
LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

spack.io

Spack: Package management for HPC
ATPESC 2023

St Charles, Illinois
August 4, 2023

LLNL-PRES-806064
2Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Modern scientific codes rely on icebergs of dependency libraries
71 packages

188 dependencies
LBANN: Neural Nets for HPCMFEM:

Higher-order finite elements
31 packages,

69 dependencies

r-condop:
R Genome Data Analysis Tools

179 packages,
527 dependencies

LLNL-PRES-806064
3Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

ECP’s E4S stack is even larger than these codes

— Red boxes are the packages in it (about 100)
— Blue boxes are what else you need to build it (about 600)
— It’s infeasible to build and integrate all of this manually

LLNL-PRES-806064
4Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

 Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

 Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

LLNL-PRES-806064
5Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Code is typically distributed as source
— With exception of vendor libraries, compilers

 Often build many variants of the same package
— Developers’ builds may be very different
— Many first-time builds when machines are new

 Code is optimized for the processor and GPU
— Must make effective use of the hardware
— Can make 10-100x perf difference

 Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

 Multi-language
— C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National Lab
Power9 / NVIDIA

Summit

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA

NERSC-9Perlmutter

Oak Ridge National Lab
AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

LLNL-PRES-806064
6Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Containers provide a great way to reproduce and distribute an
already-built software stack

 Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

 Using the OS package manager inside a container is insufficient
— Most binaries are built unoptimized
— Generic binaries, not optimized for specific architectures

 HPC containers may need to be rebuilt to support many
different hosts, anyway.
— Not clear that we can ever build one container for all facilities
— Containers likely won’t solve the N-platforms problem in HPC

What about containers?

We need something more flexible to build the containers

LLNL-PRES-806064
7Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

LLNL-PRES-806064
8Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

What’s a package manager?

 Spack is a package manager
— Does not a replace Cmake/Autotools
— Packages built by Spack can have any

build system they want

 Spack manages dependencies
— Drives package-level build systems
— Ensures consistent builds

 Determining magic configure lines
takes time
— Spack is a cache of recipes

• Manages package installation
• Manages dependency relationships
• May drive package-level build systems

Package
Manager

• Cmake, Autotools
• Handle library abstractions
• Generate Makefiles, etc.

High Level
Build

System

• Make, Ninja
• Handles dependencies among

commands in a single build

Low Level
Build

System

LLNL-PRES-806064
9Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Who can use Spack?

LLNL-PRES-806064
10Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack sustains the HPC software ecosystem
with the help of many contributors

Over 6,900 software packages
Over 1,100 contributors

Most package contributions are not from DOE
But they help sustain the DOE ecosystem!

LLNL-PRES-806064
11Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Spack will be used to build software for the three upcoming
U.S. exascale systems

 ECP has built the Extreme Scale Scientific Software Stack (E4S)
with Spack – more at https://e4s.io

 Spack will be integral to upcoming ECP testing efforts.

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

https://e4s.io

Spack is the most depended-upon
project in ECP

https://e4s.io/

LLNL-PRES-806064
12Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

One month of Spack development is pretty busy!

LLNL-PRES-806064
13Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack’s widespread adoption has drawn
contributions and collaborations with many vendors

 AWS invests significantly in cloud credits for Spack build farm
— Joint Spack tutorial with AWS had 125+ participants
— Joint AWS/AHUG Spack Hackathon drew 60+ participants

 AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others
— ROCm, HIP, aocc packages are all in Spack now

 HPE/Cray is doing internal CI for Spack packages, in the Cray environment

 Intel contributing OneApi support and licenses for our build farm

 NVIDIA contributing NVHPC compiler support and other features

 Fujitsu and RIKEN have contributed a huge number of packages for
ARM/a64fx support on Fugaku

 ARM and Linaro members contributing ARM support
— 400+ pull requests for ARM support from various companies

LLNL-PRES-806064
14Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Major new features:
1. requires() directive, enhanced package requirements
2. Exact versions with @=
3. New testing interface
4. More stable concretization
5. Weekly develop snapshot releases
6. Specs in buildcaches can be referenced by hash
7. New package and buildcache index websites
8. Default CMake and Meson build types are now Release

Spack v0.20.0 was released at ISC23!

github.com/spack/spack
Full release notes:
https://github.com/spack/spack/releases/tag/v0.20.0

LLNL-PRES-806064
15Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

1. “Functional” Package Managers
— Nix https://nixos.org/
— Guix https://www.gnu.org/s/guix/

