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I wanted to be a science high school teacher
• Enrolled as an undergraduate at a college for teachers 

for the Chicago public school system
• My last semester in college my physics professor 

encouraged me to apply to a program to spend a 
semester at Argonne working with a scientist. 

(Deck hand)

Brian Smith Cleve Moler, U of New Mexico

Worked on a 
software project 
called EISPACK.

Many visitors 
from various 
universities.



Late 70’s - New Mexico Days
• Encouraged	to	pursue	PhD	by	many	visitors.
• Cleve	said	he	would	customize	a	degree	program	at	the	U	of	New	
Mexico	in	the	Math	Department.

• I	was	detailed	from	Argonne	to	work	at	Los	Alamos.
• Spent	one	semester	at	UNM@LANL,	then	2	semesters	on	the	UNM	
campus.

• Cleve	was	at	Stanford on	Sabbatical	during	my	last	year	at	UNM.
• The	plan	was	to	finish	my	courses	&	exams	and	then	join	Cleve	at	Stanford.

• On	to	Stanford	and	Serra	House.
• Then	back	to	ANL	and	to	finish	my	dissertation
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1970s HPC Systems

CDC	7600	36.4 MHz	(27.5 ns	clock	cycle)	 IBM	370/195 18.5	MHz	(54	ns	clock	cycle)

Both	systems	had	a	high	degree	of	instruction-level	pipelining	and	parallelism.

• Primary	memory	65	Kwords (60-bit	words)
• Seymour	Cray	design
• Peak	36	Mflop/s
• Broke	down	at	least	once/day	(often	four	or	five	times)

• High	degree	of	parallelism
• Up	to	7	operations	at	a	time	
• Up	to	4	MB	of	memory



Over the Past 50 Years Evolving SW and Alg
Tracking Hardware Developments

Features: Performance, Portability, and Accuracy 
EISPACK (1970’s) 
(Translation of Algol to F66)

Rely on
- Fortran, but row oriented

Level 1 Basic Linear Algebra Subprograms (BLAS) Standards for: Vector-Vector operations

LINPACK (1980’s)
(Vector operations)

Rely on 
- Level-1 BLAS operations
- Column oriented

Level 2 & 3 BLAS Standards for: Matrix-Vector & Matrix-Matrix operations

LAPACK (1990’s)
(Blocking, cache friendly)

Rely on 
- Level-3 BLAS operations

PVM and MPI Standards for: Message passing

ScaLAPACK (2000’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA / MAGMA (2010’s)
(Many-core friendly & GPUs)

Rely on 
- DAG/scheduler
- block data layout

PaRSEC Standards for: Scheduling

SLATE (2020’s)
(DM and Heterogeneous arch)

Rely on  C++
- Tasking DAG scheduling
- Tiling, but tiles can come from anywhere
- Heterogeneous HW, Batched dispatch

• EISPACK is a software library for numerical computation of eigenvalues and eigenvectors of matrices, 
• Written in FORTRAN. 
• Contains subroutines for calculating the eigenvalues of nine classes of matrices: 

• complex general, complex Hermitian, real general, real symmetric, real symmetric banded, 
• real symmetric tridiagonal, special real tridiagonal, generalized real, and 
• generalized real symmetric matrices. 

• The library drew heavily on Algol algorithms developed by Jim Wilkinson & colleagues. 
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My First Paper

• Reduces loop overhead
• Level of unrolling dedicated by the 

instruction stack size
• Help the compiler to:

• Facilitates pipelining
• Increases the concurrence 

between independent functional 
units

• Provided ~15% performance 
improvement 7



MCS Division c. 1983

Back row: Jim Boyle (w/picture of Larry Wos), John Gabriel, Ken Dritz, Joe Cook, Bob Veroff, Hans Kaper, Paul Messina,                        
Bernie Matkowsky, Jim Cody, James Lyness, Wayne Cowell, Burt Garbow, Ken Hillstrom, Brian Smith, LuAnn Phebus
Seated: JD, Rusty Lusk, Mike Minkoff, Gary Leaf, Jorge More’, Danny Sorensen, Bruce Char, Doris Pool, Judy Beumer

