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| wanted to be a science high school teacher‘

* Enrolled as an undergraduate at a college for teachers
for the Chicago public school system

* My last semester in college my physics professor
encouraged me to apply to a program to spend a
semester at Argonne working with a scientist.

Worked on a
software project
called EISPACK.

Many visitors
from various
universities.

Brian Smith Cleve Moler, U of New Mexico

CHICAGO STATE UNIVERSITY



Late 70’s - New Mexico Days

Encouraged to pursue PhD by many visitors.

Cleve said he would customize a degree program at the U of New
Mexico in the Math Department.

[ was detailed from Argonne to work at Los Alamos.

Spent one semester at UNM@LANL, then 2 semesters on the UNM
campus.

Cleve was at Stanford on Sabbatical during my last year at UNM.
* The plan was to finish my courses & exams and then join Cleve at Stanford.

On to Stanford and Serra House.
Then back to ANL and to finish my dissertation




1970s HPC Systems

CDC 7600 36.4 MHz (27.5 ns clock cycle) IBM 370/195 18.5 MHz (54 ns clock cycle)

* Primary memory 65 Kwords (60-bit words) * High degree of parallelism
* Seymour Cray design * Upto 7 operations at a time
* Peak 36 Mflop/s * Up to 4 MB of memory

Broke down at least once/day (often four or five times)
Both systems had a high degree of instruction-level pipelining and parallelism.



e Over the Past 50 Years Evolving SW and Alg

Tracking Hardware Developments

Features: Performance, Portability, and Accuracy

EISPACK (1970's) g Rely on .
(Translation of Algol to F66) s - Fortran, but row oriented

EISPACK is a software library for numerical computation of eigenvalues and eigenvectors of matrices,
*  Woritten in FORTRAN.

Contains subroutines for calculating the eigenvalues of nine classes of matrices:

« complex general, complex Hermitian, real general, real symmetric, real symmetric banded,
real symmetric tridiagonal, special real tridiagonal, generalized real, and v
« generalized real symmetric matrices. jee

The library drew heavily on Algol algorithms developed by Jim Wilkinson & colleagues. = ke
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o Over the Past 50 Years Evolving SW and Alg
Tracking Hardware Developments

Features: Performance, Portability, and Accuracy

EISPACK (1970's) g Rely on .
(Translation of Algol to F66) ~ = eI, 5 ey Gt e
Level 1 Basic Linear Algebra Subprograms (BLAS) ™ I ii i _I Standards for: Vector-Vector operations

« EISPACK is a software library for numerical computation of eigenvalues and eigenvectors of matrices,
*  Woritten in FORTRAN.
« Contains subroutines for calculating the eigenvalues of nine classes of matrices:
« complex general, complex Hermitian, real general, real symmetric, real symmetric banded,
« real symmeftric tridiagonal, special real tridiagonal, generalized real, and
+ generalized real symmetric matrices.
«  The library drew heavily on Algol algorithms developed by Jim Wilkinson & colleagues. = &kener"

Linear Algebra
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ICL

My First Paper

TECHNIQUE

When a loop is unrolled, its contents are replicated one or more times, with appropriate
adjustments to array indices and the loop increment. For instance, the DAXPY? sequence,

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 9, 219-226 (1979)

Unrolling Loops in FORTRAN"

J. J. DONGARRA AND A. R. HINDS
Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

SUMMARY

The technique of ‘unrolling’ to improve the performance of short program loops

which adds a multiple of one vector to a second vector:

DO101=1N
Y(I) = Y(I)+ A * X(I)
10 CONTINUE

would, unrolled to a depth of four, assume the form

M = N-MOD(N,4)
DO 10 I=1M4

resorting to assembly language coding is discussed. A comparison of the benefit Y(I) = Y(I) +A:X(I)
‘unrolling’ on a variety of computers using an assortment of FORTRAN com YI+1)=Y(I+1)+A*X(I+1)
presented. Y(I+4+2)=Y(I+2)+A*X(I+2)

Reduces loop overhead

 Level of unrolling dedicated by the
instruction stack size

Y(1+43) = Y(I+3)+A*X(I+3)
10 CONTINUE

Basic Linear Algebra Subprograms
for Fortran Usage

o C. L. LAWSON
Help the compller' to: Jne'fﬁmgﬁ Laboratory
 Facilitates pipelining Sandia Laboratories
D. R. KINCAID

