
exascaleproject.org

See slide 2 for 
license details

Refactoring Scientific Software

Anshu Dubey (she/her)
Argonne National Laboratory

Software Productivity and Sustainability track @ Argonne Training 
Program on Extreme-Scale Computing summer school

Contributors: Anshu Dubey (ANL), Mark C. Miller (LLNL), David M. 
Rogers (ORNL), David E. Bernholdt (ORNL)



2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, Greg Becker, and Jared O’Neal, 

Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles, 
Illinois, 2023. DOI: 10.6084/m9.figshare.23823822.

• Individual modules may be cited as Speaker, Module Title, in Tutorial Title, …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), 

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the 
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department 
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National 
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S. 
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and 
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for 
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.23823822


3

Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 



4

Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility



5

START

REGRESSION/
UNIT TEST

FIX

REFACTOR PASS
YES

NO

An Example Workflow



6

START

REGRESSION/
UNIT TEST

FIX

REFACTOR DONEPASS
YES

YES

NO

NO

An Example Workflow



7

START INTEGRATION 
TEST

REGRESSION/
UNIT TEST

FIX

REFACTOR

PASS

DONEPASS
YES

YES YES

NO

NO

NO

An Example Workflow



8

START

SUCCESS

INTEGRATION 
TEST

REGRESSION/
UNIT TEST

FIX

REFACTOR

PASS

DONEPASS
YES

YES YES

NO

NO

NO

An Example Workflow



9

Look at the Running Example
Consider two versions of 
this code…
• One is a single file with 

monolithic code
• The other is 

modularized reusable 
maintainable code

• If we had only the first 
version, we would be 
refactoring to get to 
the second



10

• Know why you are refactoring
– Is it necessary 
– Where should the code be after refactoring

Considerations for Refactoring

• In heat example version 1
– It is necessary because

• It is a monolithic code
• No reusability of any part of the code
• Devising tests is hard
• Limited extensibility

– Where do we want to be after refactoring
• Closer to the second version
• More modular, maintainable and extensible



11

• Know the scope of refactoring
– How deep a change
– How much code will be affected

• In heat example
– No capability extension
– No performance consideration
– Cleaner, more maintainable code

Considerations for Refactoring

To modularize the monolithic code…
• Separate out utilities, generalize 

interfaces
• Put global definitions in a header file
• Create a general build function
• No new code or intrusive changes



12

• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting



13

• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there



14

• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there

Incorporate testing overheads into refactoring cost estimates



15

Exercise: Refactoring bssw-tutorial/hello-numerical-world

• I am taking the clean solution and generalizing the update_solution interface
– Motivation: Do not want to change heat.C for adding another method
– For this exercise we will use “ftcs” and “upwind15” as alternative options

https://github.com/bssw-tutorial/hello-numerical-world


16

• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

• A dash indicates non-executable line
• A number indicated the times the line 

was called
• ##### indicates line wasn’t exercised

Preparing for Refactoring – check coverage



17

Preparing for Refactoring – get baselines
• Call to upwind15 not exercised

• Run ./heat alg=“upwind15” runame=“upwind_results

• We have baselines for ftcs and upwind



18

Refactoring – The starting code 

• Interfaces are not identical
• crankn has an extra argument
• It also has an extra step in initialization



19

Refactoring 

• Generalize the interface

• Modify the makefile



20

Refactoring 

• Generalize the interface

• Modify the makefile



21

Refactoring 

• Generalize the interface

• Modify the makefile
• Add null implementations of 

initialize_crank in ftcs and 
upwind15



22

Refactoring 
• make heat1
• Run ./heat runame=“ftcs_results”
• Make heat2
• Run ./heat runame=“upwind_results”
• Verify against baselines



23

Proportionate to the scope

Map from Here to There: On ramp plan

Invasive large-scale 
change in the code -
Bad idea

All at once

Scattered independent 
changes - May be OK

All at once



24

Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently



25

Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently • One by one turn on 

more than one 
refactored module



26

Map from Here to There: On ramp plan2



27

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module



28

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment



29

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
module



30

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
module



31

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
module



32

Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal



33

Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal

• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the stakeholders
– That includes the users
– For both development time and disruption



34

Steps in the Flash-X Refactoring : a mix of strategies



35

Steps in the Flash-X Refactoring : a mix of strategies

Part of a 
simpler 
environment for 
refactoring and 
testing 



36

Steps in the Process

built to 
resemble 
behavior 
expected by 
AMReX



37

Steps in the Process

Refactored 
Grid interface 
made 
compatible 
with AMReX



38

Steps in the Process

Bring back 
the real 
environment 
but turn off 
some 
features 
related to 
AMR



39

Steps in the Process

Turn on all 
AMR 
features 
needed in 
the final 
stage



40

Steps in the Process



41

To Have a Good Outcome from Refactoring

1. Know why
2. Know how much
3. Know the cost
4. Plan
5. Have strong testing and verification
6. Get buy-in from stakeholders


	Refactoring Scientific Software
	License, Citation and Acknowledgements
	What is Refactoring �
	What is Refactoring �
	An Example Workflow
	An Example Workflow
	An Example Workflow
	An Example Workflow
	Look at the Running Example
	Considerations for Refactoring
	Considerations for Refactoring
	Before Starting
	Before Starting
	Before Starting
	Exercise: Refactoring bssw-tutorial/hello-numerical-world
	Preparing for Refactoring – check coverage
	Preparing for Refactoring – get baselines
	Refactoring – The starting code 
	Refactoring 
	Refactoring 
	Refactoring 
	Refactoring 
	Map from Here to There: On ramp plan
	Map from Here to There: On ramp plan1
	Map from Here to There: On ramp plan1
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	A Real-World Example: FLASH to Flash-X
	A Real-World Example: FLASH to Flash-X
	Steps in the Flash-X Refactoring : a mix of strategies
	Steps in the Flash-X Refactoring : a mix of strategies
	Steps in the Process
	Steps in the Process
	Steps in the Process
	Steps in the Process
	Steps in the Process
	To Have a Good Outcome from Refactoring

