infer values at missing locations of interest
« Maximum Likelihood Estimate (MLE)

— model for estimating parameters required to perform inference
« Complexity:

— Arithmetic cost: solve systems with and calculate determinant of n-by-n
covariance matrix

— 0((pn)?) floating-point operations and 0((pn)?) memory

— Memory footprint: 10 locations require 4 TB memory (double precision,
invoking symmetry, for p=1)



Motivation: High Performance Computational Statistics (HPCS)

“Increasing amounts of data are being produced (e.g., by remote
sensing instruments and numerical models), while techniques to
handle millions of observations have historically lagged behind...
Computational implementations that work with irregularly-spaced
observations are still rare.” - Dorit Hammerling, NCAR, July 2019

1M X 1M dense sym DP matrix requires 4 TB, N3~ 10'8 Flops

Traditional approaches:  Better approaches: YPIBHABR&:EE
Global low rank Hierarchical low rank

Zero outer diagonals Reduced precision outer
diagonals




https://github.com/ecrc/exageostat

Climate/Weather Applications

Modeling/Inference

Optimization Library (e.g., NLopt)

Parallel Linear Algebra Libraries

. . .
-
- . L
igh i on The Maxmum
Likelinood Estimation (MLE) method is used to optimize the likelihood function n spatial set. MLE provides an efficient way to
preic misaing bservatons n e centext of cimate/wathe forecasngg@fleatons. s machine earming fromework depoys &
o sotare stack o targe various hardware archisactoros wich gl source armulaion codo, fram commodiy 56 10 GPL.
Sased shared ard disrintedmomery eystoms. A lrgescel piggl sz, ExaGecat urher sxpot th ot sporey of the
covariance matri to address the curss of dmensionalty. n gyger, ExaGeoSiat supperts Tlo LowRank (TLR) approximaton and [ m
mtivaggPpace and Ch (Dense C
paration |

ExaGeoStat v1.1.0

+ Supports arge acale geo-spatal datasets ur biariate).

__Computing the Cholesky-Based MLE Method

« Leverages the deta sparsty sirucou matsix peretor

Super-Tie (OST) and Tie Lag#ni [TLR) aporoximations as well a5
mixad procion (M Hons.
« Predcts obser Using danse, DST, TLF, and MP tachriques

and roveel from environmental Big Data applcations. [P

e e Mo el
Sogpffre Infrastructure  TLR Multivariate Spatial Modeling Performance and Accuracy

Current Research
« Supportfor outotcore aigorshms.

+ Assistthe comvergence of MLE
with 2 pediction phase.

« Doploy the PARSEC runtime systemn.

+ Combine TLR vith MP to aceslerate.
MLE for argar problem szes.

)| [HicmA (Tile Low-Rank (TLR) Computation)|

Wrores [l esm [lsvax [ oo [ rnac
‘ Cholesky
>

Factorization DAG / Operation
‘ (4 X 4 Tile Matrix)

StarPU/PaRSEC Dynamic Runtime System

Drivers (e.g., Pthreads, CUDA, OpenCL, MPI)

nd nonstatonary geospaial data

Shared Memory Systems Distributed Memory Systems

X86 CPU

[| Aarcneaceu | GPU

Sameh Abdulah,
Research Scientist
ECRC, KAUST



ExaGeoStat’'s 3-fold framework

» Synthetic Dataset Generator

— Generates large-scale geospatial datasets which e P —_'—,_l
can be used separately as benchmark datasets &% | [
for other software packages = ;

* Maximum Likelihood Estimator (MLE)

— Evaluates the maximum likelihood function on
large-scale geospatial datasets

— Supports dense full machine precision, Tile Low-
Rank (TLR) approximation, low-precision
approximation accuracy, and now TLR-MP

« ExaGeoStat Predictor /\* sial
— Infers unknown measurements at new geospatial B 4

locations from the MLE model ]




The portable ExaCcoStat soitwai o stack
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Maximum Likelihood Estimator (MLE)

n 1 1

_ = = A -1
5 log(2m) —  log|S(6)] — ;27 %(6) 2.

