Spack: Package management for HPC

ATPESC 2023
St Charles, lllinois
August 4, 2023

LLNL-PRES-806064

This work was performed under the auspices of the U.S. S pa C k. i o | 1 . Lawrence Livem'lore

Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344
Lawrence Livermore National Security, LLC

National Laboratory

Modern scientific codes rely on icebergs of dependency libraries

71 packages
188 dependencies

MFEM: LBANN: Neural Nets for HPC

31 packages,
69 dependencies

e

e SR

)/‘))}4

r-condop:
R Genome Data Analysis Tools

= \\;IIZIAH

e e/l

ey
o]/ N
T

ECP’s E4S stack is even larger than these codes

— Red boxes are the packages in it (about 100)
— Blue boxes are what else you need to build it (about 600)
— It’s infeasible to build and integrate all of this manually

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 3
LLNL-PRES-806064

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

= 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

= Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

= Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Outside these boundaries, users are typically on their own

High Performance Computing (HPC)
violates many of these assumptions

Code is typically distributed as source
— With exception of vendor libraries, compilers

Often build many variants of the same package
— Developers’ builds may be very different
— Many first-time builds when machines are new

Code is optimized for the processor and GPU
— Must make effective use of the hardware
— Can make 10-100x perf difference

Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

Multi-language
— C, C++, Fortran, Python, others
all in the same ecosystem

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Materials: spack-tutorial.readthedocs.io

Some Supercomputers

Summit '

Oak Ridge National Lab
Power9 / NVIDIA

Fujitsu/ARM a64fx

Argonne National Lab
Intel Xeon / Xe

Lawrence Berkeley
National Lab
AMD Zen / NVIDIA

Oak Ridge National Lab
AMD Zen / Radeon

Lawrence Livermore
National Lab
AMD Zen / Radeon

D -

What about containers?

= Containers provide a great way to reproduce and distribute an
already-built software stack

= Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

= Using the OS package manager inside a container is insufficient dock
— Most binaries are built unoptimized ocKer

— Generic binaries, not optimized for specific architectures

= HPC containers may need to be rebuilt to support many .
different hosts, anyway. 000
— Not clear that we can ever build one container for all facilities Charliecloud SHIFTER
— Containers likely won’t solve the N-platforms problem in HPC

We need something more flexible to build the containers

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack enables Software distribution for HPC

« Spack automates the build and installation of scientific software

 Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

S spack install hdf5@1.10.5 S spack install hdf5@1.10.5 cppflags="-03 -g3"
S spack install hdf5@1.10.5 %clang@6.0 S spack install hdf5@1.10.5 target=haswell
S spack install hdf5@1.10.5 +threadssafe $ spack install hdf5@1.10.5 +mpi *mpich@3.2

 Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
» Generates (but does not require) modules
» Allows conda/virtualenv-like environments

 Provides many devops features (Cl, container generation, more)

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Materials: spack-tutorial.readthedocs.io

O github.com/spack/spack

What’s a package manager?

= Spack is a package manager
— Does not a replace Cmake/Autotools Package * Manages package installation

— Packages built by Spack can have any Manager
build system they want

= Spack manages dependencies High Level By

— Drives package-level build systems Build + Handle library abstractions
— Ensures consistent builds System - Generate Makefiles, etc.

= Determining magic configure lines

takes time Low Level [yis Ninja

— Spackis a cache of recipes Build + Handles dependencies among
System commands in a single build

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

* Manages dependency relationships
» May drive package-level build systems

Who can use Spack?

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLLLLLLLLLLLLLLL

Spack sustains the HPC software ecosystem
with the help of many contributors

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io

o

Materials:

Over 6,900 software packages
Over 1,100 contributors

Contributions (lines of code) over time in packages, by organization

LLNL OVGU Heidelberg
200000 ™™ ANLAUIUC = Kitware = CINECA
lowa RIKEN OpenFOAM
B |owa State B Hamburg B Kirchhoff
AMD Max Planck Genentech
1500007 oy CERN . CEA = SjTU
CSCs 3vGeomatics Intel
RIT s HZDR s Oregon
100000 1 g Hisilicon SNL NREL
LANL . FAU . UZH
= EPFL LBL
50000 - ANL BN Perimeterinst
mmm ORNL BN Fujitsu
0l ' ' =
’LQO ,Lo“'b‘ ,Lo'\f) ,@“’b ,»o“:\ ,Le“'q} ,@“9 Wo"’e ,LQ"”\’ ,LQ'Q ,Léf’
Most package contributions are not from DOE
But they help sustain the DOE ecosystem!
spack-tutorial.readthedocs.io @ 10

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

T FRQTiER “.__ $ o
«f‘f:._ !!I“rnh
— _
https:/leds.io

Dependents by Producer
EXASCALE COMPUTING PROJECT

= Spack will be used to build software for the three upcoming

[
5
: =
U.S. exascale systems : I i I I I
> B & 8 & & ¢ N S ol £ £ & P f o & 5
J i e O Q G X ¥ & ¥ O ¥ ¢ &
l S A P
o o v el
B
uCritical Dependents Important Dependents minterested Dependents

= ECP has built the Extreme Scale Scientific Software Stack (E4S)
with Spack — more at https://e4s.io

= Spack will be integral to upcoming ECP testing efforts. Spack is the most depended-upon
project in ECP

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 11
LLNL-PRES-806064

https://e4s.io/

One month of Spack development is pretty busy!

