
V. Dobrev2, D.A. Ibanez1, T. Kolev2, K.E. Jansen3, J.Merson4

O. Sahni4, M.S. Shephard4, G.M. Slota4, C.W. Smith4
1Sandia National Laboratories

2Lawrence Livermore National Laboratory
3University of Colorado

4Rensselaer Polytechnic Institute

FASTMath Unstructured Mesh Technologies

ATPESC 2023

§ Backed by well-developed theory

§ Naturally support unstructured and curvilinear grids.

§ Finite elements naturally connect different physics

§ High-order finite elements on high-order meshes
• increased accuracy for smooth problems
• sub-element modeling for problems with shocks
• bridge unstructured/structured grids
• bridge sparse/dense linear algebra
• HPC utilization, FLOPs/bytes increase with the order

§ Need new (interesting!) R&D for full benefits
• meshing, discretizations, solvers, AMR, UQ, visualization, …

8th order Lagrangian simula0on
of shock triple-point interac0on

High-order
thermodynamics

High-order
MHD

High-order
rad. diffusion

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes” “elems”“edges” “faces”

High-order
kinematics

Core-Edge tokamak EM wave
propagation

Finite elements are a good founda1on for large-scale
simula1ons on current and future architectures

ATPESC 2023

mfem.org
(v4.5.2, Mar/2023)

Flexible discretizations on unstructured grids
§ Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume,

surface and topologically periodic meshes
§ Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, …
§ Local conforming and non-conforming AMR, mesh optimization
§ Hybridization and static condensation

High-order methods and scalability
§ Arbitrary-order H1, H(curl), H(div)- and L2 elements
§ Arbitrary order curvilinear meshes
§ MPI scalable to millions of cores + GPU accelerated
§ Enables development from laptops to exascale machines.

Solvers and preconditioners
§ Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …
§ AMG solvers for full de Rham complex on CPU+GPU, geometric MG
§ Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software
§ Open-source (GitHub) with 114 contributors, 50 clones/day
§ Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …
§ 75+ example codes & miniapps: mfem.org/examples

Modular Finite Element Methods (MFEM)

http://mfem.org/examples

ATPESC 2023

Example 1 – Laplace equa1on
§ Mesh

§ Finite element space

§ Initial guess, linear/bilinear forms

§ Linear solve

§ Visualization

§ works for any mesh & any H1 order
§ builds without external dependencies

ATPESC 2023

Example 1 – Laplace equa1on

§ Mesh

ATPESC 2023

Example 1 – Laplace equa1on

§ Finite element space

ATPESC 2023

Example 1 – Laplace equation

§ Initial guess, linear/bilinear forms

ATPESC 2023

Example 1 – Laplace equa1on

§ Linear solve

§ Visualization

ATPESC 2023

Example 1 – parallel Laplace equation
§ Parallel mesh

§ Parallel finite element space

§ Parallel initial guess, linear/bilinear forms

§ Parallel linear solve with AMG

§ Visualization

§ highly scalable with minimal changes
§ build depends on hypre and METIS

§ Parallel assembly

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh

�⇥
(1)

�⇥
(2)

(1) Parallel mesh splitting (domain decomposition using METIS).
(2) Parallel mesh refinement.

Parallel finite element space

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh
Parallel finite element space

�⇥
(1)

�⇥
(2)

(1) Find shared degrees of freedom (dofs).
(2) Form groups of dofs and assign ownership.
(3) Build a parallel Boolean matrix P = dofs truedofs identifying each dof with a master (true) dof.

We use the ParCSR format in the hypre library for parallel matrix storage.

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

P : true dof 7! dof

A = PTaP B = PT b x = PX

ATPESC 2023

Example 1 – parallel Laplace equation

ATPESC 2023

MFEM example codes: mfem.org/examples
§ 40+ example codes, most with both serial + parallel versions

§ Tutorials to learn MFEM features

§ Starting point for new applications

§ Show integration with many external packages

§ Miniapps: more advanced, ready-to-use physics solvers

ATPESC 2023

Topology op(miza(on for
addi(ve manufacturing (LiDO)

Core-edge tokamak EM
wave propagation (SciDAC, RPI)

Inertial confinement
fusion (BLAST)

Heart modeling (Cardioid) Adap(ve MHD island
coalescence (SciDAC, LANL)