« Increases the concurrence
between independent functional

The University of Texas at Austin
and

R F. T. KROGH
units Jet Propulsion Laboratory
4 O,
Provided ~15% performance
. A package of 38 low Ievel subprograms for many of the basic operations of numerical linear algebra
lmpr‘ovemen‘r 5P d. The is intended to be used with Fortran. The operations n the package include
dot prod ! y vector operati T Givens ! ion, vector copy and swap, vector norm,




MCS DiViSiQn C. 1 983 Originally called the Applied Mathematics Division until 1982

¥
f

Back row: Jim Boyle (w/picture of Larry Wos), John Gabriel, Ken Dritz, Bob Veroff, Hans Kaper, Paul Messina,
Bernie Matkowsky, Jim Cody, James Lyness, Wayne Cowell, Burt Garbow, Ken Hillstrom, Brian Smith, LuAnn Phebus
Seated: JD, Rusty Lusk, Mike Minkoff, Gary Leaf, Jorge More’, Danny Sorensen, Bruce Char, Doris Pool, Judy Beumer

The group had a culture of friendship



Mathematics and Computer Science Division

in 1983
* Linear Algebra * Theorem Proving
* EISPACK, LINPACK, BLAS * Aura
* Optimization * Symbolic Computation
* MINPACK e Parallel Programming
« Special Functions Methodologies & Tools
e FUNPACK * Monitors/macros
« Numerical Solution to PDEs * Program Languages
* Fluid Flow * Program Development Aids and
e Sturm Liouville operators Automatic Transformations
 Bifurcation Phenomena * TAMPR
e Quadrature * Fortran Standards Committee

* |EEE Floating Point Arithmetic
Building things that worked

Things like P4, PVM, MPI, MPICH where just a glimmer in our eyes at this stage.



c Over the Past 50 Years Evolving SW and Alg o

A 5%
ICLOIr" .
Tracking Hardware Developments g
Features: Performance, Portability, and Accuracy
EISPACK (1970's) g Rely on .
(Translation of Algol o F66) o - Fortran, but row oriented
Level 1 Basic Linear Algebra Subprograms (BLAS) I i' il _I Standards for: Vector-Vector operations
LINPACK (1980's) g Rely on
(Vector operations) _a - Level-1 BLAS operations
S - Column oriented




1984 -1992

Several radically different parallel architectures,

y . from shared to distributed memory; from vector to
Argon ne’s Parallel Menagerle dataflow to bit parallel processors

Rusty Lusk and | were the Directors of the ARCF Thinking Machines CM-2, w/16,384 procs.
ACTIVITIES AND OPERATIONS OF THE Active Memory Technology DAP-510, w/1024 procs.
ADVANCED COMPUTING RESEARCH FACILITY BBN TC 2000 (Butterfly II), w/32 procs.
Cydrom Cydra 5, VLIW architecture
Denelcor HEP, w/4 PEMs
Intel iPSC/d5 hypercube w/32 procs.
Sequent Balance 21000, w/24 procs.
Encore Multimax, w/20 procs.
Intel iPSC/d4 hypercube, w/16 vector procs.
Alliant FX/8, w/8 vector procs.
Ardent Titan graphics supercomputer, w/4 vector procs.

rhe U. >. DEFAKIMENT UF ED
under Contract W-31-109-Eng-
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An Accidental Benchmarker

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD

We worked independently and came to Argonne in the

summers

Performance of solving Ax=b using LINPACK software

Top 23 List from 1977

B
&

,,l”‘— "~ UNIT = 10%%§ TIME/( 1/3 100%%3 + 100%%2 )

| o ars

n 2 D TIME  UNIT
Facility H=100 micro- Computer Type

gecs. Eecs.