Originally called the Applied Mathematics Division until 1982

The group had a culture of friendship



Mathematics and Computer Science Division
in 1983

• Linear Algebra 
• EISPACK, LINPACK, BLAS

• Optimization
• MINPACK

• Special Functions
• FUNPACK

• Numerical Solution to PDEs
• Fluid Flow
• Sturm Liouville operators
• Bifurcation Phenomena

• Quadrature 
• IEEE Floating Point Arithmetic

• Theorem Proving
• Aura

• Symbolic Computation
• Parallel Programming 

Methodologies & Tools
• Monitors/macros

• Program Languages
• Program Development Aids and 

Automatic Transformations
• TAMPR

• Fortran Standards Committee

Building things that worked
Things like P4, PVM, MPI, MPICH where just a glimmer in our eyes at this stage.



Over the Past 50 Years Evolving SW and Alg
Tracking Hardware Developments

Features: Performance, Portability, and Accuracy 
EISPACK (1970’s) 
(Translation of Algol to F66)

Rely on
- Fortran, but row oriented

Level 1 Basic Linear Algebra Subprograms (BLAS) Standards for: Vector-Vector operations

LINPACK (1980’s)
(Vector operations)

Rely on 
- Level-1 BLAS operations
- Column oriented

Level 2 & 3 BLAS Standards for: Matrix-Vector & Matrix-Matrix operations

LAPACK (1990’s)
(Blocking, cache friendly)

Rely on 
- Level-3 BLAS operations

PVM and MPI Standards for: Message passing

ScaLAPACK (2000’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA / MAGMA (2010’s)
(Many-core friendly & GPUs)

Rely on 
- DAG/scheduler
- block data layout

PaRSEC Standards for: Scheduling

SLATE (2020’s)
(DM and Heterogeneous arch)

Rely on  C++
- Tasking DAG scheduling
- Tiling, but tiles can come from anywhere
- Heterogeneous HW, Batched dispatch



Argonne’s Parallel Menagerie 
Several radically different parallel architectures, 
from shared to distributed memory; from vector to 
dataflow to bit parallel processors

Thinking Machines CM-2, w/16,384 procs.
Active Memory Technology DAP-510, w/1024 procs.
BBN TC 2000 (Butterfly II), w/32 procs.
Cydrom Cydra 5, VLIW architecture
Denelcor HEP, w/4 PEMs
Intel iPSC/d5 hypercube w/32 procs.
Sequent Balance 21000, w/24 procs.
Encore Multimax, w/20 procs.
Intel iPSC/d4 hypercube, w/16 vector procs.
Alliant FX/8, w/8 vector procs.
Ardent Titan graphics supercomputer, w/4 vector procs.

Rusty Lusk and I were the Directors of the ARCF

1984 -1992
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An Accidental Benchmarker Appendix B of the Linpack Users’ Guide
Designed to help users estimate the  
run time for solving systems of equation 
using the Linpack software.

First benchmark report from 1977; 
Cray 1 to DEC PDP-10                                 

19791979

Top 23 List from 1977
Performance of solving Ax=b using LINPACK software

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD
We worked independently and came to Argonne in the 

summers



http://tiny.cc/hpcg 13
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Top500 Since 1993 
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Size

Ra
te

TPP performance

• Since 1978 I maintained a LINPACK 
Benchmark list.

• Hans Meuer and Erich Strohmaier had a 
list of fastest computers ranked by peak
performance.

• Listing of the 500 most powerful 
computers in the World.

• Yardstick: Performance for
Ax=b, dense problem

Maintained and updated twice a year:
SC‘xy in the States in November
Meeting in Germany in June



#1 Systems on the Top500 Over the Past 30 Years 
Top500  List            
(# of times) Computer

HPL rmax
(Tflop/s) Procs/Cores Matrix Size

Hours
To BM MW

6/93 (1) TMC CM-5/1024 (DOE LANL) .060 1,024 52,224 0.4

11/93 (1) Fujitsu Numerical Wind Tunnel (Nat. Aerospace Lab of Japan) .124 140 31,920 0.1 1.

6/94 (1) Intel XP/S140 (DOE SNL) .143 3,680 55,700 0.2

11/94–11/95 (3) Fujitsu Numerical Wind Tunnel (Nat. Aerospace Lab of Japan) .170 140 42,000 0.1 1.

