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• Investing some thought in design of software makes it possible to maintain, 
reuse and extend it

• Even if some research software begins its life as a one-off use case, it often gets 
reused
– Without proper design it is likely to accrete features haphazardly and become a monstrosity

• Acquires a lot of technical debt in the process
– Many projects have had this happen 
– Most end up with a hard reset and start over again

• In this module we will cover general design principles and those that are tailored 
for scientific software

• We will also work through two use cases

Introduction
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General Design Principles for Maintainable Software

Some definitions from the web

 Encapsulate what varies
 Favor composition over inheritance
 Program to interfaces not implementations
 Loose coupling – interacting components 

should have minimal knowledge about each 
other

 SOLID

https://bootcamp.uxdesign.cc/software-
design-principles-every-developers-should-

know-23d24735518e
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General Design Principles for Maintainable Software
SOLID

 Single responsibility
 Class/method/function should do only 

one thing
 Open/closed

 Open for extension, close for 
modification

 Liskov substitution
 Implementations of an interface should 

give same result
 Interface segregation

 Client should not have to use methods it 
does not need

 Dependency inversion
 High level modules should not depend 

on low level modules, only on 
abstractions

Found on the web

 Encapsulate what varies
 Favor composition over inheritance
 Program to interfaces not implementations
 Loose coupling – interacting components 

should have minimal knowledge about each 
other

 SOLID

https://bootcamp.uxdesign.cc/software-
design-principles-every-developers-should-

know-23d24735518e
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Designing Software – High Level Phases

 Features and 
capabilities

 Constraints
 Limitations
 Target users
 Other …..

Requirements 
gathering

 Understand design 
space

 Decompose into 
high level 
components

 Bin components 
into types

Decomposition 

 Understand 
component hierarchy

 Figure out 
connectivity among 
components 

 Articulate 
dependencies

Connectivity
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Example 1 – Problem Description 

We have a house with exterior walls made of single material of thickness Lx
The wall has some water pipes shown in the picture. 

The inside temperature is kept at 70 degrees. But outside temperature is expected to be -40 
degrees for 15.5 hours.  

Will the pipes freeze before the storm is over
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Mathematical formulation

• Heat conduction is governed by a partial differential equation 

• We make some simplifying assumptions
– The thermal diffusivity is constant for all space and time.
– The only heat source is from the initial and/or boundary conditions.
– We will deal only with the one dimensional problem in Cartesian 

coordinates.
– That reduces the heat equation to 

The repository has 
solutions using three 
numerical methods

•Foward Time Centered 
Space (FTCS), 
an explicit method
•Crank-Nicholson, 
an implicit method
•Upwind-15, 
another explicit method 
with higher spatial 
order than FTCS.

We will use FTCS for 
this exercise

https://en.wikipedia.org/wiki/FTCS_scheme
https://en.wikipedia.org/wiki/FTCS_scheme
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Upwind_scheme
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
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Requirements gathering 

• To solve heat equation we need:
– a discretization scheme
– a driver for running and book-keeping 
– an integration method to evolve solution
– Initial conditions
– Boundary conditions

• To make sure that we are doing it correctly we need:
– Ways to inspect the results
– Ways of verification
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Decomposition

This is a small design space
• Several requirements can 

directly map to components 
– in this instance functions
– Driver
– Initialization – data containers
– Mesh initialization – applying 

initial conditions
– Integrator
– I/O
– Boundary conditions
– Comparison utility

Binning components
Components that will work for any 

application of heat equation
Driver
 Initialization – data containers
 I/O 
Comparison utility

Components that are 
Mesh initialization – applying initial conditions
 Integrator
 Boundary conditions
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Connectivity 

Initialize
Data 

containers 

Mesh 
generation 

Write 
results

Compare 
results

Initial 
conditions

Boundary 
conditions

Integrator

Driver



12

Research Software Challenges

• Many parts of the model and 
software system can be under 
research

• Requirements change throughout the 
lifecycle as knowledge grows

• Verification complicated by floating 
point representation

• Real world is messy

More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More 
Hardware 
Resources
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SOLID Principles Pose Some Difficulties

 Single responsibility
 Class/method/function should do only 

one thing
 Open/closed

 Open for extension, close for 
modification

 Liskov substitution
 Implementations of an interface should 

give same result
 Interface segregation

 Client should not have to use methods it 
does not need

 Dependency inversion
 High level modules should not depend on 

low level modules, only on abstractions

 Function calls have overheads
 Performance matters – quick turnaround of 

results desirable
 New insights may cause modification

 May lead to unmaintainable code 
duplication

 It is not always possible to eliminate lateral 
interactions

 Not always possible 
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Additional Considerations for Research Software

Considerations

 Multidisciplinary 
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others 

Design Implications

 Separation of Concerns
 Shield developers from unnecessary 

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities
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More Complex Application Design – Sedov Blast Wave

Description

High pressure at the center cause a shock 
to moves out in a circle. High resolution is 
needed only at and near the shock