April 21,2023 - May 21, 2023 Period: 1 month ~

Overview

703 Active pull requests 145 Active issues
i- 568 11135 © 99 ® 46
Merged pull requests Open pull requests Closed issues New issues

Excluding merges, 109 authors have pushed 568 commits to 200

develop and 625 commits to all branches. On develop, 1,228

files have changed and there have been 33,421 additions
and 17,043 deletions. .-----———_____

" PiNEERRH 2B =

100

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 12

LLNL-PRES-806064

Spack’s widespread adoption has drawn
contributions and collaborations with many vendors

LLNL-PRES-806064

AWS invests significantly in cloud credits for Spack build farm
— Joint Spack tutorial with AWS had 125+ participants

— Joint AWS/AHUG Spack Hackathon drew 60+ participants aWS AM D a

AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others

— ROCm, HIP, aocc packages are all in Spack now : ./3
HPE/Cray is doing internal Cl for Spack packages, in the Cray environment ‘ I n tel
Intel contributing OneApi support and licenses for our build farm «2
NVIDIA contributing NVHPC compiler support and other features n‘llDlA® a r m

Fujitsu and RIKEN have contributed a huge number of packages for
ARM/ab64fx support on Fugaku

Linaro Fufrsu

ARM and Linaro members contributing ARM support
— 400+ pull requests for ARM support from various companies

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 13

Spack v0.20.0 was released at ISC23!

Major new features:
1. requires() directive, enhanced package requirements
Exact versions with @=
New testing interface
More stable concretization
Weekly develop snapshot releases
Specs in buildcaches can be referenced by hash
New package and buildcache index websites
Default CMake and Meson build types are now Release

© N Uk WN

O github.com/spack/spack

Full release notes:
https://github.com/spack/spack/releases/tag/v0.20.0

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 14
LLNL-PRES-806064

Spack is not the only tool that automates builds

1. “Functional” Package Managers

W \ /- — Nix https://nixos.org/
A) — Guix https://www.gnu.org/s/guix/
X Guix
N A 2. Build-from-source Package Managers
g'h.. > — Homebrew, LinuxBrew http://brew.sh
.l] .ﬂ — MacPorts https://www.macports.org
% — Gentoo https://gentoo.org
Qe

Other tools in the HPC Space:

= Easybuild http://hpcugent.github.io/easybuild/
— Aninstallation tool for HPC
— Focused on HPC system administrators — different package model from Spack
— Relies on a fixed software stack — harder to tweak recipes for experimentation

= Conda/ Mamba https://conda.io

g — Very popular binary package ecosystem for data science
%ON DA — Not targeted at HPC; generally has unoptimized binaries

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 15
LLNL-PRES-806064

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

Most existing tools do not support combinatorial versioning

= Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

= Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

= Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack provides a spec syntax to describe customized package
configurations

$ spack install mpileaks unconstrained
S spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option

S spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags

S spack install mpileaks@3.3 target=cascadelake set target microarchitecture

S spack install mpileaks@3.3 "mpich@3.2 %gcc@4.9.3 " dependency constraints

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— Full control over the combinatorial build space

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack packages are parameterized using the spec syntax

Python DSL defines many ways to build

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.linl.gov/projects/co-design/kripke"
url ="https://computation.linl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256="'3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8ab’)
version(‘1.2.2’, sha256="eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256="232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when="+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s" % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

def install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

One package.py file per software project!

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

-

ek

\

Base package
(CMake support)

Metadata at the class level

Versions

Variants (build options)

Dependencies
(same spec syntax)

Install logic
in instance methods

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

@18

Conditional variants simplify packages

class (PackageBase):
variant('cuda', default= s
description="Build with CUDA")

variant('cuda_arch',

description="CUDA architecture’
values=any_combination_of(cuda_

when="+cuda")

depends_on('cuda', when="+cuda"')

depends_on('cuda@9.0: ", when="cuda_
depends_on('cuda@9.0:", when="cuda_
depends_on('cuda@10.0: "', when="cuda_

CudaPackage: a mix-in for packages that use CUDA

cuda is a variant (build option)

cuda_arch is only present

) if cuda is enabled
arch_values),

dependency on cuda, but only
if cuda is enabled

arch=70"') traint d .
arch=72") constraints on cuda version
arch=75")

conflicts('%gcc@9:', when="+cuda Acuda@:10.2.89 target=x86_64:") compiler support for x86_64
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppc64le:') [EIpleleJooF IS

There is a lot of expressive power in the Spack package DSL.

LLNL-PRES-806064

Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io . 19

Spack Specs can constrain versions of dependencies

=

\

mpileaks

callpath S dyninst

libdwarf

libelf

S spack install mpileaks %intel@12.1 Mibelf@0.8.12

= Spack ensures one configuration of each library per DAG

— Ensures ABI consistency.

— User does not need to know DAG structure; only the dependency names.

= Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack handles ABIl-incompatible, versioned interfaces like MPI

mpileaks

mpi

libdwarf

callpath S

dyninst

libelf

|_—W T
—»

= mpiis a virtual dependency

= |nstall the same package built with two different MPI implementations:

S spack install mpileaks *mvapich@1.9

$ spack install mpileaks “openmpi@1.4:

= Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

S spack install mpileaks "mpi@2

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks Acallpath@1.0+debug Alibelf@0.8.11

@ YA N

mpileaks

\

callpath@l.o

+debug

mpi dyninst

\

Concretize

mpileaks@2.3
gcc@4.7.3
=linux-ppc64

\

%gcc@a4.7.3+debug

callpath@l.o
=linux-ppc64

L\

libdwarf

/

libelf@0.8.11

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

\

Store

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

ser input: abstract spec with some constraints

spec.yaml

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gec
version: 4.9.2
dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivwxy77
mpich: aadar6ifj23yijgmdabeakpejcli72t3
hash: 33hjjhxi7p6gyznSptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: linux-x86_64
compiler:
name: gec
version: 4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aadar6ifj23yijgmdabeakpejcli72t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: linux-x86_64
compiler:
name: gec
version: 4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance is stored
with the installed package

@22

Concrete spec is fully constrained
and can be passed to install.

Abstract, normalized spec
with some dependencies.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Hashing allows us to handle combinatorial complexity

Dependency DAG

mpileaks

7

\

libdwarf

callpath
P [dyninst

libelf

Installation Layout

= Each unique dependency graphiis a
unique configuration.

= Each configuration in a unique directory.
— Multiple configurations of the same
package can coexist.

opt

L spack
|— darwin-mojave-skylake
| L—-clang-10.0.0-apple

bzip2-1.0.8-hcdsmavuzpmdznmvrfzridow2mkphe2e
python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
sqlite-3.30.1-u64v26igxvxyn23hysmkifums6tgjvsr
xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
L—zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6

|— darwin-mojave-x86_64
| L—-clang-10.0.0-apple

L— coreutils-8.29-pl2kcytejqcys5dzecfrtjgxfdssvnob

= Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

= |nstalled packages automatically find
dependencies
— Spack embeds RPATHSs in binaries.
— No need to use modules or set
LD_LIBRARY_PATH
— Things work the way you built them

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io

Materials

@23

: spack-tutorial.readthedocs.io

An isolated compilation environment allows Spack
to easily swap compilers

Spack .
d tall
Process o_install()

= Forked build process isolates environment for each build.
Uses compiler wrappers to:
— Addinclude, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

Install dep1 Install dep2 SRl Install package

Build

Set up environment
Process

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

1 1

CC =spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc ! !
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc : :
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort 1 1
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort : -1 /dep1-prefix/include :
1 -L /dep1-prefix/lib 1

1 -WI,-rpath=/dep1-prefix/lib !

CMAKE_PREFIX_PATH = ... : ¢
LIBRARY_PATH =... 1 1

1

1

1

1

1

1

1

1

1

1

1

: PKG_CONFIG_PATH =.. PATH = spack/env:$PATH
1

1

1

1

1

1

1 :
1 install()
1

1

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

We can configure Spack to build with external software

mpileaks Mcallpath@1.0+debug
Aopenmpi Mibelf@0.8.11

packages.yaml

packages:

openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0

openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

mpi: W
buildable: False :’
paths:

Users register external packages in a
configuration file (more on these later).

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

mpileaks @2.3
gcc@4.7.3
arch=linux-redhat 6-ppc64

callpath@1.0
gcc@4.7.3
arch=linux-redhat 6-ppc64
+debug

N

openmpi@2.0.0 dyninst @8.1.2
gcc@4.7.3 gcc@4.7.3
arch=linux-redhat 6-ppc64

arch=linux-redhat 6-ppc64

hwloc@1.11.3
gcc@4.7.3
arch=linux-redhat 6-ppc64

libdwarf@20130729
gcc@4.7.3
arch=linux-redhat 6-ppc64

/

libelf@0.8.11
gcc@4.7.3
arch=linux-redhat 6-ppc64

libpciaccess @0.13.4
gcc@4.7.3
arch=linux-redhat 6-ppc64

libtool @2.4.6
gcc@4.7.3
arch=linux-redhat 6-ppc64

l

m4@1.4.17
gcc@4.7.3
arch=linux-redhat 6-ppc64

l

libsigsegv @2.10
gcc@4.7.3
arch=linux-redhat 6-ppc64

Materials: spack-tutorial.readthedocs.io

mpileaks@2.3
gcc@4.7.3
arch=linux-redhat 6-ppc64

callpath@1.0

@4.7.3
arch=linux-redhat 6-ppc64
+debug

N

openmpi@2.0.0 dyninst @8.1.2
gcc@4.7.3 gcc@4.7.3
arch=linux-redhat 6-ppc64 arch=linux-redhat 6-ppc64

libdwarf@20130729
gcc@4.7.3
arch=linux-redhat 6-ppc64

libelf@0.8.11
gcc@4.7.3
arch=linux-redhat 6- ppc64

1

/path/to/external/gcc/openmpi-2.0.0

Spack prunes the DAG when adding external packages.

@25

Spack package repositories allow stacks to be layered

oooooooo

LLNL MARBL multi-physics
application

linl.wci.mapp

miranda

Common internal

S spack repo create /path/to/my_repo packages

S spack repo add my_repo
S spack repo list

==> 2 package repositories. Open Source Spack
my_repo /path/to/my_repo packages
builtin spack/var/spack/repos/builtin builtin

linl.wci

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 26

LLNL-PRES-806064

Spack mirrors

Original source
on internet |

Spack allows you to define mirrors: 2
= Directories in the filesystem \\
= On aweb server \ S3 Bucket
= Inan S3 bucket \

Mirrors are archives of fetched tarballs, @

1
!
|
|
repositories, and other resources needed to build \ |
o \ !

