
exascaleproject.org

See slide 2 for
license details

Scientific Software Design

Anshu Dubey (she/her)
Argonne National Laboratory

Software Productivity and Sustainability track @ Argonne Training
Program on Extreme-Scale Computing summer school

Contributors: Anshu Dubey (ANL), Mark C. Miller (LLNL), David E.
Bernholdt (ORNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, Greg Becker, and Jared O’Neal,

Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles,
Illinois, 2023. DOI: 10.6084/m9.figshare.23823822.

• Individual modules may be cited as Speaker, Module Title, in Tutorial Title, …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.23823822

3

• Investing some thought in design of software makes it possible to maintain,
reuse and extend it

• Even if some research software begins its life as a one-off use case, it often gets
reused
– Without proper design it is likely to accrete features haphazardly and become a monstrosity

• Acquires a lot of technical debt in the process
– Many projects have had this happen
– Most end up with a hard reset and start over again

• In this module we will cover general design principles and those that are tailored
for scientific software

• We will also work through two use cases

Introduction

4

General Design Principles for Maintainable Software

Some definitions from the web

 Encapsulate what varies
 Favor composition over inheritance
 Program to interfaces not implementations
 Loose coupling – interacting components

should have minimal knowledge about each
other

 SOLID

https://bootcamp.uxdesign.cc/software-
design-principles-every-developers-should-

know-23d24735518e

5

General Design Principles for Maintainable Software
SOLID

 Single responsibility
 Class/method/function should do only

one thing
 Open/closed

 Open for extension, close for
modification

 Liskov substitution
 Implementations of an interface should

give same result
 Interface segregation

 Client should not have to use methods it
does not need

 Dependency inversion
 High level modules should not depend

on low level modules, only on
abstractions

Found on the web

 Encapsulate what varies
 Favor composition over inheritance
 Program to interfaces not implementations
 Loose coupling – interacting components

should have minimal knowledge about each
other

 SOLID

https://bootcamp.uxdesign.cc/software-
design-principles-every-developers-should-

know-23d24735518e

6

Designing Software – High Level Phases

 Features and
capabilities

 Constraints
 Limitations
 Target users
 Other …..

Requirements
gathering

 Understand design
space

 Decompose into
high level
components

 Bin components
into types

Decomposition

 Understand
component hierarchy

 Figure out
connectivity among
components

 Articulate
dependencies

Connectivity

7

Example 1 – Problem Description

We have a house with exterior walls made of single material of thickness Lx
The wall has some water pipes shown in the picture.

The inside temperature is kept at 70 degrees. But outside temperature is expected to be -40
degrees for 15.5 hours.

Will the pipes freeze before the storm is over

8

Mathematical formulation

• Heat conduction is governed by a partial differential equation

• We make some simplifying assumptions
– The thermal diffusivity is constant for all space and time.
– The only heat source is from the initial and/or boundary conditions.
– We will deal only with the one dimensional problem in Cartesian

coordinates.
– That reduces the heat equation to

The repository has
solutions using three
numerical methods

•Foward Time Centered
Space (FTCS),
an explicit method
•Crank-Nicholson,
an implicit method
•Upwind-15,
another explicit method
with higher spatial
order than FTCS.

We will use FTCS for
this exercise

https://en.wikipedia.org/wiki/FTCS_scheme
https://en.wikipedia.org/wiki/FTCS_scheme
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Upwind_scheme
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods

9

Requirements gathering

• To solve heat equation we need:
– a discretization scheme
– a driver for running and book-keeping
– an integration method to evolve solution
– Initial conditions
– Boundary conditions

• To make sure that we are doing it correctly we need:
– Ways to inspect the results
– Ways of verification

10

Decomposition

This is a small design space
• Several requirements can

directly map to components
– in this instance functions
– Driver
– Initialization – data containers
– Mesh initialization – applying

initial conditions
– Integrator
– I/O
– Boundary conditions
– Comparison utility

Binning components
Components that will work for any

application of heat equation
Driver
 Initialization – data containers
 I/O
Comparison utility

Components that are
Mesh initialization – applying initial conditions
 Integrator
 Boundary conditions

11

Connectivity

Initialize
Data

containers

Mesh
generation

Write
results

Compare
results

Initial
conditions

Boundary
conditions

Integrator

Driver

12

Research Software Challenges

• Many parts of the model and
software system can be under
research

• Requirements change throughout the
lifecycle as knowledge grows

• Verification complicated by floating
point representation

• Real world is messy

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

13

SOLID Principles Pose Some Difficulties

 Single responsibility
 Class/method/function should do only

one thing
 Open/closed

 Open for extension, close for
modification

 Liskov substitution
 Implementations of an interface should

give same result
 Interface segregation

 Client should not have to use methods it
does not need

 Dependency inversion
 High level modules should not depend on

low level modules, only on abstractions

 Function calls have overheads
 Performance matters – quick turnaround of

results desirable
 New insights may cause modification

 May lead to unmaintainable code
duplication

 It is not always possible to eliminate lateral
interactions

 Not always possible

14

Additional Considerations for Research Software

Considerations

 Multidisciplinary
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others

Design Implications

 Separation of Concerns
 Shield developers from unnecessary

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities

15

More Complex Application Design – Sedov Blast Wave

Description

High pressure at the center cause a shock
to moves out in a circle. High resolution is
needed only at and near the shock