6/96 (1) Hitachi SR2201/1024 (Univ. of Tokyo) .220 1,024 138,240 2.2

11/96 (1) Hitachi CP-PACS/2048 (Univ of Tsukuba) .368 2,048 103,680 0.6

6/97–6/00 (7) Intel ASCI Red (DOE SNL) 2.38 9,632 362,880 3.7 .85

11/00–11/01 (3) IBM ASCI White, SP Power3 375 MHz (DOE LLNL) 7.23 8,192 518,096 3.6

6/02–6/04 (5) NEC Earth-Simulator (JAMSTEC) 35.9 5,120 1,000,000 5.2 6.4

11/04–11/07 (7) IBM BlueGene/L (DOE LLNL) 478. 212,992 1,000,000 0.4 1.4

6/08–6/09 (3) IBM Roadrunner –PowerXCell 8i 3.2 Ghz (DOE LANL) 1,105. 129,600 2,329,599 2.1 2.3

11/09–6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz (DOE ORNL) 1,759. 224,162 5,474,272 17 6.9

11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA (NSC Tianjin) 2,566. 186,368 3,600,000 3.4 4.0

6/11–11/11 (2) Fujitsu K computer, SPARC64 VIIIfx (RIKEN) 10,510. 705,024 11,870,208 29 9.9

6/12 (1) IBM Sequoia BlueGene/Q (DOE LLNL) 16,324. 1,572,864 12,681,215 23 7.9

11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler (DOE ORNL) 17,590. 560,640 4,423,680 0.9 8.2

6/13–11/15 (6) NUDT Tianhe-2 Intel IvyBridge + Xeon Phi (NSCC Guangzhou) 33,862. 3,120,000 9,960,000 5.4 17.8

6/16–11/17 (4) Sunway TaihuLight System (NSCC Wuxi) 93,014. 10,549,600 12,288,000 3.7 15.4

6/18–11/19 (4) IBM Summit Power9 + Nvidia Volta (DOE ORNL) 148,600 2,414,592 16,473,600 3.3 10.1

6/20–11/22 (4) Fujitsu Fugaku ARM A64FX (RIKEN) 442,010 7,630,828 21,288,960 4.4 29.9

6/22 - ? (1) HPE Frontier AMD + AMD (DOE ORNL) 1,102,000 7,733,248 24,440,832 2.5 21.1

11

7

3

DOE
LANL: 2
SNL: 2
LLNL: 3
ORNL: 4
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Performance Development of HPC over the Last 30 
Years from the Top500

My Laptop: 426 Gflop/s

# 1 in 1993 - Thinking Machine CM-5 with 1024 Processors at 
Los Alamos Nat Lab used for nuclear weapons design



June 2023: The TOP 10 Systems (52% of the Total Performance of Top500) 

Rank     Site Computer Country Cores Rmax
[Pflops]

% of 
Peak

Power
[MW]

GFlops/
Watt

1 DOE / OS  
Oak Ridge Nat Lab

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C,          
2 GHz, AMD Instinct MI250X, Slingshot 10 USA 8,699,904 1,194 71 22.7 52.6

2 RIKEN Center for 
Computational Science

Fugaku, ARM A64FX (48C, 2.2 GHz),                           
Tofu D Interconnect Japan 7,299,072 442. 82 29.9 14.8

3 EuroHPC /CSC LUMI, HPE Cray EX235a, AMD 3rd EPYC 64C,             
2 GHz, AMD Instinct MI250X, Slingshot 10 Finland 1,268,736 304. 72 2.94 52.3

4 EuroHPC/CINECA
BullSequana XH2000, Xeon Platinum 8358 32C 

2.6GHz, NVIDIA A100 (108C), Quad-rail NVIDIA 
HDR100

Italy 1,824,768 239. 78 7.4 32.2

5 DOE / OS
Oak Ridge Nat Lab

Summit, IBM Power 9 (22C, 3.0 GHz),                  
NVIDIA GV100 (80C), Mellonox EDR USA 2,397,824 149. 74 10.1 14.7