= Can also contain binary packages |

@ 1

\

By default, Spack maintains a mirror in \ ‘l @

var/spack/cache of everything you’ve fetched so far. \ !

You can host mirrors internal to your site Local cache @ g Spack
= See the documentation for more details users

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 27

LLNL-PRES-806064

The concretizer includes information from pependency solving
packages, configuration, and CLI is NP-hard |

Contributors ' N
o package.py repository
e @ oo * new versions
s new dependencies
new constraints

\ =® concretizer
spack default config
developers packages.yaml Al

N
admins, local preferences config
users packages.yaml

Ly , : —
uSers local environment config | — N\ < = 7 |

spack.yaml Concrete spec is
fully constrained
Users Command line constraints and can be built.
spack install hdf5@1.12.0 +debug

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 28

LLNL-PRES-806064

We use logic programming to simplify package solving

LLNL-PRES-806064

New concretizer leverages Clingo (see potassco.org)

Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness

— ASP program has 2 parts:
1. Large list of facts generated from our package repositories and config

2. Small logic program (~800 lines)
— includes constraints and optimization criteria

New algorithm on the Spack side is conceptually simpler:

— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly

— Build a DAG from the results

New concretizer solves many specs that old concretizer can’t
— Backtracking is a huge win — many issues resolved
— Conditional logic that was complicated before is now much easier

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Some facts for the HDF5 package

@29

--fresh only reuses builds if hashes match

mpileaks

\\

A

callpath

yninst

v

74mwnxgn6nujehpyyalhwizwojwn5zga

<

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

6zvh4ueem6fSyrcfugh67k2hrtxbgbcs

LLNL-PRES-806064

libdwarf
—"L < 1. Resolve metadata - HaSh. matches are very
. : sensitive to small changes
1 " 2. Create per-node hashes
|
v .
l cwx4qwk4bkamfagjrgimxfu3bhasyt74 u In ma ny CaseS, a SatISfYIng
qo2af23r2npatxdtna3fmwkeennywixp Cached Or already insta”ed

k2yumgxwqbijubivfpbjpmrrbzyqcoot

spec can be missed

= Nix, Spack, Guix, Conan,
and others reuse this way

3. Query for exact hash match

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 30

--reuse (now the default) is more aggressive

LLNL-PRES-806064

« --reuse tells the solver about all the installed packages!
» Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","lwatuuysmwkhuahrncywvn?77icdhsemn")

imposed_constraint(

imposed_constraint

imposed_constraint(

imposed_constraint
imposed_constraint
imposed_constraint

imposed_constraint(
imposed_constraint(
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint(

Join #tutorial on Slack: slack.spack.io

"lwatuuysmwkhuahrncywvn?7icdhsemn"

"lwatuuysmwkhuahrncywvn77icdhsemn” .

"lwatuuysmwkhuahrncywvn?77icdhsémn"
"lwatuuysmwkhuahrncywvn?77icdhsémn"
"lwatuuysmwkhuahrncywvn?7icdhsémn”

"lwatuuysmwkhuahrncywvn?7icdhsemn” .

"1lwatuuysmwkhuahrncywvn77icdhsémn™

"1lwatuuysmwkhuahrncywvn?7icdhsémn"
,"concrete

"lwatuuysmwkhuahrncywvn?7icdhsémn"

"lwatuuysmwkhuahrncywvn?77icdhsémn"

"lwatuuysmwkhuahrncywvn?77icdhsémn"
"lwatuuysmwkhuahrncywvn?77icdhsémn"

Materials: spack-tutorial.readthedocs.io

,"node" , "openssl"’

"version","openssl","1.1.1g"
"node_platform_set","openssl","darwin")
"node_os_set","openssl”,"catalina")
"node_target_set","openssl","x86_64").
"variant_set","openssl","systemcerts","True").
"node_compiler_set","openssl","apple-clang™)
"node_compiler_version_set","openssl","apple-clang","12.0.0").
" "openssl").

"depends_on" ,"openssl","zlib","build").
"depends_on","openssl","zlib","1ink")

"hash","zlib", "x2anksgssxsxa7pcnhzg5k3dhgacglze").

Telling the solver to minimize builds is
surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

{ hash(Package, Hash) : installed_hash(Package, Hash) } 1 :

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package

Hash

3. Define a build as something without a hash:

build(Package

hash(Package, _), node(Package

4. Minimize builds!

LLNL-PRES-806064

inimize { 1@100,Package : build(Package) }.

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

node(Package)

With and without --reuse optimization

spackle):solver: solve -I1 hdf5
Best of 9 considered solutions.
Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild
20

OO0 S |

hdf5@1.10.7 ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
Acmake@3.21 .4 -doc+ncurses+openssl+ownlibs~qt build_type=Release
Ancurses@6.2 ~symlinks+termlib abi=none
Apkgconf@1.8.0
Aopenss1@1.1.11 s certs=syster
Aperl@5.34.0 +cpanm+shared+threads
Aberkeley-db@18.1.40 +cxx~docs+stl patches=b231fcc4dScff@5e5c3a4814
Abzip2@1.0.8 ~debug~pic+shared
Adiffutils@s. g
Alibiconv@l. 16 libs=shared, static
Agdbm@1.. 19
Areadline@s. 1
AZ1ib@1.2.11 +optimize+pic+shared
Aopenmpi@4.1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legacy
Ahwloc@2.6.0: O~CL 1~libudev+Libxml2~netloc~nvml~opencl~pci~rocm+shc
Alibxml2@2.9.12
Ax2@5.2.5 ~pic libs=shared,static
Alibevent@2.1.12 +openss|
Aopenssh@8.7p1l
Alibedit@3.1-20210216