« Optimization over 8 to maximize the likelihood function estimation
until convergence

— generate the covariance matrix X(8) using a specified kernel

— evaluate the log determinant and the inverse operations, which require
a Cholesky factorization of the given covariance matrix

— update @
« NLOPT" is typically used to maximize the likelihood

« Parallel PSwarm optimization algorithm runs several likelihood

estimation steps at the same time (an embarrassingly parallel outer
loop)

*open-source library by Prof. Steve Johnson of MIT

« The log-likelihood function: £(8) = —



Covariance functions supported in ExaGeoStat

Univariate Matern Kernel Space/Time Nonseparable Kernel
6, r\% r S { I[h]l/as }
€0 = Fre (9_2) T (9_2) O = o+ 1™ | Grlufea + 172
(3 parameters to fit: variance, range, smoothness) (6 parameters to fit, add: time-range, time-smoothness, and separability)
Multivariate Parsimonious Kernel Tukey g-and- h Non-Gaussian Field with Kernel
v Piigioi; [ |h[\" (bl _ h , h
Ci;(|[bl; 6) = 24011 (1;;) (T) K, ( ) pz(h) = T()2v1 )QV 1 4\/2_1—/ Ky 4\/27(,—7

Multivariate Flexible Kernel Powered Exponential Kernel

N a? clnll ' -2
C(h;u) = 21T (v) (alul= + 1)5*par2 ((a|u|2n + 1)an) C(r;0) = eﬂexp( 0, )

¢l B
(@) 0 xR




How to choose the rank?

Tiles are compressed to low rank based on user-supplied tolerance
parameter, based on the first neglected singular value-vector pair.

A tile-centric, structure-aware heuristic decides at runtime whether
the tile should remain in low rank form or converted back to dense,

based on estimates of the overheads of maintaining and operating
with the compressed form.

The structure-aware runtime decision is based only the estimated
number of flops and time to solution, while the precision-aware
runtime decision (next slide) is based only on the accuracy
requirements of representing the matrix in the Frobenius norm.



How to choose the precision?

Consider 2-precision case, with machine epsilons (unit roundoffs) u,,,, and
U, , resp.

Let || 4|z be the Frobenius norm of the global matrix square matrix 4,
which is computable by streaming 4 through just once

Let n, be the number of tiles in each dimension of 4
Then any tile 4; such that
| Ajlle! ([ Al /nr) < Wpigh | Uy,
is stored in low precision; otherwise kept in high
The mixed precision tiled matrix 4 thus formed satisfies

|14 - Allp < wpign || A||F
Generalizes to multiple precisions
Tiles can be converted dynamically at runtime

Higham & Mary, Mixed Precision Algorithms in Numerical Linear Algebra (2022), Acta Numerica, pp. 347-414



Accuracy on synthetic 2D space dataset

MLE parameters

variance range smoothness
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Accuracy on real 3D (2D space + time) dataset

Variants Variance (8p) | Range (81) | Smoothness (62)
Dense FP64 1.0087 3.7904 0.3164
MP+dense 0.9428 3.8795 0.3072
MP+dense/TLR 0.9247 3.7756 0.3068
Variants Range-time (f3) | Smoothness-time (64) | Nonsep-param (65)
Dense FP64 0.0101 3.4890 0.1844
MP+dense 0.0102 3.4941 0.1860
MP+dense/TLR 0.0102 3.5858 0.1857
Variants Log-Likelihood (1lh) || MSPE
Dense FP64 -136675.1 0.9345 mean-square
MP+dense -136529.0 0.9348 prediction error
MP+dense/TLR -136541.8 0.9428




Performance on up to 16K nodes of Fugaku

~3x greater size for same time

~3x less time for same size
=
[
S
$ 103 :
= To be improved:
o . . .
= Still tuning runtime
2 system PaRSEC on
g —— 4096: MP+dense
= —sfl=— 2048: MP+dense/TLR
—a— 4096: MP+dense/TLR
—k— 8192: MP+dense/TLR
102 16384: MP+dense/TLR
1 | | —
1.08M 2.16M 3.24M 4.32M 5.40M6.22M 9.00M