NCAR 142 049 0.14 CRAY-1 S
LASL 467 .148 0.43 CDC 7600 s
NCAR 3.5%.192 0.56 CRAY-1 S
LASL 3,27 .210 0.61 cnec 7600 5
Argunne 2.3} .297 0.86 IBM 370/195 D
WCAR A4l . 359 1.05 CDC 7600 S
Argonne A7 388 . 1.33  IBM 3033 D
NASA Langley ':%% 489 1.42 CDC Cyber 175 S
U. I11. Urbana \/%& ,506 1.47 CDC Cyber 175 S
LLL 124,554 1.61 CDC 7600 S
SLAC 119 .579 1.69 IBM 370/168 D
Michigan jw9.631 1.84 Amdahl 470/V€ D
Toronto 773890 2.59  IBM 370/165 D
Northwestern  477l.44 4.20  CDC 6600 5
Texas +56¢1.93% 5.63 CDC 6600 S
China Lake +¥21.95% 5.69 Univac 1110 S
Yale 52 .59 7.53 TDEC KL-20 ST
Bell Labs 97 3,460 10.1  Honeywell 6080 S
Wisconsin AF73.49 10.1 . Univac 1110 S
Iowa State L%q93.54 _10.2 Itel AS/5 mod3 D~
U. I11. Chicago #%4.10 1T.9-—-1IBM 370/158 D

o~

Compiler

CFT, Assembly BLAS
FTIN, Assembly BLAS

CFT

FTN

H

Lacal

H

FTN

Ext. 4.6

CHAT, Neo optimize

H Ext., Fast mult.

H

1 Ext., Fast mult.

FTHN
RUN

v
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Appendix B of the Linpack Users’ Guide
Designed to help users estimate the

run time for solving systems of equation
using the Linpack software.

First benchmark report from 1977;
Cray 1 to DEC PDP-10
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Periormance of Various Compulers Using Standard

Lincar Hgualions Soltvare in a Foriran linvironmenl

Jack J. Dongarra

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, lllincis 80439

October 24, 1683

Abstract - In this note we compare a numbper of different computer systems
for solving dense svsteins of linear equations using the LINPACK software in
a Fortran environment. There are about 50 computers compared, ranging
from a Cray X-MP to the 8000 based systems such as the Apcllo and SUN
Workstations.

The timing information presented here should in no way be used to judge
the overall perfoermance of a computer system. The results reflect only one
problem area: soiving derse systems of equations using the LINPACK [1] pro-
grams in a Fortran environment.

The LINPACK programs can be characterized as having a hizh percentage of
floating point arithmetic operations. The routines involved in this liming study,
SGEFA and SGESL, use algorithms which are column oriented. By column orien-
tation we mean the prozrams usually references airay elements sequentially
down a column, not across a row. Column orientation is important in increasing
efficiency in a Fortran environment because of the way in which arrays are
stored. Most of the floating peint cperations in LINPACK actually talke o1
sel of subprograms called the Basic Linear Algebra Subpre
These roulines are called by the LINPACK routines repeatediy
calculation. The BLAS reference one-dimansion arrays,
dimensional arrays.

Note that these numbers are for a preblem of order 100. The exscution
speeds on some machines, particularly the vector computers, may not have
reached their asymptotic rates or the algorithms used may not fuliy vtilize the
features of certain machines. {See the appendnx for a specific comparison of
large scientific computers in Fortran which better reflects their performance.)

The table was compiled over a period of time. Subsequent sefiware and
hardware changes to a computer system may affect the timing to some extent.



http://tiny.cc/hpcg
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< Top500 Since 1993
» Since 1978 I maintained a LINPACK | &
Benchmark list. g
* Hans Meuer and Erich Strohmaier had a
list of fastest computers ranked by peak
performance.
* Listing of the 500 most powertful
computers in the World.
* Yardstick: Performance for
Ax=Db, dense problem
Maintained and updated twice a year:
SC‘xy in the States in November 500
Meeting in Germany in June The List.