Pure hash-based reuse: all misses

Join #tutorial on Slack: slack.spack.io Material

spackle):spack> spack solve --reuse -I1 hdf5
> Best of 10 considered solutions.
Optimization Criteria:

Priority Criterion Installed ToBuild
number of packages to build (vs. reuse) -
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

COUNRONOOOONSSSS
OO PO H

hdf5@1.10. 7%apple-clan 1 e+tools api=defaul
Acmake@3.21. 1%a .0.5 L ibs ouild_type=Release
Ancurses@6.

uda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
iro~cuda~gl~libudev+1libxml2~netloc~nvml~opencl~pci~rocm+

e-cla

ple-cla

Aperl@5.34.0%apple-clang
Aberkeley-db@18.1.40;
Abzip2@1.0.8

With reuse: 16 packages were reusable

rial.readthedocs.io

Use ‘spack spec’ to see the results of concretization

S spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aadept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aboost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64
Abzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Azlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aopenmpi@2.0.0%gcc@5.3.0"mxm~pmi~psm~psm2~slurm~sglite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
Ahwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Mibpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Mibtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
"mA@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
Mibsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Acallpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Adyninst@9.2.0%gcc@5.3.0™stat_dysect arch=darwin-elcapitan-x86_64
Aibdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack environments enable users to build customized stacks

from an abstract description

Simple spack.yaml file

Concretize Install

= B = &5

spack.yaml file
describes
requirements

spack.lock describes

. . Pacakge installations
exact versions installed

= spack.yaml describes project requirements

spack:
include external configuration
include:
- ../special-config-directory/
- ./config-file.yaml

add package specs to the ‘specs® list
specs:

- hdf5

- libelf

- openmpi

Concrete spack.lock file (generated)

= spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

= Can be used to maintain configuration of a software stack.
— Can easily version an environment in a repository

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

{
"concrete_specs": {
"6s63s02kstp3zyvjezglndmavy613nul”: {
"hdf5": {

“version®: "1.10.5",

varch": {
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"

+

"compiler": {
"name": "clang",
"version": "10.0.0@-apple"

|
"namespace": "builtd
"paramet =

Environments have enabled us to add build many

support developer workflows

features to

class Cmake (Package):
executables = ['cmake']

@classnethod
def determine_spec_details(cls, prefix, exes_in_prefix):
exe_to_path = dict(
(0s.path.basename(p), p) for p in exes_in_prefix
)
if ‘cmake' not in exe_to_path:
return None

cmake = spack.util.executable.Executable(exe_to_path['cmake'])
output = cmake('--version', output=str)
if output:
match = re.search(r"cmake.*version\s+(\S+)', output)
if match:
version_str = match.group(1)
return Spec(’ cmake@{8} ' . format (version_str))

package.py

Spack AUS Gitlab Tnstance

spack.yaml

Join #tutorial on Slack:

LLNL-PRES-806064

packages:
cmake:
externals:

- spec: cmake@3.15.1
prefix: /usr/local

spack.yaml configuration

slack.spack.io

spack external find

Automatically find and configure external packages on the system

spack test

s Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
""GNU lbsigsegyis a ibrary for handling page faults in user mode."""

#...spack package contents
extra_install_tests = ests/ libs'
deftestself)
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dirjoin{ smoke_test.’]
selfrun_test(
15655 self.prefix.include,
"-L5%s %6 self.prefi.lib, “Isigseg’,
smoke._test_c,

-0, 'smoke_test'

1
purpose='check linking)

Packages know how to run their own test suites e ——

spack ci

Automatically generate parallel build pipelines
(more on this later)

spack containerize

Turn environments into container build recipes

Materials: spack-tutorial.readthedocs.io

|
RUN echo *export PS1="\[$(tput bold\I\[s(tput setaf 1)

purpose="run built smoke test)

self.run_test('sigsegy1":[Test passed'], purpose='check sigsegv1 output’)
self.run_test('sigsegv2": [Test passed!], purpose='check sgsegv2 output’)

spack:
specs:

~ gromacs+pi

- mpich

container:
Select the format of the recipe e.g. docker,
singularity or anything else that is currently su
fornat: docker

Select fron a valid list of inages

inage: “centos:7"
spack: develop

Whether or not to strip binaries
strip: true

Additional systen packages that are needed at run
0s_packages:
- Tibgonp

Extra instructions
extra_instructions:
final:

Labels for the inage
labels:
app: "gromacs”

mpi: "mpich

package.py

36

Spack environments are the foundation of Spack Cl

= spack ci enables any environment to be turned
into a build pipeline

ir
cloud_gitlab: https://mirror.spack.io

= Pipeline generates a .gitlab-ci.yml file from R s
spack.lock

= Pipelines can be used just to build, or to
generate relocatable binary packages :
— Binary packages can be used to keep the same s o NI

build from running twice Parallel GitLab build pipeline

spack.yaml

Same repository used for spack.yaml can
generate pipelines for project

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 37

LLNL-PRES-806064

The Spack project enables communities to build their own
software stacks

LLNL-PRES-806064

Lots of Vis
Software E4S AWS xSDK SDK App
Stacks!

rrr. Package Recipes

Cl Infrastructure

Core tool (CLI + Solver)