MRI modeling (Harvard Medical)

Some large-scale simulation codes powered by MFEM

ATPESC 2023

Advection phase (~c = �~vm)

Momentum Conservation:
d(⇢~v)

d⌧
= ~vm ·r(⇢~v)

Mass Conservation:
d⇢

d⌧
= ~vm ·r⇢

Energy Conservation:
d(⇢e)

d⌧
= ~vm ·r(⇢e)

Mesh velocity: ~vm =
d~x

d⌧

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion

Lagrangian phase (~c = ~0)

Momentum Conservation: ⇢
d~v

dt
= r · �

Mass Conservation:
d⇢

dt
= �⇢r · ~v

Energy Conservation: ⇢
de

dt
= � : r~v

Equation of Motion:
d~x

dt
= ~v

t = 0

⌧ = 0

⌧ = 0.5

⌧ = 1

t = 1.5

t = 3.0

v Galerkin FEM

v Discont. Galerkin

Gauss-Lobatto basis

Bernstein basis

BLAST models shock hydrodynamics using high-order FEM
in both Lagrangian and Remap phases of ALE

ATPESC 2023

Parallel ALE for Q4 Rayleigh-
Taylor instability (256 cores)

High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simula1ons

Robustness in
Lagrangian shock-3pt
axisymm. interaction

Symmetry in
3D implosion

Symmetry in
Sedov blast

ATPESC 2023

Strong scaling, p-refinement

1 zone/core

~600 dofs/zone

2D
256K DOFs

Strong scaling, fixed #dofs

SGH

Finite element partial assembly FLOPs increase faster than runtime

more FLOPs,
same runtime

256 cores

High-order finite elements have excellent strong scalability

ATPESC 2023

Conforming & Nonconforming Mesh Refinement
Mesh Refinement

Conforming refinement

Nonconforming refinement

Natural for quadrilaterals and hexahedra

ATPESC 2023

Adaptive mesh refinement on library level:
– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes

– h-refinement with fixed p

General approach:
– any high-order finite element space, H1, H(curl),

H(div), …, on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derefinement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in
applications)

MFEM’s unstructured AMR infrastructure

Example 15

Shaper miniapp

ATPESC 2023

General nonconforming constraintsConstructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

High-order elements

Constraint: local interpolation matrix

Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(tangential component discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: first order H(curl) (edge elements)

Constraint: e = f = d/2

Constraint: e = f = d/2

H(curl) elements

Constructing the P matrix

Indirect constraints: slave DOFs may depend on other
slaves

More complex situations in 3D.
Some methods enforce 2:1 ratio between
edges/faces, we do not.

Indirect constraints

More complicated in 3D…

ATPESC 2023

Variational Restriction

General constraint:

y = Px , P =

I

W

�
.

x – conforming space DOFs,
y – nonconforming space DOFs (unconstrained + slave),

dim(x) dim(y)

W – interpolation for slave DOFs

Constrained problem:

P
T
APx = P

T
b,

y = Px .

Nonconforming varia1onal restric1on

ATPESC 2023

Nonconforming variational restrictionConstructing the P matrix

ATPESC 2023

Nonconforming variational restrictionConstructing the P matrix

Regular assembly of A on the elements of the (cut) mesh

ATPESC 2023

Nonconforming variational restrictionAnisotropic refinement

Conforming solution y = P x

ATPESC 2023

AMR = smaller error for same number of unknowns

Anisotropic adaptation to
shock-like fields in 2D & 3D

uniform refinement
1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR

ATPESC 2023

Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and
derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-
filling curve partitioning, 16 cores

ATPESC 2023

 1

 10

 100

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 384K

Ti
m

e
of

 A
M

R
 it

er
at

io
n

[s
ec

on
ds

]

CPU cores

ideal strong scaling
weak scaling

size 0.5M
size 1M
size 2M
size 4M
size 8M

size 16M
size 32M
size 64M

Parallel decomposition
(2048 domains shown)

Parallel partitioning via
Hilbert curve

• weak+strong scaling up to ~400K MPI tasks on BG/Q

• measure AMR only components: interpolation matrix, assembly, marking,
refinement & rebalancing (no linear solves, no “physics”)