2. Build-from-source Package Managers
— Homebrew, LinuxBrew http://brew.sh
— MacPorts https://www.macports.org
— Gentoo https://gentoo.org

Other tools in the HPC Space:

 Easybuild http://hpcugent.github.io/easybuild/
— An installation tool for HPC
— Focused on HPC system administrators – different package model from Spack
— Relies on a fixed software stack – harder to tweak recipes for experimentation

 Conda / Mamba https://conda.io
— Very popular binary package ecosystem for data science
— Not targeted at HPC; generally has unoptimized binaries

Spack is not the only tool that automates builds

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

LLNL-PRES-806064
16Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

 Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

 Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Most existing tools do not support combinatorial versioning

LLNL-PRES-806064
17Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

 Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized package
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

LLNL-PRES-806064
18Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack packages are parameterized using the spec syntax
Python DSL defines many ways to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.One package.py file per software project!

LLNL-PRES-806064
19Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Conditional variants simplify packages

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressive power in the Spack package DSL.

LLNL-PRES-806064
20Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

 Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

Spack Specs can constrain versions of dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

LLNL-PRES-806064
21Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack handles ABI-incompatible, versioned interfaces like MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

 mpi is a virtual dependency

 Install the same package built with two different MPI implementations:

 Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

LLNL-PRES-806064
22Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

Abstract, normalized spec
with some dependencies.

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
23Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

opt
└── spack
├── darwin-mojave-skylake
│ └── clang-10.0.0-apple
│ ├── bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
│ ├── python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
│ ├── sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
│ ├── xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
│ └── zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
├── darwin-mojave-x86_64
│ └── clang-10.0.0-apple
│ └── coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

 Each unique dependency graph is a
unique configuration.

 Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

 Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

 Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Hashing allows us to handle combinatorial complexity

Installation Layout

Dependency DAG

opt
└── spack
├── darwin-mojave-skylake
│ └── clang-10.0.0-apple
│ ├── bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
│ ├── python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
│ ├── sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
│ ├── xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
│ └── zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
├── darwin-mojave-x86_64
│ └── clang-10.0.0-apple
│ └── coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

Hash

LLNL-PRES-806064
24Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

An isolated compilation environment allows Spack
to easily swap compilers

Spack
Process

Set up environment

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked build process isolates environment for each build.
Uses compiler wrappers to:

— Add include, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

LLNL-PRES-806064
25Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

packages:
mpi:

buildable: False
paths:

openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0

openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

...

We can configure Spack to build with external software

/path/to/external/gcc/openmpi-2.0.0

packages.yaml

Users register external packages in a
configuration file (more on these later). Spack prunes the DAG when adding external packages.

mpileaks ^callpath@1.0+debug
^openmpi ^libelf@0.8.11

LLNL-PRES-806064
26Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack package repositories allow stacks to be layered

llnl.wci.mapp

llnl.wci

builtin

marbl

miranda

leos

boost raja axom

blast

Common internal
packages

MARBL Application Packages

Open Source Spack
packages

$ spack repo create /path/to/my_repo
$ spack repo add my_repo
$ spack repo list
==> 2 package repositories.
my_repo /path/to/my_repo
builtin spack/var/spack/repos/builtin

LLNL MARBL multi-physics
application

LLNL-PRES-806064
27Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack mirrors

 Spack allows you to define mirrors:
 Directories in the filesystem
 On a web server
 In an S3 bucket

 Mirrors are archives of fetched tarballs,
repositories, and other resources needed to build
 Can also contain binary packages

 By default, Spack maintains a mirror in
var/spack/cache of everything you’ve fetched so far.

 You can host mirrors internal to your site
 See the documentation for more details

Spack
users

Local cache

Shared FS

S3 Bucket

Original source
on internet

LLNL-PRES-806064
28Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

The concretizer includes information from
packages, configuration, and CLI

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

Dependency solving
is NP-hard

LLNL-PRES-806064
29Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 New concretizer leverages Clingo (see potassco.org)

 Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness
— ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config
2. Small logic program (~800 lines)

– includes constraints and optimization criteria

 New algorithm on the Spack side is conceptually simpler:
— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly
— Build a DAG from the results

 New concretizer solves many specs that old concretizer can’t
— Backtracking is a huge win – many issues resolved
— Conditional logic that was complicated before is now much easier

We use logic programming to simplify package solving

Some facts for the HDF5 package

LLNL-PRES-806064
30Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 Hash matches are very
sensitive to small changes