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 38

Large-scale collaboration enables us to support

many downstream consumers Facilities

Spack develop branch Applications

* Bleeding edge: 400-600 changes/month‘ « Consume software from any of

* Latest features and package versions these channels, via Spack Argon ne o
* Use bleeding edge or stable

Spack release branches

* Stable spack a OAK
* Stable package versions RIDGE
* Bugfixes backported St b

NATIONAL LABORATORY

E4S release branches
* Facility testing
* Curated public build caches (manually created)

~

rrereeer III|

BERKELEY LAB

External
Contributors

on GitHub oftware Integration at HPC Fatilities

* Local builds and testing

* Local configuration

Local filesystem installation
Local module scheme

> Los Alamos
NATIONAL LABORATORY
EST.1943

Sandia
f|1 National
Laboratories

We want to move last-mile effort upstream

and eventually deploy from binaries M Lawrence Livermore

National Laboratory

Spack relies on cloud Cl to ensure that builds continue working

on GitHub

(over 1,000 contributors)

@b Spack Contributions ::>

’ . . x86_64 and aarch64
/ gltlab.spack.lo JJ pipelines in AWS

=5 = ppc64dle, GPU
J y pipelines at UO
> ' (Frank machine)
. e e HPE/Cray pipelines
spack ci v ! ! y PP

o

c osrff?gtlj.r\(aat?c;lns GitLab CI builds (changed) packages
-7 @ ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab * On every pull request
(E4S, SDKs, AWS, .
others) On every release branch

v

Lawrence Livermore National Laboratory O g ithub.com/s paCk/S paCk N A‘S&% 40

LLNL-PRES-837654 Matianat Nuctear Security Aminisiration

We have greatly simplified the

process of creating a stack

= Lists of packages aimed at communities

— EA4S HPC distribution

« Power, macOS, OneAPI versions

— Various ML stacks

« CPU
- CUDA
. ROCm

— LLNL-specific stacks
— AWS user stacks

= Easy to build same stack many different

ways using versatile recipes

= No more boilerplate!

Lawrence Livermore National Laboratory
LLNL-PRES-837654

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50

packages: i
all: Config parameters
target: [x86_64_v3]
variants: ~rocm+cuda cuda_arch=80
1lvm:
https://github.com/spack/spack/issues/27999
require: ~cuda

definiti - .

T e List of packages
Horovod
- py-horovod

Hugging Face
- py-transformers

JAX
- py-jax
- py-jaxlib

Keras

- py-keras

- py-keras—applications
- py—-keras-preprocessing
- py-keras2onnx

PyTorch

- py-botorch

- py-efficientnet-pytorch

- py-gpytorch

- py-kornia

- py-pytorch-gradual-warmup-1r
- py-pytorch-lightning

- py-segmentation-models-pytorch

Spack Cl Architecture

| gl NVIDIA
| |
t‘ — ° ° .
I—-> o — 0"t Wiventd Q
* GitLab o ”
Spack : Monitoring ab4fx
on GitHub HA GitLab @&erenter
-
|
; |
T Iu' Runner K b Bare metal runners O
spackbot Pools u (eEII.(nSe)tes on “Frank” oluster st
IREEREEEEE ;
I
* ‘ . . ngsazon aWS | Real HPC test I
S3 mmnt Amazon N : environments? :
|

Lawrence Livermore National Laboratory O g ithub.com/s paCk/S paCk N A‘S&n&é 42

LLNL-PRES-837654

We ensure rapid turnaround and protect against malicious binaries

by bifurcating our pipeline

Untrusted S3 buckets

Public, signed binaries in CDN

Internal per-PR build caches

https://binaries.spack.io

github/pr-28468]—[

github/pr-28469]—] [—[develop

]—[releases/v0.18

p
Contributors submit
package changes

* |terate on builds in PR

» Caches prevent
unnecessary rebuilds

-

J

D

+ Verify PR build succeeded
* Review package code
* Merge to develop

U

(. : .)
Maintainers review PRs

J

* Moves bulk of binary maintenance upstream, onto PRs
— Production binaries never reuse binaries from untrusted environment

Rebuild and Sign

* Published binaries built
ONLY from approved
code

* Protected signing runners
* Ephemeral keys

Lawrence Livermore National Laboratory
LLNL-PRES-837654

0 github.com/spack/spack

NYSE

Our Cl system enables us to build entire software stacks within a
single pull request
Users can write a simple file and fire up 300+ builders to build thousands of packages

We’re currently handling 50,000 — 100,000 package builds per week

Pod count per Cl Ref -

i"%ﬁé‘r h"‘—\-l\.“-‘lm--d—'\&\-ruhhxh——.a-—- 'L«..L’pl— Jv-f"k'\—hl-lé.-hdt-\h.m € ‘LL\n-i) N M A\J\»,_ N\ . ﬁ&]u ‘.k 'l