Parallel AMR scaling to ~400K MPI tasks

ATPESC 2023

A = PTGTBTDBGP

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh
topology, basis, and geometry/physics components:

Fundamental finite element operator decomposi1on

✔ purely algebraic

✔ partial assembly = store only D, evaluate B (tensor-product structure)

✔ AD-friendly

✔ better representation than A: optimal memory, near-optimal FLOPs

✔ high-order operator format
* libCEED, github.com/ceed/libceed

ATPESC 2023

Z

⌦
r'ir'j =

X

E

Z

E
r'ir'j

=
X

E

X

k

↵k J
�1
E (qk)r̂'̂i(qk) J

�1
E (qk)r̂'̂j(qk) |JE(qk)|

=
X

E

X

k

r̂'̂i(qk)
�
↵kJ

�T
E (qk)J

�1
E (qk)|JE(qk)|

�
r̂'̂j(qk)

Poisson Example. Variational Form:

Find u 2 Qp ⇢ H
1
0 s.t. 8v 2 Qp,

Z

⌦
⌫rv ·ru dV =

Z

⌦
v f dV.

Z

⌦
rv ·ru dV =

EX

e=1

Z

⌦e
rv

e
·ru

e
dV =

EX

e=1

(v
e
)
T
A

e
u
e
= v

T
Q

T

2

6664

A
1

A
2

. . .

A
4

3

7775
Qu.

• Q is a Boolean assembly matrix (non-Boolean in case of AMR); communication intensive.

• Local element sti↵ness matrices applied in parallel.

• Each A
e
is nominally full and accounts for the bulk of the physics.

Tensor-product sum-factorization is key to e�cient implementation.

• Never form A
e
. Use the factored matrix-vector product

w
e
=

0

@
D1

D2

D3

1

A

T0

@
G

e
11 G

e
12 G

e
13

G
e
21 G

e
22 G

e
23

G
e
31 G

e
32 G

e
33

1

A

0

@
D1

D2

D3

1

Au
e
.

• Dj : tensor products of 1D (q ⇥ q) interpolation (Ĵ) and derivative (D̂) matrices.

D1 = Ĵ ⌦ Ĵ ⌦ D̂

D2 = Ĵ ⌦ D̂ ⌦ Ĵ

D3 = D̂ ⌦ Ĵ ⌦ Ĵ ,

where q=number of quadrature points in each direction.

• Can be applied fast. Only O(q
4
) work and O(q

3
) storage, vs. O(p

6
) cost of traditional FEM.

• Geometric factors are diagonal matrices of size q
3
⇥ q

3
.

• G is a symmetric tensor, Gij = Gji, =) 6q
3
memory references per element.

• For spectral elements, q = p+ 1 and Ĵ = Î.

• Work complexity: W = 12q
4
+ 15q

3
,

• Leading order O(q
4
) term: tensor contractions cast as e�cient BLAS3 kernels.

Poisson problem in variational form

Stiffness matrix (unit coefficient)

(BT)ik BkjDkkG,GT

Aij

• J is the Jacobian of the element
mapping (geometric factors)

• G is usually Boolean (except AMR)

• Element matrices AE = BTDB, are
full, account for bulk of the physics,
can be applied in parallel

• Never form AE, just apply its action
based on actions of B, BT and D

Poisson Example. Variational Form:

Find u 2 Qp ⇢ H
1
0 s.t. 8v 2 Qp,

Z

⌦
⌫rv ·ru dV =

Z

⌦
v f dV.

Z

⌦
rv ·ru dV =

EX

e=1

Z

⌦e
rv

e
·ru

e
dV =

EX

e=1

(v
e
)
T
A

e
u
e
= v

T
Q

T

2

6664

A
1

A
2

. . .

A
4

3

7775
Qu.

• Q is a Boolean assembly matrix (non-Boolean in case of AMR); communication intensive.

• Local element sti↵ness matrices applied in parallel.

• Each A
e
is nominally full and accounts for the bulk of the physics.

Tensor-product sum-factorization is key to e�cient implementation.

• Never form A
e
. Use the factored matrix-vector product

w
e
=

0

@
D1

D2

D3

1

A

T0

@
G

e
11 G

e
12 G

e
13

G
e
21 G

e
22 G

e
23

G
e
31 G

e
32 G

e
33

1

A

0

@
D1

D2

D3

1

Au
e
.