Matrix Size



Tile map for 2D space kernel with ~1M points

370 tiles of size 2700 in each dimension

weak correlation
I

strong correlation
)

0 50 100 150 200 250 300 350

BN Dense FP64
BN Dense FP32
EEE Dense FP16
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BN Dense FP64

BN Dense FP32

EEN Dense FP16
Low rank FP&4
Low-rank FP32

BN Dense FP64
B Dense FP32
BN Dense FP16
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200

250

360

350

B Dense FP64
BN Dense FP32
Bl Dense FP16
Low rank FP64
Low rank FP32

50 100 150 200 250 300 350

memory footprint

memory footprint memory footprint

1.6 TB 0.9TB 3.8TB 1.8TB

memory footprint

default dense double is ~¥4 TB



Impact for spatial statistics

The potential for this combination in spatial statistics
generally is high... The authors have demonstrated
controllable and high accuracy typical of universal
double precision, while exploiting mostly half precision,
and keeping relatively few tiles clustered around the
diagonal in their original fully dense format. The result
is reduction in time to solution of an order of magnitude
or more, with the ratio of improvement growing with
problem size, but already transformative.

-- Professor Sudipto Banerjee, UCLA



Impact for spatial statistics

The innovations described in numerical linear algebra and in P
dynamic runtime task scheduling deliver an order of magnitude
or more of reduction in execution time for a sufficiently large
spatial or spatial-temporal data set using the Maximum
Likelihood Estimation (MLE) and kriging paradigm. Perhaps
more importantly, by reducing the memory footprint of such
models, they allow much Iarger datasets to be
accommodated within given computational resources. The
advance this creates for spatial statisticians — geophysical and
otherwise — is potentially immense, given that this result is
now available through ExaGeoStat.

--Professor Doug Nychka, Colorado School of Mines



Impact for spatial statistics

An especially attractive aspect of the submission is the
innovation that it required in the a64fx ARM architecture of
Fugaku, namely the accumulation in 32 bits of the 16-bit
floating point multiply. | regard this aspect of the KAUST-UT-
RIKEN collaboration of abiding benefit beyond the particular
application of this submission.

As you know, my mottos for data science are that “Statistics is
the ‘Physics’ of Data” and “Statistics is to Machine Learning as
Physics is to Engineering.” Your Gordon Bell campaign is
accelerating the use of spatial statistics to allow it to keep
up with exascale hardware.

-- Dr. George Ostrouchov, ORNL



2023 Gordon Bell Finalist paper

Scaling the “Memory Wall” for Multi-Dimensional
Seismic Processing with Algebraic Compression on
Cerebras CS-2 Systems

Hatem Ltaief'?, Yuxi Hong'?, Leighton Wilson®*, Mathias Jacquelin®*, Matteo Ravasi'?, and David Keyes'?

'Extreme Computing Research Center,
King Abdullah University of Science and Technology, Thuwal, KSA
*{Firsmame.Lastname} @kaust.edu.sa
3Cerebras Systems Inc., Sunnyvale, California, USA
4 Firstname.Lastname } @ cerebras.net



GB’23 collaborators

Group42 (Abu Dhabi), KAUST Supercomputing Core Lab and:

@erebras

|
Leighton Wilson Mathias Jacquelin

= .;)),

Yuxi Hong Hatem Ltaief Matteo Ravasi



Cerebras CS-2 Wafer-Scale Engine (WSE)

T T

Cerebras WSE-2 Largest GPU
46,225mm’ Silicon 826mm’ Silicon

2.6 Trillion transistors 54.2 Billion transistors

Hamburg, May2022 '




2023 Gordon Bell submission

[. JUSTIFICATION FOR THE GORDON BELL PRIZE

High-performance matrix-vector multiplication using low-
rank approximation. Memory layout optimizations and batched
executions on massively parallel Cerebras CS-2 systems.
Leveraging Al-customized hardware capabilities for seismic
applications for a low-carbon future. Application-worthy ac-
curacy (FP32) with a sustained bandwidth of 92.58PB/s (for
48 CS-2s) would constitute the third-highest throughput from
June’23 Top500.