TPP performance

Size

Rate

14



. #1 Systems on the Top500 Over the Past 30 Years

-
IcL Top500 List HPL r,ox Hours
(# of times) Computer (Tflop/s) Procs/Cores Matrix Size To BM MW
6/93 (1) TMC CM-5/1024 (DOE LANL) .060 1,024 52,224 0.4
11/93 (1) Fujitsu Numerical Wind Tunnel (Nat. Aerospace Lab of Japan) 124 140 31,920 0.1 1.
6/94 (1) Intel XP/S140 (DOE SNL) .143 3,680 55,700 0.2
11/94-11/95 (3) Fujitsu Numerical Wind Tunnel (Nat. Aerospace Lab of Japan) .170 140 42,000 0.1 1.
6/96 (1) Hitachi SR2201/1024 (Univ. of Tokyo) 220 1,024 138,240 2.2
11/96 (1) Hitachi CP-PACS/2048 (Univ of Tsukuba) .368 2,048 103,680 0.6
6/97-6/00 (7)  Intel ASCI Red (DOE SNL) 2.38 9,632 362,880 3.7 .85
11/00-11/01 (3) IBM ASCI White, SP Power3 375 MHz (DOE LLNL) 7.23 8,192 518,096 3.6
6/02-6/04 (5) NEC Earth-Simulator (JAMSTEC) 35.9 5,120 1,000,000 5.2 6.4
11/04-11/07 (7) IBM BlueGene/L (DOE LLNL) 478. 212,992 1,000,000 0.4 1.4
6/08-6/09 (3) IBM Roadrunner -PowerXCell 8i 3.2 Ghz (DOE LANL) 1,105. 129,600 2,329,599 2.1 2.3
11/09-6/10(2) Cray Jaguar - XT5-HE 2.6 GHz (DOE ORNL) 1,759. 224,162 5,474,272 17 6.9
11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA (NSC Tianjin) 2,566. 186,368 3,600,000 3.4 4.0
DOE 6/11-11/11 (2)  Fujitsu K computer, SPARC64 VllIfx (RIKEN) 10,510. 705,024 11,870,208 29 9.9
LANL: 2 6/12 (1) IBM Sequoia BlueGene/Q (DOE LLNL) 16,324. 1,572,864 12,681,215 23 7.9
fm& 11/12 (1)  Cray XK7 Titan AMD + NVIDIA Kepler (DOE ORNL) 17,590. 560,640 4,423,680 0.9 8.2
ORNL: 4 6/13-11/15(6) NUDT Tianhe-2 Intel IvyBridge + Xeon Phi (NSCC Guangzhou)  33,862. 3,120,000 9,960,000 5.4 17.8
6/16-11/17 (4)  Sunway Taihulight System (NSCC Wuxi) 93,014. 10,549,600 12,288,000 3.7 15.4
6/18-11/19 (4) IBM Summit Power9 + Nvidia Volta (DOE ORNL) 148,600 2,414,592 16,473,600 3.3 10.1
6/20-11/22 (4)  Fujitsu Fugaku ARM A64FX (RIKEN) 442,010 7,630,828 21,288,960 4.4 29.9

6/22-2 (1) HPE Frontier AMD + AMD (DOE ORNL) 1,102,000 7,733,248 24,440,832 2.5 21.1



Performance Development of HPC over the Last 30
Years from the Top500

100 Eflop/s
10 Eflop/s 4.8 EFlop/s
1 Eflop/s
100 Pflop/s
10 Pflop/s
1 Pflop/s DR
100 Tflop/s | - oo i 1.87 PFlop/s
10 Tflop/s 7 Tl e —
1 Tflop/s +#TElon - My Laptop: 426 Gflop/s
100 Gflop/s “-'|S N=S00
10 Gflop/s #1in 1993 - Thinking Machine CM-5 with 1024 Processors atT

1 Gflop/s | MFlop/s Los Alamos Nat Lab used for nuclear weapons design
100 Mflop/s —— T 1 T 1 T T T T T T T T T T T 1

0 D O A X O D O N WX
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.19 EFlop/s
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June 2023: The TOP 10 Systems (52% of the Total Performance of Top500)