 In many cases, a satisfying
cached or already installed
spec can be missed

 Nix, Spack, Guix, Conan,
and others reuse this way

--fresh only reuses builds if hashes match

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

LLNL-PRES-806064
31Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

--reuse (now the default) is more aggressive

• --reuse tells the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

LLNL-PRES-806064
32Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Telling the solver to minimize builds is
surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

LLNL-PRES-806064
33Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

With and without --reuse optimization

Pure hash-based reuse: all misses With reuse: 16 packages were reusable

LLNL-PRES-806064
34Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Use `spack spec` to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64

^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64

^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064
35Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 spack.yaml describes project requirements

 spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

 Can be used to maintain configuration of a software stack.
— Can easily version an environment in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

spack.yaml file
describes

requirements

spack.lock describes
exact versions installed

Pacakge installations

Concrete spack.lock file (generated)

Concretize Install

LLNL-PRES-806064
36Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Environments have enabled us to add build many features to
support developer workflows

Automatically find and configure external packages on the system

spack.yaml configurationpackage.py

spack external find

spack containerize
Turn environments into container build recipes

spack.yaml

.gitlab-ci.yml CI pipeline

Automatically generate parallel build pipelines
(more on this later)

spack ci

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test
Packages know how to run their own test suites

package.py

LLNL-PRES-806064
37Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 spack ci enables any environment to be turned
into a build pipeline

 Pipeline generates a .gitlab-ci.yml file from
spack.lock

 Pipelines can be used just to build, or to
generate relocatable binary packages
— Binary packages can be used to keep the same

build from running twice

 Same repository used for spack.yaml can
generate pipelines for project

Spack environments are the foundation of Spack CI

spack.yaml
Parallel GitLab build pipeline

LLNL-PRES-806064
38Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

The Spack project enables communities to build their own
software stacks

Spack Community 💁💁💁♂�💁💁� ♀�� ♂� ♂💁💁💁♀� ♂� ♀�� ♀� ♂�� ♀

� ♂

Core tool (CLI + Solver)

Package Recipes

xSDKLLNL
stackE4S

Vis
SDK . . .

CI Infrastructure

Lots of
Software
Stacks!

AppAWS

Large-scale collaboration enables us to support
many downstream consumers Facilities

Spack develop branch
• Bleeding edge: 400-600 changes/month
• Latest features and package versions

Spack release branches
• Stable spack
• Stable package versions
• Bugfixes backported

Applications
• Consume software from any of

these channels, via Spack
• Use bleeding edge or stable

Software Integration at HPC Facilities
• Local builds and testing
• Local configuration
• Local filesystem installation
• Local module scheme

E4S release branches
• Facility testing
• Curated public build caches (manually created)

External
Contributors
on GitHub

We want to move last-mile effort upstream
and eventually deploy from binaries

40
LLNL-PRES-837654

github.com/spack/spack

Spack relies on cloud CI to ensure that builds continue working

spack ci

Spack Contributions
on GitHub
(over 1,000 contributors)

spack.yaml
configurations

(E4S, SDKs, AWS,
others)

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch

x86_64 and aarch64
pipelines in AWS

ppc64le, GPU
pipelines at UO
(Frank machine)

HPE/Cray pipelines

41
LLNL-PRES-837654

github.com/spack/spack

▪ Lists of packages aimed at communities
— E4S HPC distribution

• Power, macOS, OneAPI versions
— Various ML stacks

• CPU
• CUDA
• ROCm

— LLNL-specific stacks
— AWS user stacks

▪ Easy to build same stack many different
ways using versatile recipes

▪ No more boilerplate!

We have greatly simplified the
process of creating a stack

List of packages

Config parameters

42
LLNL-PRES-837654

github.com/spack/spack

CloudFrontS3

(EKS)

Spack CI Architecture

Monitoring
HA GitLab

spackbot
Bare metal runners
on “Frank” cluster

MI200

Power9

NVIDIA

a64fx etc.

etc.

etc.

Runner
PoolsRunner

PoolsRunner
PoolsRunner

Pools

Spack
on GitHub

Real HPC test
environments?