2023 Gordon Bell submission

Performance Attributes

Our submission

Problem Size

Category of achievement

Type of method used
Results reported on basis of

Precision reported
System scale

Measurement mechanism

Broadband 3D seismic dataset

(~ 20k sources and receivers

and frequencies up to 50H z)
Sustained bandwidth

Scalability

Algebraic compression

Whole application (for GPU cluster)
Main kernel (for Cerebras cluster)
Single precision complex

Up to 48 Cerebras CS-2 systems, i.e.,
35, 784, 000 processing elements!
Timers; Memory accesses;
Performance modeling




2023 Gordon Bell submission
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2023 Gordon Bell submission
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compared with other solutions compared with current top 5



2023 Gordon Bell endorsement

Conventional algorithms for MDD would not have mapped onto the
Cerebras CS-2 engines because their N3 arithmetic complexity is
prohibitive. Only the algebraically compressed form of the problem
fits. All parts of this interdisciplinary project are thus necessary for
its success.

As the title indicates, this team is ‘scaling the memory wall’ that
has loomed over computational science & engineering at the
high end for, by now, three decades. Their algorithms and CS-2
implementation have enormous implications for our community,
since their application is representative of many important CS&E
problems.

— Professor Omar Ghattas, U Texas



2023 Gordon Bell endorsement

For the past 3 decades, we have needed Ilarge-scale
convolutions for multiple applications to tackle subsurface
challenges — which are now greater than ever for the energy
transition, such as rapid, wide-scale monitoring of subsurface
hydrogen storage — but have never achieved it due to the

unsurmountable bottleneck imposed by the size of datasets
(starting at TBs).

This project, with its balanced focus on accuracy and
practical performance, is likely to finally break through a
decades-old barrier in geophysical imaging.

— Dr. Ivan Vasconcelos, Shearwater Geoservices



2023 Gordon Bell endorsement

The impact that the efficient implementation of multi-
dimensional convolution with low-rank tiles that Ltaief and co-
authors have developed is better understood if we bear in mind
that multidimensional convolution and deconvolution are
ubiquitous operations in seismic processing.

This new implementation may lead to a drastic reduction of the
turnaround time of seismic data processing projects. The
consequence is that the decision-makers, regardless of whether
they use seismic images for conventional hydrocarbon exploration
or for other applications, will receive valuable information in a
timely manner.

— Dr. Claudio Bagaini, SLB (Schlumberger)



2023 Gordon Bell appeal to history

History does not repeat itself, but it often rhymes.
— Samuel Clemens (Mark Twain)

* |n 1989, the Gordon Bell Prize went to a seismic
application run on the CM-2, a system designed for Al.

* In 2023, will the Gordon Bell Prize go to a seismic
application run on the CS-2, a system designed for Al?



Hourglass model of software

algorithmic

://gi . i — -
https://github.com/ecrc/hicma infrastructure

architectures

0 g s




Conclusions, recapped

As computational infrastructure demands a growing sector of research
budgets and global energy expenditure, we must all address the need for
greater efficiency

As a community, we have excelled at this historically in three aspects:
e architectures

» applications (redefining actual outputs of interest)

* algorithms

There are new algorithmic opportunities in:
* reduced rank representations
* reduced precision representations



Sustainable computing — two meanings

(phssss Computing sustainably

AND PRODUCTION

* or at least efficiently — not computing more than
CX) necessary for a given scientific target

Computing to support sustainability

@) SUSTAINABLE
* renewable ene rgy DEVELOPMENT ALS

» affordable energy




Want to contribute to computationally efficient infrastructure?

e Contributions are required up and down /
the software tool chain of many y
applications /