• Dj : tensor products of 1D (q ⇥ q) interpolation (Ĵ) and derivative (D̂) matrices.

D1 = Ĵ ⌦ Ĵ ⌦ D̂

D2 = Ĵ ⌦ D̂ ⌦ Ĵ

D3 = D̂ ⌦ Ĵ ⌦ Ĵ ,

where q=number of quadrature points in each direction.

• Can be applied fast. Only O(q
4
) work and O(q

3
) storage, vs. O(p

6
) cost of traditional FEM.

• Geometric factors are diagonal matrices of size q
3
⇥ q

3
.

• G is a symmetric tensor, Gij = Gji, =) 6q
3
memory references per element.

• For spectral elements, q = p+ 1 and Ĵ = Î.

• Work complexity: W = 12q
4
+ 15q

3
,

• Leading order O(q
4
) term: tensor contractions cast as e�cient BLAS3 kernels.

Example of a fast high-order operator

<latexit sha1_base64="/WvgtQulW6LQCybBaBps3wrEAL8=">AAACWXicbZHPatwwEMZlJ223btpummMuImGhh7LYhf65BJb2klsS6CaBtVnG8ngjIstGGpssZumD9B16zD3X5AlCX6badQppkgHBT9/MSJpPaaWkpTC89fy19WfPX/ReBq82Xr952998d2zL2ggci1KV5jQFi0pqHJMkhaeVQShShSfp+fdl/qRBY2Wpf9C8wqSAmZa5FEBOmvY/xVLTND4ocAY81pAq4DWPRVbSv23D9/j9qpw30/5uOAxXwR9DdAe7o9HiZ3r5e3E43fQ24qwUdYGahAJrJ1FYUdKCISkULoLBIK4tViDOYYYThxoKtEm7mnDBB07JeF4atzTxlRo81fEha2RlO7TNrANyc2DSXnSH3e9robB2XqTuhgLozD7MLcWncpOa8q9JK3VVE2rRPTCvFaeSL23mmTQoSM0dgDDSTcnFGRgQ5D4jcP5FD916DMcfh9HnYXTkjPzGuuixbbbD3rOIfWEjts8O2ZgJ9otdsWt24/3xPb/nB12p7931bLH/wt/6C8w6t/Q=</latexit>Z

⌦
ru ·rv =

Z

⌦
fv

ATPESC 2023

CEED BP1 bakeoff on BG/Q

✔ All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ...,16; quad. points q = p + 2.

✔ BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.

✔ Paper: “Scalability of High-Performance PDE Solvers”, IJHPCA, 2020
✔ Cooperation/collaboration is what makes the bake-offs rewarding.

Nek5000 MFEM-improved deal.ii

ATPESC 2023

Device support in MFEM
MFEM support GPU acceleration in many linear algebra and finite element operations

§ Several MFEM examples + miniapps have been ported with small changes

§ Many kernels have a single source for CUDA, RAJA and OpenMP backends

§ Backends are runtime selectable, can be mixed

§ Recent improvements in CUDA, HIP, RAJA, SYCL, …

“MFEM: A modular finite element methods library”, CAMWA 2020

ATPESC 2023

1 GPU 4 GPUs 1024 GPUs

Best total performance: 2.1 TDOF/s
Largest size: 34 billion

Op#mized kernels for MPI buffer packing/unpacking on the GPU

Single GPU performance: 2.6 GDOF/s
Problem size: 10+ million

MFEM performance on mul1ple GPUs

ATPESC 2023

Recent improvements on NVIDIA and AMD GPUs

New MFEM GPU kernels: perform on both V100 + MI100,

MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

can u#lize tensor cores on A100
have beKer strong scaling,

V100 MI100 A100 H100

achieve 10+ GDOFs on H100

ATPESC 2023

• Explicit matrix assembly impractical at high order:

– Polynomial degree 𝑝, spatial dimension 𝑑

– Matrix assembly + sparse matvecs:

• 𝒪(𝑝!") memory transfers

• 𝒪(𝑝#") computations

• can be reduced to 𝒪(𝑝!"$%) computations by sum factorization

– Matrix-free action of the operator (partial assembly):