-
ICL
. Rmax % of | Power | GFlops/|
— Rank Site Computer Country Cores [Pflops] | Peak | [MW]| W a}:f
DOE / OS Frontier, HPE Cray Ex235a, AMD 3 EPYC 64cC,
1 Oak Ridge Nat Lab 2 GHz, AMD Instinct MIZ50X, Slingshot 10 w 8,699,904 1,194 71 22.7 | 52.6
RIKEN Center for Fugaku, ARM A64FX (48C, 2.2 G6Hz),
= Computational Science Tofu D Interconnect 7,299,072 442, o= 2991 148
LUMI, HPE Cray EX235a, AMD 3 EPYC 64C,
3 EuroHPC /CSC 2 6Hz, AMD Instinct MIZ50X, Slingshot 10 1,268,736 304. 72 2.94 | 52.3
BullSequana XH2000, Xeon Platinum 8358 32C
4 EuroHPC/CINECA 2.66Hz, NVIDIA A100 (108¢C), Quad-rail NVIDIA 1,824,768 239. 78 7.4 32.2
HDR100
DOE / OS Summit, IBM Power 9 (22C, 3.0 GHz),
5 Oak Ridge Nat Lab NVIDIA 6V100 (80c), Mellonox EDR 2,397,624 | 149. 74 (L0 147
DOE / NNSA Sierra, IBM Power 9 (22C, 3.1 6Hz),
5 L Livermore Nat Lab NVIDIA GV100 (80C), Mellonox EDR 1572460 | 946 | 75 EEEEEES
National Super Computer Sunway Taihulight, SWZ26010 (260C), Custom
7 Center in Wuxi Interconnect 10,649,000 93.0 74 15.4 | 6.05
DOE / OS Perlmutter HPE Cray EX235n,
8 AMD EPYC 64C 2.456Hz, NVIDIA A100, Slingshot s 706,304 64.6 71 2.59 | 27.4
NERSC - LBNL 10
, Selene NVIDIA DEX A100, AMD EPYC 7742 (64C,
9 NVIDIA Corporation 2.256Hz), NVIDIA A100 (105C), Mellanox HOR ¥l 555,520 63.4 80 2.64 | 23.9
10 National Super Computer Tianhe-2A NUDT, Xeon (12C) , MATRIX-2000 *’:L’:—k 4,981 760 61.4 61 185 332
Center in Guangzhou (128¢) + Custom Interconnect i : : :




I gowmma:  ERANTIER o ant 4 System Overview

System Performance Each node has The system includes

« 1-AMD EPYC 7A53 CPU w/64

* Peak per'for'mance. of 2 cores (2 Tflop/s) * 9408 nodes
SI:\era/:iof:r modeling & < 1% performance of the system 2782:1\2 CGPUS
. Power: 20+ MW *  4-AMD Instinct MI250X GPUs (OOM Tores
ower: Each w/220 cores (4*53 Tflop/s) » Cray Slingshot
* Peak performance of 11.2 99% performance of the system interconnect
Ef!op/s for 16 bit floating . 730 6B of fast memory * 4 end points per node
point used in for data . 2 TB of NVMe memory . 706 PB Memory

analytics, ML, and artificial

intelligence (695 PB Disk + 11 PB

SSD)

(OF:\ E
C;AY % Na IIUH\.IIII{.I‘I n).x(lr’»-l;

) ENEF GY

" ‘\'\L/l‘l =i

e N O Y N R O
=1

Hev 'lett Pac kard
Ente rprise
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I Argonne’*" m System Overview (Based on public data)

System Performance Each node has The system includes

* Peak performance of 3.34 > Zr;czg;':’l‘ssavs';ggi;?:di;gu 10,624 nodes
E.flop/s. for modelu.ng & g’flop /5) 63,744 GPUs
Slmulg‘l'lloén G@l:l)z6(n40rrl\)i|n1c;lﬂr::f bl:" < 2% performance of the system 1.1M Cores

lower) - Y > 6 - Intel Xe Ponte Vecchio GPUs * Cray Slingshot

- Facility Power capacity 60 MW >  (6*52.4 Tflop/s = 314 Tflop/s) L el dua

. Peak per'for'mance of 53.5 98% performance of the system + 8 end points per node
Eflop/s for 16 bit floating > ) B3 Gy L Ay 7 OIS [DID Gy
point used in for data Plus 1.02 TB DDR5 on the CPUs « 952 PB HBM
analytics, ML, and artificial * (230 PB Intel Optane)

intelligence 230 PB of NVMe

memory total (DAOS
servers)

A

ENEItGY

[— ]
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PERFORMANCE DEVELOPMENT 200

1 Eflop/s
100 Pflop/s

10 Pflop/s
1 Pflop/s
100 Tflop/s

10 Tflop/s
1 Tflop/s
100 Gflop/s

10 Gflop/s
1 Gflop/s
100 Mflop/s

1.1 EFlop/s

Frontier

Sunway Summit

TianHe-2A

59.7 GF

S|

1994 199@998 2000 2002 2004 2006 2@8 2010 2012 2014 2016 2018 2020 z'z

12 15
Tflops (10%?) 0(103) Pflops (10%) 0(10 3) Eflops (10%8)
Achieved 11V, Achieved 14 Years Achieved
ears P -
ASCI Red * RoadRunner a Frontier ORNL