6 DOE / NNSA
L Livermore Nat Lab

Sierra, IBM Power 9 (22C, 3.1 GHz),
NVIDIA GV100 (80C), Mellonox EDR USA 1,572,480 94.6 75 7.44 12.7

7 National Super Computer 
Center in Wuxi

Sunway TaihuLight, SW26010 (260C), Custom 
Interconnect China 10,649,000 93.0 74 15.4 6.05

8 DOE / OS 
NERSC - LBNL

Perlmutter HPE Cray EX235n,
AMD EPYC 64C 2.45GHz, NVIDIA A100, Slingshot 

10 
USA 706,304 64.6 71 2.59 27.4

9 NVIDIA Corporation Selene NVIDIA DGX A100, AMD EPYC 7742 (64C, 
2.25GHz), NVIDIA A100 (108C), Mellanox HDR USA 555,520 63.4 80 2.64 23.9

10 National Super Computer 
Center in Guangzhou

Tianhe-2A NUDT,  Xeon (12C) , MATRIX-2000
(128C) + Custom Interconnect China 4,981,760 61.4 61 18.5 3.32
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System Performance

• Peak performance of 2 
Eflop/s for modeling & 
simulation

• Power: 20+ MW
• Peak performance of 11.2 

Eflop/s for 16 bit floating 
point used in for data 
analytics, ML, and artificial 
intelligence 

Each node has

• 1-AMD EPYC 7A53 CPU w/64 
cores   (2 Tflop/s)

< 1% performance of the system
• 4-AMD Instinct MI250X GPUs 

Each w/220 cores (4*53 Tflop/s)
99% performance of the system

• 730 GB of fast memory
• 2 TB of NVMe memory

The system includes

• 9408 nodes
37,632 GPUs
8.88M Cores

• Cray Slingshot 
interconnect

• 4 end points per node
• 706 PB Memory

• (695 PB Disk + 11 PB 
SSD)

Current #1 System Overview
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System Performance

• Peak performance of 3.34 
Eflop/s for modeling & 
simulation @ 64 bit float pt

• At 1.6 GHz (nominal, may be 
lower)

• Facility Power capacity 60 MW
• Peak performance of 53.5 

Eflop/s for 16 bit floating 
point used in for data 
analytics, ML, and artificial 
intelligence 

Each node has

Ø 2 - Intel Sapphire Rapids CPU 
processors; w/52 cores  (5.3 
Tflop/s)

< 2% performance of the system
Ø 6 - Intel Xe Ponte Vecchio GPUs
Ø (6*52.4 Tflop/s = 314 Tflop/s)

98% performance of the system
• 896 GB of HBM memory;               

Plus 1.02 TB DDR5 on the CPUs

The system includes

• 10,624 nodes
63,744 GPUs
1.1M Cores

• Cray Slingshot 
interconnect

• 8 end points per node
• 10.9 PB DDR Memory 
• 9.52 PB HBM

• (230 PB Intel Optane)
• 230 PB of NVMe

memory total (DAOS 
servers)

System Overview (Based on public data)



PERFORMANCE DEVELOPMENT
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PROJECTED PERFORMANCE DEVELOPMENT
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52% of the Total Performance of the Top500 in theTop10 Systems



• Qingdao	Marine	Sunway	Pro	"OceanLight"	
(Shandong	Prov)
• Completed	March	2021,	1.3	EFlops Rpeak and	
1.05	EFlops Linpack

• ShenWei post-Alpha	CPU	ISA	architecture	with	
large	&	small	core	structure

• Est	96	cabinets	x	1024	SW39010	390-core	
35MW

• Science	on	this	machine	won	Gordon	Bell	Prize	in	
2021

• NSCC	Tianjin	Tianhe-3
• Dual-chip	FeiTeng ARM	and	Matrix	accelerator	
node	architecture

• Est	-1.7	EFlops Rpeak

Rumored 2 Exascale Systems in Chinese

China:	Top	producer	overall.
5	main	manufactures	of	HPC	in	China:	
Lenovo(168),	Inspur(43),	Sugon(23),	
NUDT(3),	 Huawei(2)	with	250	systems	total.