43
LLNL-PRES-837654

github.com/spack/spack

https://binaries.spack.io

Public, signed binaries in CDN

We ensure rapid turnaround and protect against malicious binaries
by bifurcating our pipeline

• Moves bulk of binary maintenance upstream, onto PRs
– Production binaries never reuse binaries from untrusted environment

develop releases/v0.18 …

Internal per-PR build caches

Untrusted S3 buckets

github/pr-28469 …

Contributors submit
package changes
• Iterate on builds in PR
• Caches prevent

unnecessary rebuilds

Maintainers review PRs
• Verify PR build succeeded
• Review package code
• Merge to develop

Rebuild and Sign
• Published binaries built

ONLY from approved
code

• Protected signing runners
• Ephemeral keys

github/pr-28468

44
LLNL-PRES-837654

github.com/spack/spack

Our CI system enables us to build entire software stacks within a
single pull request

▪ Users can write a simple file and fire up 300+ builders to build thousands of packages

▪ We’re currently handling 50,000 – 100,000 package builds per week

45
LLNL-PRES-837654

github.com/spack/spack

We announced our public binary cache at ISC22.
We’re maintaining ~4,600 builds in CI!

latest v0.18.x release binaries
spack mirror add v018 https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add develop https://binaries.spack.io/develop

So, what else could go wrong?

✅ Easy (mostly) for contributors!

✅ Easy for users!

⚠ Still need HPC CI,
but working on it

46
LLNL-PRES-837654

github.com/spack/spack

▪ We are working with the MARBL
team to move their development
environment to Spack

▪ We have established a
build and deployment working
group among WSC codes

▪ We aim to put together an L2 milestone
for next year to:

— Make a common build farm for WSC codes
— Layer with Spack’s public build farm
— Gradually bring teams together around standard

build configurations and workflows

We are working with code teams to develop standard workflows
for layered build farms

llnl.wci.mapp

llnl.wci

builtin

marbl

miranda

leos

boost raja axom

blast

Common WSC
packages

MARBL Packages

Mainline Spack
packages

47

Open Source
Contributions

A Notional Secure Pipeline

• We need a standard set of guidelines that we accept for supply chain integrity
– Labs are trending towards GitLab, Spack for HPC
– Standard container formats can help with scanning
– Standard SBOM format could help sites cross-validate codes

• “Thorn Thymus” LDRD Strategic Initiative is working on new ways to recognize malware
– Could integrate this into our pipeline when it’s ready

Tarballs, other sources

Git commits

Binary
Packages

Sign

Verify

Deploy

Container
Build

Container
Images

Build

VerifySign

Scan Scan

Spack has 6,500 packages,
with many updates per day.

48
LLNL-PRES-837654

github.com/spack/spack

▪ Spec for zlib is at left
— Contains much of the metadata SBOM asks

for
— Plus performance/build info of interest to

HPC folks

▪ Patch, archive, and package recipe hashes
allow you to verify the build

— These are currently not exposed
— We hash them and include the result
— Can easily replace the hash with specific

archive/patch hashes

▪ SBOM generation from this data is in
progress

— All Spack installs will have SBOMs to leverage
industry tooling

Spack retains more software
provenance than most SBOMs

{
"spec": {

"_meta": {
"version": 3

},
"nodes": [

{
"name": "zlib",
"version": "1.2.12",
"arch": {

"platform": "darwin",
"platform_os": "bigsur",
"target": {
"name": "skylake"

}
},
"compiler": {

"name": "apple-clang",
"version": "13.0.0"

},
"namespace": "builtin",
"parameters": {

"optimize": true,
"pic": true,
"shared": true,
"cflags": [],
"cppflags": [],
"cxxflags": [],
"fflags": [],
"ldflags": [],
"ldlibs": []

},
"hashes": {

"archive": "91844808532e5ce316b3c010929493c0244f3d37593afd6de04f71821d5136d9",
"patches": [
"0d38234384870bfd34dfcb738a9083952656f0c766a0f5990b1893076b084b76"

],
"package_hash": "6kkliqdv67ucuvfpfdwaacy5bz6s6en4"

},
"hash": "zbntgjjnd2wgvvkfi55y45ms3p7wg5ns"

}
]

}
}

Hashes of archive, patches, build recipe

Hash of entire spec

Variants, build options, flags

Origin package repo

Compiler,
target architecture

Version

Package name

Schema version

49
LLNL-PRES-837654

github.com/spack/spack

▪ Build pipeline hardening / scanning
— Add scanning and assurance stages to our build pipeline

▪ Work with other projects to add assurance technologies
— OpenSSF project has automated checks that can be integrated with CI pipelines
— LLNL Thorn Thymus project has scanning

▪ Package curation
— Identify and label projects within Spack that meet security standards
— Curate a vetted sub-distribution of software
— Work with projects like E4S