Requirements
• Adaptive mesh refinement

– Easiest with finite volume methods

• Driver
• I/O
• Initial condition
• Boundary condition
• Shock Hydrodynamics
• Ideal gas equation of state
• Method of verification

16

Deeper Dive into Requirements

• Adaptive mesh refinement => divide domain into blocks
– Blocks need halos to be filled with values from neighbors or boundary conditions

• At fine-coarse boundaries there is interpolation and restriction
– Blocks are dynamic, go in and out of existence
– Conservation needs reconciliation at fine-coarse boundaries

• Shock hydrodynamics
– Solver for Euler’s equations at discontinuities
– EOS provides closure
– Riemann solver
– Halo cells are fine-coarse boundaries need EOS after interpolation

• Method of verification
– An indirect way of checking – shock distance traveled can be computed analytically

17

Components Deeper Dive into some Components
• Driver

– Iterate over blocks
– Implement connectivity

• Mesh
– Data containers
– Halo cell fill, including application of

boundary conditions
– Reconciliation of quantities at fine-coarse

block boundaries
– Remesh when refinement patterns change

• I/O
– Getting runtime parameters and possibly

initial conditions
– Writing checkpoint and analysis data

Binned Components
Unchanging or slow changing

infrastructure
Mesh
 I/O
Driver
Comparison utility

Components evolving with
research – physics solvers
 Initial and boundary conditions
Hydrodynamics
 EOS

18

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

19

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

20

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

21

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

22

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

23

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

New Paradigm Because of Platform Heterogeneity

24

Mechanisms Needed by the Code

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

25

Mechanisms Needed by the Code

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

26

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

27

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So, what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

28

Same algorithm different data layouts or operation sequence:
• A way to let compiler know that ”this” expression can be specialized in many ways
• Definition of specializations
• Often done with template meta-programming

Underlying Ideas: Unification of Computational Expressions

More challenging if algorithms need to be fundamentally different
• Support for alternatives

Make the same code work on different devices

29

Underlying Ideas: Moving Work and Data to the Target

Hierarchy in domain decomposition

• Distributed memory model at node level – still very prevalent, likely to remain so for a while
• Also done with PGAS models – shared with locality being important

Parallelization Models

Assigning work within the node

• “Parallel For” or directives with unified memory
• Directives or specific programming model for explicit data movement

More complex data orchestration system for asynchronous computation

• Task based work distribution

30

Underlying Ideas: Mapping Work to Targets

This is how many abstraction layers work

• Infer the structure of the code
• Infer the map between algorithms and devices
• Infer the data movements
• Map computations to devices
• These are specified either through constructs or pragmas

.It can also be the end user who figures out the mapping
In either case performance depends upon how well the mapping is done

31

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to unify expression of
computation

Macros with inheritance

32

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to move work and
data to computational targets

Domain specific runtime

Mechanisms to unify expression of
computation

Macros with inheritance

33

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

Domain specific runtime

Mechanisms to unify expression of
computation

Macros with inheritance

34

Mechanisms Needed by the Code : Example Flash-X

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

Domain specific runtime

Mechanisms to unify expression of
computation

Macros with inheritance

Composability in the source
A toolset of each mechanism

Independent tool sets

35

Library of templates for time-
stepping

O
pt

im
iz

er code for
target
device

Static physics code
• Encoded with macros
• Including optimization

hints as directives

Platform specific information

Recipe for
control flow

in time
stepping

R
ec

ip
e

tra
ns

la
to

r Source
code for

time
stepping

and
runtime
pipeline

Library of runtime
configurations

Tr
an

sl
at

or Source
code for
physics

operators

H
um

an
 in

 th
e

lo
op C

od
e

as
se

m
bl

er

Fully
assembled and

configured
source code

Compiler

Executable

Construction of Application with Components and Tools

36

Takeaways

• Requirements gathering and intentional design are indispensable for sustainable
software development

• Many books and online resources available for good design principles
• Research software poses additional constraints on design because of its

exploratory nature
– Scientific research software has further challenges
– High performance computing research software has even more challenges
– That are further exacerbated by the ubiquity of accelerators in platforms

• Separation of concerns at various granularities, and abstractions enable
sustainable software design

	Scientific Software Design
	License, Citation and Acknowledgements
	Introduction
	General Design Principles for Maintainable Software
	General Design Principles for Maintainable Software
	Designing Software – High Level Phases
	Example 1 – Problem Description
	Mathematical formulation
	Requirements gathering
	Decomposition
	Connectivity
	Research Software Challenges
	SOLID Principles Pose Some Difficulties
	Additional Considerations for Research Software
	More Complex Application Design – Sedov Blast Wave�
	Deeper Dive into Requirements
	Components
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Slide Number 23
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code
	Underlying Ideas: Unification of Computational Expressions
	Underlying Ideas: Moving Work and Data to the Target
	Underlying Ideas: Mapping Work to Targets
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Mechanisms Needed by the Code : Example Flash-X
	Construction of Application with Components and Tools
	Takeaways