04/18 12:00 . 04/1900:00 __ 04/1912:00 04/20 00:00 04/2012:00 _ 04/2100:00 04/21 12:00 04/2200:00 _ 04/2212:00 04/23 00:00 _ 04/2312:00 04/24 00:00 04/24 12:00 04/25 00:0C

pr37075_xm|rpc-W|th-curI-cI ient pr37076_feature_trinity-2.15.1 pr37077_dependabot_github_actions_codecov_codecov-action-3.1.3 pr37078_dependabot_github_actions_actions_setup-python-4.6.0

pr37079_win_insulate-pwsh-against-spaces pr37080_fix-r-gcc pr37081_fix-octopus-links pr37083_cudal2 pr37084_patch-112 pr37086_sm2939_py-joeynmt pr37087_packages_gdal pr37088_ci_reproducer_include_scopes
pr37089_add_xcrysden == pr37090_update_r pr37092_exago-petsc3.19.0 pr37093_docs_post-install-checks pr37094_develop pr37096_add_apktool-v2.7.0 pr37097_add_args-v6.4.6 pr37098_add_beast2-v2.6.7
pr37099_add_bracken-v2.8 pr37100_add_bubblewrap-v0.8.0 pr37101_add_codec2-v1.0.5 pr37102_add_cpp-argparse-v2.9 pr37103_add_fdupes-v2.2.1 pr37104_add_fio-v3.34 pr37105_add_gpgme-v1.20.0
pr37106_add_grep-v3.10 pr37107_add_highway-v1.0.4 pr37108_add_hohgmesh-v1.3.0 pr37109_add_lcov-v1.16 pr37110_add_libcap-ng-v0.8.3 pr37111_add_libconfig-v1.7.3 pr37112_add_libdap4-v3.20.6

pr37113_add_lis-v2.1.1 pr37114_add_maeparser-v1.3.1 pr37115_add_mrcpp-v1.4.2 pr37116_add_msmc2-v2.1.4 pr37117_add_opam-v2.1.3 pr37118_add_openal-soft-v1.23.1 pr37120_add_poke-v3.1

Lawrence Livermore National Laboratory O github_com/spack/spack NVYSE 4

LLNL-PRES-837654

We announced our public binary cache at 1SC22. (& EH aws
We’re maintaining ~4,600 builds in CI!

kitware

° All checks have passed
7 successful and 4 skipped checks

@ ci [bootstrap (pull_request) Skipped
@) ci [unit-tests (pull_request) Skipped

@ ci [windows (pull_request) Skipped

Easy for users!

/\ Still need HPC Cl,
but working on it

So, what else could go wrong?

Lawrence Livermore National Laboratory
LLNL-PRES-837654

Hide all checks

Details

Details

Easy (mostly) for contributors!

Details

Details

Details

latest v0.18.x release binaries
spack mirror add v018 https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add develop https://binaries.spack.io/develop

O github.com/spack/spack NYSE s

We are working with code teams to develop standard workflows
for layered build farms

We are working with the MARBL
team to move their development
environment to Spack

linl.wci.mapp
We have established a

build and deployment working | miranda
group among WSC codes MARBL Packages

We aim to put together an L2 milestone Common WSC

linl.wci

for next year to: packages
— Make a common build farm for WSC codes
— Layer with Spack’s public build farm Mainline Spack
— Gradually bring teams together around standard packages
build configurations and workflows builtin

Lawrence Livermore National Laboratory O g ithub.com/s paCk/S paCk N A‘S(‘:% 46

LLNL-PRES-837654

A Notional Secure Pipeline D pees

O Open Source Tarballs, other sources i::> &‘ |

Contributions =O- Git commits Verify

i (’ \
[il
. @ Qw2 &
g] vJd
Scan Build Sign Scan
AN
Ilmm Container
l Images
Spack has 6,500 packages, @ 4@ ﬂg‘
@ with many updates per day. C'o\nt;\er L Sign Verlfy

Build
* We need a standard set of guidelines that we accept for supply chain integrity
— Labs are trending towards GitLab, Spack for HPC
- Standard container formats can help with scanning
— Standard SBOM format could help sites cross-validate codes

= - * “Thorn Thymus” LDRD Strategic Initiative is working on new ways to recognize malware
E\(C\}P == — Could integrate this into our pipeline when it's ready

Spack retains more software
provenance than most SBOMs

= Specfor zlib is at left

— Contains much of the metadata SBOM asks
for

— Plus performance/build info of interest to
HPC folks

= Patch, archive, and package recipe hashes

allow you to verify the build
— These are currently not exposed
— We hash them and include the result
— Can easily replace the hash with specific
archive/patch hashes

= SBOM generation from this data is in

progress
— All Spack installs will have SBOMs to leverage
industry tooling

"spec": { .
"_meta: { Schema version
"version": 3
b
"nodes": [
R Package name
name": "zlib",
"version": "1.2.12", i
"arch: { Version
"platform": "darwin",
"platform_os": "bigsur",
"target": { .
"iag;e": "skylake" co-n]pl |el',
) target architecture

b
"compiler": {

"name": "apple-clang",
"version": "13.0.0"
b
"namespace": "builtin",
"parameters": {
"optimize": true,
"pic": true,

"shared": true,
"cflags": [],
"cppflags": [1,
"cxxflags": [],

"fflags": [],

"Idflags":],

"Idlibs": []

Origin package repo

Variants, build options, flags

h Hashes of archive, patches, build recipe
"hashes": {
"archive": "91844808532e5ce316b3c010929493c0244f3d37593afd6de04f71821d5136d9",
"patches": [
"0d38234384870bfd34dfcb738a9083952656f0c766a0f5990b1893076b084b76"

1
"package_hash": "6kkliqdv67ucuvfpfdwaacy5bz6s6end"
b
"hash": "zbntgjjnd2wgvvkfi55y45ms3p7wg5ns" .