• 𝒪(𝑝") memory transfers – optimal

• 𝒪(𝑝"$%) computations – nearly-optimal

• efficient iterative solvers if combined with effective preconditioners

• Challenges:

– Traditional matrix-based preconditioners (e.g. AMG) not available

– Condition number of diffusion systems grows like 𝒪(𝑝!/ℎ")

Matrix-free precondi1oning

𝑝 + 1

𝒪(𝑝") element	dofs

ATPESC 2023

Low-Order-Refined (LOR) precondi1oning

“Low-order precondi.oning for the high-order de Rham complex”, Pazner, Kolev, Dohrmann, 2022

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

I

I

HO LOR

§ Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

§ ALOR is sparse and spectrally equivalent to AHO

§ (AHO)-1 ≈ (ALOR)-1 ≈ BLOR - can use BoomerAMG, AMS, ADS

ATPESC 2023

§ More information and publications
• MFEM – mfem.org

• BLAST – computation.llnl.gov/projects/blast

• CEED – ceed.exascaleproject.org

§ Open-source software

§ Ongoing R&D
• GPU-oriented algorithms for Frontier, Aurora, El Capitan

• Matrix-free scalable preconditioners

• Automatic differentiation, design optimization

• Deterministic transport, multi-physics coupling

High-order methods show promise for high-quality &
performance simula1ons on exascale plaaorms

Q4 Rayleigh-Taylor single-
material ALE on 256 processors

ATPESC 2023

Upcoming MFEM Events

MFEM in the Cloud Tutorial

August 10, 2023

MFEM Community Workshop

October 26, 2023

h"ps://mfem.org/workshoph"ps://mfem.org/tutorial

Seminar series: h"ps://mfem.org/seminar

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-PRES-755924

Disclaimer
This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

Unstructured mesh – a spatial domain discretization composed
of topological entities with general connectivity and shape

Unstructured Mesh Methods

Advantages
§ Automatic mesh generation for

any level of geometric complexity
§ Can provide the highest accuracy

on a per degree of freedom basis
§ General mesh anisotropy possible
§ Meshes can easily be adaptively

modified
§ Given a complete geometry, with

analysis attributes defined on that
model, the entire simulation
workflow can be automated

Disadvantages
§ More complex data structures and

increased program complexity,
particularly in parallel

§ Requires careful mesh quality
control (level of control required is
a function of the unstructured
mesh analysis code)

§ Poorly shaped elements increase
condition number of global system
– makes matrix solves harder

§ Non-tensor product elements not
as computationally efficient

37

Goal of FASTMath unstructured mesh developments include:
§ Provide unstructured mesh components that are easily used

by application code developers to extend their simulation
capabilities

§ Ensure those components execute on exascale computing
systems and support performant exascale application codes

§ Develop components to operate through multi-level APIs that
increase interoperability and ease of integration

§ Address technical gaps by developing tools that address
needs and/or eliminate/minimize disadvantages of
unstructured meshes

§ Work with DOE application developers on integration of these
components into their codes

Unstructured Mesh Methods

38

Technology development areas:
§ Unstructured Mesh Analysis Codes – Support application’s

PDE solution needs – MFEM library is a key example
§ Performant Mesh Adaptation – Parallel mesh adaptation to

integrate into analysis codes to ensure solution accuracy
§ Dynamic Load Balancing and Task Management –

Technologies to ensure load balance and effectively
execute by optimal task placement

§ Unstructured Mesh for Particle In Cell (PIC) Codes – Tools
to support PIC on unstructured meshes

§ Unstructured Mesh ML and UQ – ML for data reduction,
adaptive mesh UQ

§ In Situ Vis and Data Analytics – Tools to gain insight as
 simulations execute

FASTMath Unstructured Mesh Developments

39

§ FE Analysis codes
• MFEM (https://mfem.org/)
• LGR (https://github.com/SNLComputation/lgrtk)
• PHASTA (https://github.com/phasta/phasta)

§ Unstructured Mesh Infrastructure
• Omega_h (https://github.com/SNLComputation/omega_h)
• PUMI/MeshAdapt (https://github.com/SCOREC/core)
• PUMIpic (https://github.com/SCOREC/pumi-pic)