Sandia NL 1os Alamos NI



PROJECTED PERFORMANCE DEVELOPMENT #3500

100 Eflop/s

10 Eflop/s | L e =y

SUM‘P—‘-‘—q ------------
1 EflOp/S _7‘4__'—-"_*' — e~
== = 8 Years for 1 Order of
100 Pflop/s _ =% N=1 Magnitude
B i —
10 Pflop/s
N=500 ===

100 Tflop/s I | I I I I T T T T

2017 2018 2019 2020 2021 2022 2023 2024 2026 2028 2030
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China

Supercomputers

us
CHINA
GERMANY
JAPAN
FRANCE
UK

CANADA [HIO

RUSSIA

ITALY | | | |

0 50 100 150 200

China: Top producer overall.
5 main manufactures of HPC in China:
Lenovo(168), Inspur(43), Sugon(23),
NUDT(3), Huawei(2) with 250 systems total.

Rumored 2 Exascale Systems in Chinese

Qingdao Marine Sunway Pro "OceanLight"
(Shandong Prov)

Completed March 2021, 1.3 EFlops Rpeak and
1.05 EFlops Linpack

ShenWei post-Alpha CPU ISA architecture with
large & small core structure

Est 96 cabinets x 1024 SW39010 390-core
35MW

Science on this machine won Gordon Bell Prize in
2021

NSCC Tianjin Tianhe-3

Dual-chip FeiTeng ARM and Matrix accelerator
node architecture

Est -1.7 EFlops Rpeak



Performance and Benchmarking Evaluation Tools

¢ Linpack Benchmark - Longstanding benchmark started in
1979

> Lots of positive features; easy to understand and run; shows trends

¢+ However, much has changed since 1979
» Arithmetic was expensive then and today it is over-provisioned and
Inexpensive
¢ Linpack performance of computer systems is no longer
strongly correlated to real application performance
» Linpack benchmark based on dense matrix multiplication

¢ Designing a system for good Linpack performance can lead to
design choices that are wrong for today’s applications



Today’s Top HPC Systems Used to do Simulations

Climate
Combustion
Nuclear Reactors
Catalysis

Electric Grid

Fusion

Stockpile
Supernovae (

Materials
Digital Twins
Accelerators =

Downslream Distance in Jot Dismeters

Ratal Datance i Jot Damenrs.

i Pk fast com

Usually 3-D PDE’s

e Sparse matrix computations, not dense




hpcg-benchmark.org With Piotr Luszczek and Mike Heroux

HPCG Results; The Other Benchmark

e High Performance Conjugate Gradients (HPCG).
» Solves Ax=b, A large, sparse, b known, x computed.

* An optimized implementation of PCG contains essential computational
and communication patterns that are prevalent in a variety of methods
for discretization and numerical solution of PDEs

* Patterns:
* Dense and sparse computations.
* Dense and sparse collectives.
* Multi-scale execution of kernels via MG (truncated) V cycle.
» Data-driven parallelism (unstructured sparse triangular solves).

 Strong verification (via spectral properties of PCG). 27-point stencil operator



HPCG Top 10, June 2023

a_

RIKEN Center for

TOP500
Rank

HPCG

(Pflop/s)

Computational Science Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fuijitsu 7,630,848| 442 16.0 3.0%
. Japan

DOE/SC/ORNL Frontier, HPE Cray Ex235a, AMD 3" EPYC 64C, 2 GHz,

2 Usa AMD Instinct MI250X, Slingshot 10 8,699,904| 1,194 1 141 0.8%
EuroHPC/CSC LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, o

3 Finland AMD MI250X, Slingshot-11 2,220,288 309 3 3.41 0.8%

r I annardan RIlIQaniiana YI—I’m 1

4 Thmk of a race car that has the potential of 250 KPH but only goes 2 KPH! | 3-11
DOE/SC/ORNL Summit, AC922, IBM POWER9 22C 3.7GHz, Dual-rail |

5 USA Mellanox FDR, NVIDIA Volta V100, IBM 2,414,5921 149 3 2.93 1.5%
DOE/SC/LBNL Perimutter, HPE Cray EX235n, AMD EPYC 7763 64C

6 USA 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10 761,856 70.9 8 1.91 2.0%
DOE/NNSA/LLNL Sierra, S922L.C, IBM POWER9 20C 3.1 GHz, Mellanox o,