Requirements 
• Adaptive mesh refinement

– Easiest with finite volume methods

• Driver
• I/O
• Initial condition
• Boundary condition
• Shock Hydrodynamics
• Ideal gas equation of state
• Method of verification
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Deeper Dive into Requirements

• Adaptive mesh refinement => divide domain into blocks
– Blocks need halos to be filled with values from neighbors or boundary conditions

• At fine-coarse boundaries there is interpolation and restriction
– Blocks are dynamic, go in and out of existence
– Conservation needs reconciliation at fine-coarse boundaries

• Shock hydrodynamics
– Solver for Euler’s equations at discontinuities
– EOS provides closure
– Riemann solver
– Halo cells are fine-coarse boundaries need EOS after interpolation

• Method of verification
– An indirect way of checking – shock distance traveled can be computed analytically
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Components Deeper Dive into some Components
• Driver

– Iterate over blocks
– Implement connectivity

• Mesh 
– Data containers
– Halo cell fill, including application of 

boundary conditions
– Reconciliation of quantities at fine-coarse 

block boundaries
– Remesh when refinement patterns change

• I/O
– Getting runtime parameters and possibly 

initial conditions
– Writing checkpoint and analysis data

Binned Components
Unchanging or slow changing 

infrastructure
Mesh
 I/O
Driver
Comparison utility

Components evolving with 
research – physics solvers
 Initial and boundary conditions
Hydrodynamics
 EOS
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics

EOS
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics

EOS
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics

EOS
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More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More 
Hardware 
Resources

Platform complexity

So
ftw

ar
e 

co
m

pl
ex

ity

Distributed 
memory
model

Heterogeneous
models

New Paradigm Because of Platform Heterogeneity
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Mechanisms Needed by the Code 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures
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Mechanisms Needed by the Code 

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures
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Mechanisms Needed by the Code 

Mechanisms to map work to 
computational targets
• Figuring out the map

• Expression of dependencies 
• Cost models

• Expressing the map

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures
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Mechanisms Needed by the Code 

Mechanisms to map work to 
computational targets
• Figuring out the map

• Expression of dependencies 
• Cost models

• Expressing the map

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures

So, what do we need?

• Abstractions layers 
• Code transformation tools
• Data movement orchestrators
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Same algorithm different data layouts or operation sequence:
• A way to let compiler know that ”this” expression can be specialized in many ways
• Definition of specializations
• Often done with template meta-programming

Underlying Ideas: Unification of Computational Expressions

More challenging if algorithms need to be fundamentally different
• Support for alternatives

Make the same code work on different devices
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Underlying Ideas: Moving Work and Data to the Target

Hierarchy in domain decomposition

• Distributed memory model at node level – still very prevalent, likely to remain so for a while
• Also done with PGAS models – shared with locality being important

Parallelization Models

Assigning work within the node

• “Parallel For” or directives with  unified memory
• Directives or specific programming model for explicit data movement

More complex data orchestration system for asynchronous computation

• Task based work distribution
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Underlying Ideas: Mapping Work to Targets

This is how many abstraction layers work

• Infer the structure of the code
• Infer the map between algorithms and devices
• Infer the data movements
• Map computations to devices
• These are specified either through constructs or pragmas

.It can also be the end user who figures out the mapping
In either case performance depends upon how well the mapping is done



31

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of 
computation

Macros with inheritance 
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to move work and 
data to computational targets

Domain specific runtime

Mechanisms to unify expression of 
computation

Macros with inheritance 
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to 
computational targets

DSL for recipes with code 
generator

Mechanisms to move work and 
data to computational targets

Domain specific runtime

Mechanisms to unify expression of 
computation

Macros with inheritance 
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Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to 
computational targets

DSL for recipes with code 
generator

Mechanisms to move work and 
data to computational targets

Domain specific runtime

Mechanisms to unify expression of 
computation

Macros with inheritance 

Composability in the source
A toolset of each mechanism

Independent tool sets
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Library of templates for time-
stepping 

O
pt

im
iz

er code for 
target 
device

Static physics code
• Encoded with macros
• Including optimization 

hints as directives

Platform specific information

Recipe for 
control flow 

in time
stepping

R
ec

ip
e 

tra
ns

la
to

r Source 
code for 

time
stepping

and 
runtime 
pipeline

Library of runtime 
configurations

Tr
an

sl
at

or Source 
code for 
physics 

operators

H
um

an
 in

 th
e 

lo
op C

od
e 

as
se

m
bl

er

Fully 
assembled and 

configured 
source code

Compiler

Executable

Construction of Application with Components and Tools
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Takeaways

• Requirements gathering and intentional design are indispensable for sustainable 
software development

• Many books and online resources available for good design principles
• Research software poses additional constraints on design because of its 

exploratory nature
– Scientific research software has further challenges
– High performance computing research software has even more challenges
– That are further exacerbated by the ubiquity of accelerators in platforms

• Separation of concerns at various granularities, and abstractions enable 
sustainable software design 
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