§ Load balancing, task placement
• Zoltan (https://github.com/sandialabs/Zoltan)
• Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2)
• Xtra-PULP (https://github.com/HPCGraphAnalysis/PuLP)
• EnGPar (http://scorec.github.io/EnGPar/)

§ Unstructured Mesh PIC applications
• XGCm (https://github.com/SCOREC/xgcm)
• GITRm (https://github.com/SCOREC/gitrm)

FASTMath Unstructured Mesh Tools and Components

https://mfem.org/
https://github.com/SNLComputation/lgrtk
https://github.com/phasta/phasta
https://github.com/SNLComputation/omega_h
https://github.com/ibaned/omega_h)
https://github.com/SCOREC/core
https://github.com/SCOREC/pumi-pic
https://github.com/sandialabs/Zoltan
https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2
https://github.com/HPCGraphAnalysis/PuLP
http://scorec.github.io/EnGPar/
https://github.com/SCOREC/xgcm
https://github.com/SCOREC/gitrm

Distributed meshPartition modelGeometric model

Parallel Unstructured Mesh Infrastructure

Support unstructured mesh interactions on exascale systems
• Mesh hierarchy to support interrogation and modification
• Maintains linkage to original geometry
• Conforming mesh adaptation
• Inter-process communication
• Supports field operations

Tools
• Omega_h – CPU/GPU support
• PUMI – CPU based curved mesh adapt.
• PUMIPic – Unstructured mesh with

particles for CPU/GPU

iM0

jM1

1P

0P
2P

inter-process part
boundary

intra-process part
boundary

Proc jProc i

41

Mesh Generation:
§ Automatically mesh complex domains – should work

directly from CAD, image data, etc.
§ Use tools like Gmsh, Simmetrix, etc.
Mesh control:
§ Use a posteriori information to improve mesh
§ Curved geometry and curved mesh entities
§ Support full range of mesh modifications –

vertex motion, mesh entity curving, cavity based
refinement and coarsening, etc. anisotropic adaptation

§ Control element shapes as needed by the various
discretization methods for maintaining accuracy and efficiency

Parallel execution of all functions is critical on large meshes

The
picture
can't
be
display
ed.

Mesh Generation and Control

42

General Mesh Modification for Mesh Adaptation

§ Driven by an anisotropic mesh size field that can be set by any
combination of criteria

§ Employ a “complete set” of mesh modification operations to
alter the mesh into one that matches the given mesh size field

§ Advantages
• Supports general anisotropic meshes
• Can obtain level of accuracy desired
• Can deal with any level of geometric domain complexity
• Solution transfer can be applied incrementally - provides

more control to satisfy conservation constraints

Edge split face split Double split collapse to remove sliverEdge collapse

43

Mesh Adaptation Status

§ Applied to very large scale models
– 92B elements on 3.1M processes
on ¾ million cores

§ Local solution transfer supported
through callback

§ Effective storage of solution
fields on meshes

§ Supports adaptation with
boundary layer meshes

44

Many applications have geometry that evolves as a function of the results –
Effective adaptive loops combine mesh motion and mesh modification
Adaptive loop:

1. Initialize analysis case, generate initial mesh, start time stepping loop
2. Perform time steps employing mesh motion - monitor element quality

and discretization errors
3. When element quality is not satisfactory or discretization errors too

large – set mesh size field and perform mesh modification
4. Return to step 2.

Mesh Adaptation of Evolving Geometry Problems

§ Supports adaptation of curved
elements

§ Adaptation based on multiple
criteria, examples
• Level sets at interfaces
• Tracking particles
• Discretization errors
• Controlling element

shape in evolving
geometry

Mesh Adaptation

46

§ Purpose: Balance or rebalance computational load while
controlling communications
• Equal “work load” with minimum inter-process

communications
§ FASTMath load balancing tools
• Zoltan/Zoltan2 libraries

provide multiple dynamic
partitioners with general control
of partition objects and weights

• EnGPar diffusive multi-criteria
partition improvement

• XtraPuLP multi-constraint
multi-objective label propagation-based graph partitioner

Load Balancing, Dynamic Load balancing

47

§ Reduce application communication time at extreme scale
§ Partitioning and load balancing: assign work to processes in

ways that avoid process idle time and minimize
communication

§ Task mapping: assign processes to cores/GPUs in ways
that reduce messages distances and network congestion

