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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 
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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility
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Look at the Running Example
Consider two versions of 
this code…
• One is a single file with 

monolithic code
• The other is 

modularized reusable 
maintainable code

• If we had only the first 
version, we would be 
refactoring to get to 
the second
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• Know why you are refactoring
– Is it necessary 
– Where should the code be after refactoring

Considerations for Refactoring

• In heat example version 1
– It is necessary because

• It is a monolithic code
• No reusability of any part of the code
• Devising tests is hard
• Limited extensibility

– Where do we want to be after refactoring
• Closer to the second version
• More modular, maintainable and extensible
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• Know the scope of refactoring
– How deep a change
– How much code will be affected

• In heat example
– No capability extension
– No performance consideration
– Cleaner, more maintainable code

Considerations for Refactoring

To modularize the monolithic code…
• Separate out utilities, generalize 

interfaces
• Put global definitions in a header file
• Create a general build function
• No new code or intrusive changes
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• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting
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existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
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• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there
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• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there

Incorporate testing overheads into refactoring cost estimates
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Exercise: Refactoring bssw-tutorial/hello-numerical-world

• I am taking the clean solution and generalizing the update_solution interface
– Motivation: Do not want to change heat.C for adding another method
– For this exercise we will use “ftcs” and “upwind15” as alternative options

https://github.com/bssw-tutorial/hello-numerical-world
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• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

• A dash indicates non-executable line
• A number indicated the times the line 

was called
• ##### indicates line wasn’t exercised

Preparing for Refactoring – check coverage
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Preparing for Refactoring – get baselines
• Call to upwind15 not exercised

• Run ./heat alg=“upwind15” runame=“upwind_results

• We have baselines for ftcs and upwind
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Refactoring – The starting code 

• Interfaces are not identical
• crankn has an extra argument
• It also has an extra step in initialization
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Refactoring 

• Generalize the interface

• Modify the makefile
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Refactoring 

• Generalize the interface

• Modify the makefile
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Refactoring 

• Generalize the interface

• Modify the makefile
• Add null implementations of 

initialize_crank in ftcs and 
upwind15
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Refactoring 
• make heat1
• Run ./heat runame=“ftcs_results”
• Make heat2
• Run ./heat runame=“upwind_results”
• Verify against baselines
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Proportionate to the scope

Map from Here to There: On ramp plan

Invasive large-scale 
change in the code -
Bad idea

All at once

Scattered independent 
changes - May be OK

All at once
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Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently
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Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently • One by one turn on 

more than one 
refactored module
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Map from Here to There: On ramp plan2
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Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module
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refactored 
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Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
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Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal
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Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal

• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the stakeholders
– That includes the users
– For both development time and disruption
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Steps in the Flash-X Refactoring : a mix of strategies
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Steps in the Flash-X Refactoring : a mix of strategies

Part of a 
simpler 
environment for 
refactoring and 
testing 
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Steps in the Process

built to 
resemble 
behavior 
expected by 
AMReX
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Steps in the Process

Refactored 
Grid interface 
made 
compatible 
with AMReX
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Steps in the Process

Bring back 
the real 
environment 
but turn off 
some 
features 
related to 
AMR
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Steps in the Process

Turn on all 
AMR 
features 
needed in 
the final 
stage
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Steps in the Process
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To Have a Good Outcome from Refactoring

1. Know why
2. Know how much
3. Know the cost
4. Plan
5. Have strong testing and verification
6. Get buy-in from stakeholders
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