▪ Certified system images (for embedded devices, HPC, cloud, containers, etc.)
— Configure and build a custom OS image with only selected components/options
— Spack currently supports software above libc, but not libc
— Contributors from the embedded community are working with us on this low-level support

• May be used to replace tools like Yocto, OpenWRT, Gentoo

Future directions we would like to pursue

50
LLNL-PRES-837654

github.com/spack/spack

Roadmap:
Separate concretization of build dependencies

▪ We want to:
— Build build dependencies with the "easy"

compilers
— Build rest of DAG (the link/run dependencies)

with the fancy compiler

▪ 2 approaches to modify concretization:
1. Separate solves

• Solve run and link dependencies first
• Solve for build dependencies separately
• May restrict possible solutions (build 

run env constraints)
2. Separate models

• Allow a bigger space of packages in the solve
• Solve all runtime environments together
• May explode (even more) combinatorially

1

2 5

3 4

B

B

76

L

8

R

BL

B: build L: link R: run

spack install pkg1 %intel

“Easy” compiler

Fancy compiler

1

2 5

3 4

B

B

76

L

8

R

BL

L
B

R

51
LLNL-PRES-837654

github.com/spack/spack

▪ Need separate concretization of build dependencies
to make this work

— Model compiler as build dep (not unified)
— Runtimes as link deps (unified)
— Ensure compatibility between runtimes when using

multiple compilers together

▪ We need deeper modeling of compilers to handle
compiler interoperability

— libstdc++, libc++ compatibility
— Compilers that depend on compilers
— Linking executables with multiple compilers

▪ Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc
— Depend on openmp@4.5, other compiler features
— Model languages, openmp, cuda, etc. as virtuals

Roadmap:
Compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Compiler-imposed
dependency

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

52

Big things we’ve wanted for 1.0 are:
– New concretizer
– production CI
– production public build cache
– Compilers as dependencies
– Stable package API

•Enables separate package repository

We are still working on the last 3 here, but getting much closer!

When would we go to “Version 1.0”?

Done!

LLNL-PRES-806064
53Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

 There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

 Talk to us!
— You’re already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

Join the Spack community!

@spackpm

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub! Follow us on Twitter!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Slide Number 1
	Slide Number 2
	ECP’s E4S stack is even larger than these codes
	Some fairly common (but questionable) assumptions�made by package managers (conda, pip, apt, etc.)
	High Performance Computing (HPC) �violates many of these assumptions
	What about containers?
	Spack enables Software distribution for HPC
	What’s a package manager?
	Slide Number 9
	Spack sustains the HPC software ecosystem�with the help of many contributors
	Spack is critical for ECP’s mission to create a �robust, capable exascale software ecosystem.
	One month of Spack development is pretty busy!
	Spack’s widespread adoption has drawn�contributions and collaborations with many vendors
	Spack v0.20.0 was released at ISC23!
	Spack is not the only tool that automates builds
	Slide Number 16
	Spack provides a spec syntax to describe customized package configurations
	Spack packages are parameterized using the spec syntax�Python DSL defines many ways to build
	Conditional variants simplify packages
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	An isolated compilation environment allows Spack �to easily swap compilers
	Slide Number 25
	Spack package repositories allow stacks to be layered
	Slide Number 27
	The concretizer includes information from�packages, configuration, and CLI
	We use logic programming to simplify package solving
	--fresh only reuses builds if hashes match
	--reuse (now the default) is more aggressive
	Telling the solver to minimize builds is surprisingly simple in ASP
	With and without --reuse optimization
	Slide Number 34
	Spack environments enable users to build customized stacks from an abstract description
	Environments have enabled us to add build many features to support developer workflows
	Spack environments are the foundation of Spack CI
	The Spack project enables communities to build their own software stacks
	Large-scale collaboration enables us to support �many downstream consumers
	Spack relies on cloud CI to ensure that builds continue working
	We have greatly simplified the process of creating a stack
	Spack CI Architecture
	We ensure rapid turnaround and protect against malicious binaries �by bifurcating our pipeline
	Our CI system enables us to build entire software stacks within a single pull request
	We announced our public binary cache at ISC22.�We’re maintaining ~4,600 builds in CI!
	We are working with code teams to develop standard workflows for layered build farms
	A Notional Secure Pipeline
	Spack retains more software�provenance than most SBOMs
	Future directions we would like to pursue
	Roadmap:�Separate concretization of build dependencies
	Roadmap:�Compilers as dependencies
	When would we go to “Version 1.0”?
	Slide Number 53
	Slide Number 54