7 usA EDR, NVIDIA Volta V100, IBM 1,572,480 94.6 6 1.80 1.4%
NVIDIA Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25

8 USA GHz, Mellanox HDR, NVIDIA Ampere A100 555,520 63.5 9 1.62 2.0%
Forschungszentrum Juelich JuwELS Booster Module, Bull Sequana XH2000 , AMD

9 (Fz)) EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, 449,280 44 .1 12 1.28 1.8%
Germany NVIDIA Ampere A100, Atos
Saudi Aramco Dammam-7, Cray CS-Storm, Xeon Gold 6248 20C o

10 Saudi Arabia 2.5GHz, InfiniBand HDR 100, NVIDIA Volta V100, HPE 672’520\ 22.4 / 20 _0.88 J\_1 6%




Recently we have seen Al & ML take off

* Al and ML have been around for a long time as
research efforts.

* Why Now?
* Flood of available data (especially with the Internet)
* Increasing computational power

* Growing progress in available algorithms and theory
developed by researchers.

* Increasing support from industries.



Deep Learning Needs Small Matrix Operations

. . . . . Emergence of Al-Specific Hardware
Matrix Multiply is the time-consuming part. Ecosystem
. . . . MYTHIC GRAPHCORE Z
Convolution Layers and Fully Connected Layers require matrix multiply DEEPHi
@ thinci WAV=
There are many GEMM's of small matrices, perfectly parallel, can get by RAIN  comrurine
with 16-bit floating point aws Google  intel
"
C: S: C: S: n; n; erXloal)Z
input feature maps feature mapsfeature mapsfeature maps output f:erebras
32x32 28x28 14 x 14 10x 10 5x5 n Q
— e e — e— ——a——o S S— & XILINX
N\ ) e N\ N SambaNova
. 3 ‘ O T\ N=9,
D H '.:[; - ;[J\\ N
= - j = r-’_~ ki 203 \\ \’ 9
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Floating Point Representations
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< WHY MIXED PRECISION? (Less is Faster)

* There are many reasons to consider mixed precision in our
algorithms...

= | ess Communication
* Reduce memory traffic
- Reduce network traffic

= Reduce memory footprint
= More Flop per second Brossoond i KIo 10 40, | Vorwtwing  VolwTung
Engine Cortex-A9 K80
* Reduced energy consumption e 7x 3x 2x 16x
o Reduced Tlme 1_0 Compu_l_e 32 bits / 64 bits 32 bits / 64 bits 32 bits / 64 bits 32 bits / 64 bits 16 bits / 64 bits
» Accelerated hardware in current architecture.

Suitable numerical properties for some algorithms & problems.

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. J. Dongarra. Exploiting the performance
of 32 bit floating point arithmetic in obtaining 64 bit accuracy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006.




. Can We Take Advantage of the Hardware?
=" Basically, There are Three Approaches with Mixed Precision

1. Use a mathematical technique

= Get an approximation in lower precision then use
something like Newton's method to enhance
accuracy.
2. Transfer less bytes, data transfer is expensive
= Store data in primary storage in full precision.

= Transfer the data in short precision.
Could also use data compression techniques

= Compute using full precision.
3. Use a combination of 1. & 2.



HPL-MxP Top 10 for June 2023
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Frontier, HPE Cray EX235a, AMD Zen-3 (Milan)
64C 2GHz, AMD MI250X, Slingshot-10

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C
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“There’s plenty of room at the Top: What will drive computer

T h T k A performance after Moore’s law?”
e a e W a y Leiserson et al., Science 368, 1079 (2020) 5 June 2020

The Top
Technology 01010011 01100011
01101001 01100101 @
H H 01101110 01100011
 HPC Hardware is Constantly Changing
e Sca | ar Software Algorithms Hardware architecture
Opportunity Software performance New algorithms Hardware streamlining
i Ve CtO r engineering
° D | St r| b u te d Examples Removing software bloat New problem domains Processor simplification
Tailoring software to New machine models Domain specialization
e Acce I e rated hardware features

* Mixed precision
* Three computer revolutions

. . The Bottom
i ngh performance Computlng forexample'semicductortechnology
* Deep learning ;
* Edge & Al

* Algorithm / Software advances follows hardware.
* And there is “plenty of room at the top”

I Feynman’s 1959
Lecture @ CalTech