* The HICMA group in the Extreme
Computing Research Center at KAUST
periodically has post-doc openings; see:

https://cemse.kaust.edu.sa/hicma/join-hicma ———

* Please enquire if interested at #MyGlobalGoals

ecrc.opportunities@kaust.edu.sa SHOPUNDPURGISDG



CS&E (and HPC) in KAUST’s DNA

Donate - Contact Us - Site Map - Join SIAM - My Account
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Society for Industrial and Applied Mathematics

SIAM NEWS >
CSE 2009: The World’s First CSE University
June 15, 2009

The King Abdullah University of Science and Technology, scheduled to welcome its first class of
students in September, sponsored a reception in Miami on March 2, the first day of the SIAM
Conference on Computational Science and Engineering. David Keyes and Omar Ghattas, involved in
different ways in the new venture, hosted the reception and made informal presentations to the
assembled crowd.

Most readers will know something of KAUST, which for the record is a graduate-only (master's and
doctoral) university being constructed in Saudi Arabia, on the eastern edge of the Red Sea, not far
from Jeddah. Keyes, the inaugural chair of KAUST's Mathematical and Computer Sciences and
Engineering Division, offered examples of research areas of particular interest to Saudi Arabia and
the region that will be emphasized; among them are geophysics, seismology, reservoir modeling,
CO2 sequestration, photovoltaics, stress-tolerant agriculture, desalination, catalysis, and materials,
along with the applied mathematics and computer science required to support them.

Sizeable recruitment ads for KAUST have appeared in many recent issues of SIAM News, often side
by side with ads placed by partners of the new university, such as the KAUST-UT Austin Academic
Excellence Alliance. Ghattas, as director of the alliance, has been recruiting faculty for KAUST's Earth
and Environmental Sciences and Engineering Division. The week of the SIAM conference, the NA
Digest ran a recruitment notice for numerical analysts, posted by Nick Trefethen on behalf of the
KAUST-funded Oxford Centre for Collaborative Applied Mathematics.

Other research alliances and partnerships are in place. Stanford, for example, is recruiting faculty in
applied math and computer science, as well as providing guidance in curriculum development; the
initial KAUST curriculum in those disciplines is similar to Stanford's, Keyes said in Miami. Cornell is a
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Shaheen-3’s Grace-Hopper chips will come in 1Q ’24

Site Manufacturer Computer Country Cores Plops] l;:’vxjr
1 Ozk Ridge HPE HPE Cray EX235 usa | aesesos | 1,14 | 227
National Laboratory AMD EPYC 64C 2.OGHz,r:1¥.tinct Mlzgi)x, Slingshot-11 - ’ .
RIKEN " Fumaky, .
2| Center for Computational Science Fujitsu A6 4F§‘:§:;§%':f‘:$:wngw’:'::t’é:::‘ectD Japan | 7,630,848 | 442.0 | 29.9
LUMI
3 EuroHPC / CSC HPE HPE Cray EX235a, Finland| 2,069,760 | 309.1 | 6.0
. O —— With 4608 AMD Genoa” CPUs & 2800 NVIDIA | 2387| 7.4
“Hopper” GPUs (in 700 “Grace-Hopper” ARM-NVIDIA
5 Oak Ridge CPU-GPU nodes), KAUST’s Shaheen-3 will pack 148.6 | 10.1

National Laboratory

approximately 25 + 100 Pflop/s — would be #6 on the i
Top 500 list if on the floor today

E. Strohmaier, Top500, ISC’23




Why? 114 KAUST faculty supercompute

Aamir Farooq

Ajay Jasra
Alexandre Rosado
Andrea Fratalocchi
Arnab Pain
Athanasios Tzavaras
Atif Shamim
Basem Shihada
Bernard Ghanem
Boon Ooi

Brande Wulff
Burton Jones
Carlos Duarte
Charlotte Hauser
Cristian Picioreanu
Daniel Peter
Daniele Boffi
David Ketcheson
David Keyes
Deanna Lacoste
Dominik Michels
Enzo Di Fabrizio
Eric Feron
Francesca Benzoni
Frederic Laquai
Gabriel Wittum
Geert Jan Witkamp
Georgiy Stenchikov
Haavard Rue