China 

7
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Performance and Benchmarking Evaluation Tools

¨ Linpack Benchmark - Longstanding benchmark started in 
1979
ØLots of positive features; easy to understand and run; shows trends

¨ However, much has changed since 1979
ØArithmetic was expensive then and today it is over-provisioned and 

inexpensive
¨ Linpack performance of computer systems is no longer 

strongly correlated to real application performance
ØLinpack benchmark based on dense matrix multiplication

¨ Designing a system for good Linpack performance can lead to 
design choices that are wrong for today’s applications



Today’s Top HPC Systems Used to do Simulations
• Climate
• Combustion
• Nuclear Reactors
• Catalysis
• Electric Grid
• Fusion
• Stockpile
• Supernovae
• Materials
• Digital Twins
• Accelerators
• …

• Usually 3-D PDE’s
• Sparse matrix computations, not dense



HPCG Results; The Other Benchmark
• High Performance Conjugate Gradients (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential computational 

and communication patterns that are prevalent in a variety of methods 
for discretization and numerical solution of PDEs 

• Patterns:
• Dense and sparse computations.
• Dense and sparse collectives.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

hpcg-benchmark.org With Piotr Luszczek and Mike Heroux



HPCG Top 10, June 2023
Rank Site Computer Cores

HPL 
Rmax

(Pflop/s)

TOP500 
Rank

HPCG 
(Pflop/s)

Fraction of 
Peak

1
RIKEN Center for 
Computational Science
Japan

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fujitsu 7,630,848 442 2 16.0 3.0%

2 DOE/SC/ORNL
USA

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C, 2 GHz, 
AMD Instinct MI250X, Slingshot 10 8,699,904 1,194 1 14.1 0.8%

3 EuroHPC/CSC
Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, 
AMD MI250X, Slingshot-11 2,220,288 309 3 3.41 0.8%

4 EuroHPC/CINECA
Italy

Leonardo, BullSequana XH2000, Xeon Platinum 8358 
32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 
NVIDIA HDR100 Infiniband

1,824,768 239 4 3.11 1.0%

5 DOE/SC/ORNL
USA

Summit, AC922, IBM POWER9 22C 3.7GHz, Dual-rail 
Mellanox FDR, NVIDIA Volta V100, IBM 2,414,592 149 5 2.93 1.5%

6 DOE/SC/LBNL
USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10 761,856 70.9 8 1.91 2.0%

7 DOE/NNSA/LLNL
USA

Sierra, S922LC, IBM POWER9 20C 3.1 GHz, Mellanox 
EDR, NVIDIA Volta V100, IBM 1,572,480 94.6 6 1.80 1.4%

8 NVIDIA
USA

Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 
GHz, Mellanox HDR, NVIDIA Ampere A100 555,520 63.5 9 1.62 2.0%

9
Forschungszentrum Juelich
(FZJ)
Germany

JUWELS Booster Module, Bull Sequana XH2000 , AMD 
EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, 
NVIDIA Ampere A100, Atos

449,280 44.1 12 1.28 1.8%

10 Saudi Aramco
Saudi Arabia

Dammam-7, Cray CS-Storm, Xeon Gold 6248 20C 
2.5GHz, InfiniBand HDR 100, NVIDIA Volta V100, HPE 672,520 22.4 20 0.88 1.6%

Think of a race car that has the potential of 250 KPH but only goes 2 KPH!



Recently we have seen AI & ML take off

• AI and ML have been around for a long time as 
research efforts.

• Why Now?
• Flood of available data (especially with the Internet)
• Increasing computational power
• Growing progress in available algorithms and theory 

developed by researchers.
• Increasing support from industries.



Deep Learning Needs Small Matrix Operations
Matrix Multiply is the time-consuming part.