) Hash of entire spec

1
}
}

Lawrence Livermore National Laboratory
LLNL-PRES-837654

O github.com/spack/spack

NS, s
Natinnat Nuclear Security Administration

Future directions we would like to pursue

= Build pipeline hardening / scanning
— Add scanning and assurance stages to our build pipeline

= Work with other projects to add assurance technologies
— OpenSSF project has automated checks that can be integrated with Cl pipelines
— LLNL Thorn Thymus project has scanning

= Package curation
— |dentify and label projects within Spack that meet security standards
— Curate a vetted sub-distribution of software
— Work with projects like E4S

= Certified system images (for embedded devices, HPC, cloud, containers, etc.)
— Configure and build a custom OS image with only selected components/options
— Spack currently supports software above libc, but not libc
— Contributors from the embedded community are working with us on this low-level support
* May be used to replace tools like Yocto, OpenWRT, Gentoo

Lawrence Livermore National Laboratory 0 g|thu b.com/s pack/s pack NAVS‘.-’_S% 49

LLNL-PRES-837654

Roadmap:
Separate concretization of build dependencies

spack install pkgl %intel

- We want to:
— Build build dependencies with the "easy"

compilers
— Build rest of DAG (the link/run dependencies)

with the fancy compiler

: . 2
- 2 approaches to modify concretization: |
1. Separate solves B L
« Solve run and link dependencies first
Solve for build dependencies separately
May restrict possible solutions (build <> G/

run env constraints)
2. Separate models

Allow a bigger space of packages in the solve “‘Easy” compiler
Solve all runtime environments together
May explode (even more) combinatorially O Fancy compiler

B: build L:link R:run

. . : \/ o
Latt{lipp%% é__gsgg:ore National Laboratory O glthu b.com/s paCk/S paCk M, M%% 50

Roadmap:
Compilers as dependencies

= Need separate concretization of build dependencies

to make this work 2~ compilerimposed

— Model compiler as build dep (not unified) dependency — !

— Runtimes as link deps (unified) 2 /

— Ensure compatibility between runtimes when using ‘y I / ®

multiple compilers together _
intel@16 I . / intel@17
= We need deeper modeling of compilers to handle R/ | /°

compiler interoperability gce@4.9.3 | /)

— libstdc++, libc++ compatibility "

— Compilers that depend on compilers I / gee@xxx

— Linking executables with multiple compilers vy

libstdc++
= Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fort_ran@1995, ete Compilers and runtime libs fully modeled
— Depend on openmp@4.5, other compiler features as dependencies
— Model languages, openmp, cuda, etc. as virtuals

Lawrence Livermore National Laboratory O g|thu b.com/s pack/s pack NVYSE s

LLNL-PRES-837654

When would we go to “Version 1.0”?

Big things we've wanted for 1.0 are:
— New concretizer
— production CI
— production public build cache
— Compilers as dependencies
— Stable package API
e Enables separate package repository

Done!

We are still working on the last 3 here, but getting much closer!

=
ECP ===

Join the Spack community!

= There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

= Talk to us!
— You’re already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

* Star us on GitHub!
github.com/spack/spack

Follow us on Twitter!
@spackpm

We hope to make distributing & using HPC software easy!

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Slide Number 1
	Slide Number 2
	ECP’s E4S stack is even larger than these codes
	Some fairly common (but questionable) assumptions�made by package managers (conda, pip, apt, etc.)
	High Performance Computing (HPC) �violates many of these assumptions
	What about containers?
	Spack enables Software distribution for HPC
	What’s a package manager?
	Slide Number 9
	Spack sustains the HPC software ecosystem�with the help of many contributors
	Spack is critical for ECP’s mission to create a �robust, capable exascale software ecosystem.
	One month of Spack development is pretty busy!
	Spack’s widespread adoption has drawn�contributions and collaborations with many vendors
	Spack v0.20.0 was released at ISC23!
	Spack is not the only tool that automates builds
	Slide Number 16
	Spack provides a spec syntax to describe customized package configurations
	Spack packages are parameterized using the spec syntax�Python DSL defines many ways to build
	Conditional variants simplify packages
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	An isolated compilation environment allows Spack �to easily swap compilers
	Slide Number 25
	Spack package repositories allow stacks to be layered
	Slide Number 27
	The concretizer includes information from�packages, configuration, and CLI
	We use logic programming to simplify package solving
	--fresh only reuses builds if hashes match
	--reuse (now the default) is more aggressive
	Telling the solver to minimize builds is surprisingly simple in ASP
	With and without --reuse optimization
	Slide Number 34
	Spack environments enable users to build customized stacks from an abstract description
	Environments have enabled us to add build many features to support developer workflows
	Spack environments are the foundation of Spack CI
	The Spack project enables communities to build their own software stacks
	Large-scale collaboration enables us to support �many downstream consumers
	Spack relies on cloud CI to ensure that builds continue working
	We have greatly simplified the process of creating a stack
	Spack CI Architecture
	We ensure rapid turnaround and protect against malicious binaries �by bifurcating our pipeline
	Our CI system enables us to build entire software stacks within a single pull request
	We announced our public binary cache at ISC22.�We’re maintaining ~4,600 builds in CI!
	We are working with code teams to develop standard workflows for layered build farms
	A Notional Secure Pipeline
	Spack retains more software�provenance than most SBOMs
	Future directions we would like to pursue
	Roadmap:�Separate concretization of build dependencies
	Roadmap:�Compilers as dependencies
	When would we go to “Version 1.0”?
	Slide Number 53
	Slide Number 54