Hakan Bagci
Hernando Ombao
Himanshu Mishra
Hong Im

Hossein Fariborzi
Hussein Hoteit
Hussam Alshareef
Ibrahim Hoteit
Ingo Pinnau

Iman Rogan

Ivan Viola
Jean-Marie Basset
Jerry Schuster
Jesper Tegner
Jinchao Xu
Johannes Vrouwenvelder
Jorge Gascon
Jr-Hau He

Kim Choon Ng
Kuo-Wei Huang
Lain-Jong Li

Luigi Cavallo
Magdy Mahfouz
Magnus Rueping
Mani Sarathy
Marc Genton
Marco Canini
Mark Tester
Markus Hadwiger

Mario Lanza

Martin Heeney
Martin Mai

Matteo Parsani
Matteo Ravasi
Matthew McCabe
Meriem Taous Laleg
Min Suk Cha
Mohamed Eddaoudi
Mohamed Elhoseiny
Mohammad Younis
Nikos Hadjichristidis
Noredine Ghaffour
Omar Knio

Omar Mohammed
Panos Kalnis

Pascal Saikaly

Pedro Castano
Peter Richtarik
Peter Schmid

Peter Wonka

Pierre Magistretti
Raphael Huser

Raul Tempone
Robert Hoehndorf
Rod Wing

Salim Al-Babili
Samir Hamdan
Shadi Fatayer

. Shehab Elsayed

. Shuyu Sun

. Sigurdur Thoroddsen
. Slim Alouini

. Stefaan Dewolf

. Stefan Arold

. Suk Chung

. Suzana Nufies

. Tadd Truscott

. Tadeusz Patzek

. Takashi Gojobori

. Tareq AlNaffouri

. Tariq AlKhalifa

. Thomas Anthopoulos
. Udo Schwingenschloegl
. Valerio Orlando

. William Roberts

. Volker Vahrenkamp
. Xiangliang Zhang

. Xiaohang Li

. Xin Gao

. Xixiang Zhang

. Ying Sun

. Yu Han

. Yves Gnanou

. Zhiping Lai

61% of all faculty




Our story told in Communications of the ACM

82 COMMUNICATIONS OF THE ACM | APRIL 2021 | VOL. 64 | NO. 4

| Figure 1. Fiftoen “universals™ of exascale computing. |

Reside “high” on the memory h hy. close to the p ing
Rely on SIMD/SIMT-amenable batches of tasks at fine scale
Reduce synchrony in frequency and/or span

Reduce communication in number and/or volume of messages

big trends

DOI:10.1145/3447737

yYvYyvvwvyw

BY DAVID KEYES

yvvvyw

Exploit heterogeneity in processing. memory. and networking elements
Exploit extra memory to reduce communication volume
Perform extra flops to require fewer global operations
o r Use high-order discretizations to manipulate fewer DOFs (with more ops per DOF)
P r r Take more resilience into algorithm space, out ol hardware/systems space
eépares
t h e Exa sca le Employ dynamic scheduling capabilities, for example, . dynamic runtime systems based DAGs
Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
Process “on the fly” rather than storing all at once (especially large dense matrices)
Co-design algorithms with hardware, i in the network or in memory

yYvyvwvyw

The Arab
Adapt floating point p to output q
Code to specialized "back-ends” while presenting high-level APIs to general users




For follow-up

1)

2)

3)

4)

5)

6)

Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-Scale Geostatistics
Simulations, S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton & D. Keyes, 2018, IEEE International Conference
on Cluster Computing (CLUSTER), 2018, pp. 98-108, doi: 10.1109/CLUSTER.2018.000889.

Hierarchical Algorithms on Hierarchical Architectures, D. Keyes, H. Ltaief & G. Turkiyyah, 2020,
Philosophical Transactions of the Royal Society, Series A 378:20190055, doi 10.1098/rsta.2019.0055
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