Convolution Layers and Fully Connected Layers require matrix multiply

There are many GEMM’s of small matrices, perfectly parallel, can get by 
with 16-bit floating point

Convolution Step
In this case 3x3 GEMM

x1

x2

x3

x1 y1

y2

w11

w12

w13

w21

w22

w23

Fully Connected
Classification



Floating Point Representations

• *Not to scale
Range Accurac

y

IEEE FP 128 (Quad) ±10−4932 to
104932

2-113≃1x10-
34

IEEE FP64 (Double) ±10−308 to 10308 2-53≃1x10-
16

IEEE FP32 (Single) ±10−38 to 1038 2-24≃6x10-8

IEEE FP16 (Half) ±10−5 to 65504 2-11≃0.0005

Google BFloat16 ±10−38 to 1038 2-

8≃0.004

11 52

Sign bit Exponent bits Fraction bits (Mantissa)

8 23

5 10

8 7

3
1

15 112

Seeing cloud vendors now designing their own processors: 
Google TPU, AWS Graviton, Apple M1

NVIDIA’s newest Hopper

Hopper FP8 Precisions – 2x throughput 



WHY MIXED PRECISION? (Less is Faster)
• There are many reasons to consider mixed precision in our 

algorithms… 
§ Less Communication

• Reduce memory traffic
• Reduce network traffic

§ Reduce memory footprint
§ More Flop per second 

• Reduced energy consumption
• Reduced time to compute

§ Accelerated hardware in current architecture.
§ Suitable numerical properties for some algorithms & problems.



Can We Take Advantage of the Hardware?
Basically, There are Three Approaches with Mixed Precision

1. Use a mathematical technique
§ Get an approximation in lower precision then use 
something like Newton’s method to enhance 
accuracy.

2. Transfer less bytes, data transfer is expensive
§ Store data in primary storage in full precision.
§ Transfer the data in short precision.

• Could also use data compression techniques
§ Compute using full precision.

3. Use a combination of 1. & 2.



HPL-MxP Top 10 for June 2023
Rank Site Computer Cores HPL Rmax

(Eflop/s)
TOP500 

Rank
HPL-MxP
(Eflop/s) Speedup

1
DOE/SC/ORNL
USA

Frontier, HPE Cray EX235a, AMD Zen-3 (Milan) 
64C 2GHz, AMD MI250X, Slingshot-10 8,699,904 1.194 1 9.95 8.3

2 EuroHPC/CSC
Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 
2GHz, AMD MI250X, Slingshot-11 2,220,288 0.309 3 3.41 11

3
RIKEN Center for 
Computational Science, 
Japan

Fugaku, Fujitsu A64FX, Tofu D
7,630,848 0.442 2 2.0 4.5

4 EuroHPC/CINECA
Italy

Leonardo, BullSequana XH2000, Xeon Platinum 8358 
32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 
NVIDIA HDR100 Infiniband

1,824,768 0.239 4 3.11 13

5 DOE/SC/ORNL
USA

Summit, AC922 IBM POWER9, IB Dual-rail FDR, 
NVIDIA V100 2,414,592 0.149 5 1.4 9.5

6 NVIDIA
USA

Selene, DGX SuperPOD, AMD EPYC 7742 64C 
2.25 GHz, Mellanox HDR, NVIDIA A100 555,520 0.063 9 0.63 9.9

7
DOE/SC/LBNL/NERSC
USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 
64C 2.45 GHz, Slingshot-10, NVIDIA A100 761,856 0.071 8 0.59 8.3

8
Forschungszentrum
Juelich (FZJ)
Germany

JUWELS Booster Module, Bull Sequana XH2000 , 
AMD EPYC 7402 24C 2.8GHz, Mellanox HDR 
InfiniBand, NVIDIA A100, Atos

449,280 0.044 13 0.47 10

9
University of Florida
USA

HiPerGator, NVIDIA DGX A100, AMD EPYC 7742 
64C 2.25GHz, NVIDIA A100, Infiniband HDR 138,880 0.017 40 0.17 9.9

10 SberCloud
Russia

Christofari Neo, NVIDIA DGX A100, AMD EPYC 
7742 64C 2.25GHz, NVIDIA A100 80GB, Infiniband 98,208 0.012 55 0.12 10.3



The Take Away

• HPC Hardware is Constantly Changing
• Scalar
• Vector
• Distributed
• Accelerated
• Mixed precision

• Three computer revolutions
• High performance computing
• Deep learning
• Edge & AI

• Algorithm / Software advances follows hardware.
• And there is “plenty of room at the top”

“There’s plenty of room at the Top: What will drive computer 
performance after Moore’s law?”

Feynman’s 1959 
Lecture @ CalTech