§ Important in extreme-scale systems:
• Small load imbalances can waste many resources
• Large-scale networks can cause messages to travel long

routes and induce congestion
§ Algorithms developed to:
• Account for underlying architectures & hierarchies
• Run effectively side-by-side with application across many

platforms (multicore, GPU)

Architecture-aware partitioning and task mapping

Zoltan/Zoltan2 Toolkits: Partitioners

Recursive Coordinate Bisection
Recursive Inertial Bisection
Multi-Jagged Multi-section

Space Filling Curves

PHG Graph Partitioning
Interface to ParMETIS (U. Minnesota)
Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning
Interface to PaToH (Ohio St.)

Suite of partitioners supports a wide range of applications;
no single partitioner is best for all applications.

Geometric

Topology-based

49

§ Multi-(hyper)graph supports multiple
dependencies (edges) between
application work/data items (vertices)

§ Application defined vertex and edges
§ Diffusion sending if work from heavily

loaded parts to lightly loaded parts
§ In 8 seconds, EnGPar reduced a 53%

vtx imbalance to 6%, at a cost of 5% elm
imbalance, and edge cut increase by 1%
on a 1.3B element mesh

§ Applied to PIC calculations to support
particle balance – 20% reduction in total
run time

EnGPar quickly reduces large imbalances on (hyper)graphs
with billions of edges on up to 512K processes

Application of EnGPar particle
dynamic load balancing in a GITRm

impurity transport simulation

Parallel data and services used to develop adaptive loop
§ Geometric model topology for domain linkage
§ Mesh topology – it must be distributed
§ Simulation fields distributed over geometric model and mesh
§ Partition control
§ Dynamic load

balancing required
at multiple steps

§ API’s to link to
• CAD
• Mesh generation

and adaptation
• Error estimation
• etc.

Parallel Data & Services

Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

SimulaBon Fields

Physics and Model Parameters Input Domain DefiniBon with AHributes

Mesh-Based
Analysis

Complete
Domain

DefiniBon

Mesh GeneraBon
and/or AdaptaBon

Postprocessing/
VisualizaBon

SoluBon
Transfer

CorrecBon
Indicator

PDE’s and
discreBzaBon
methods

SoluBon transfer constraints

mesh with fields

mesh
with
fields

calculated fields

mesh size
 field

meshes
and
fields

meshing
operaBon geometric

 interrogaBon

AHributed

 topology

non-manifold
model construcBon

geometry updates

mesh size
field

mesh

ParBBon Control

Creation of Parallel Adaptive Loops

51

§ In memory adaptive loops support effective
data movement

§ In-memory adaptive loops for
• MFEM – High order

 FE framework
• PHASTA – FE for NS
• FUN3D – FV CFD
• Proteus – multiphase FE
• Albany – FE framework
• ACE3P – High order FE

 electromagnetics
• M3D-C1 – FE based MHD
• Nektar++ – High order FE flow

Parallel Adaptive Simulation Workflows

Application of
active flow control

to aircraft tails

Blood flow on the
arterial system

Fields in a particle accelerator

Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with
~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements,
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right)

shows the first eigenmode of the electric field on the final (adapted) mesh.
53

Application interactions – Land Ice

▪ FELIX, a component of the Albany
framework is the analysis code

▪ Omega_h parallel mesh adaptation
is integrated with Albany to do:
▪ Estimate error
▪ Adapt the mesh

▪ Ice sheet mesh is modified to
minimize degrees of freedom

▪ Field of interest is the ice sheet
velocity

Application interactions – RF Fusion

§ Accurate RF simulations require
• Detailed antenna CAD geometry
• CAD geometry defeaturing
• Extracted physics curves from

GEQDSK equilibrium file
• Analysis geometry combines

CAD, and physics geometry
• 3D meshes for accurate FE

calculations in MFEM
• Projection based error

estimator
• Conforming mesh

adaptation with PUMI

CAD of
antenna array

Initial Mesh Final Adapted Mesh

Defeatured
antenna in

curved mesh

Fast elimination of unwanted features

PUMIPic data structures are mesh centric
■ Mesh is distributed as needed by the

application in terms of PICparts
■ Mesh can be graded and anisotropic
■ Particle data associated with elements
■ Operations take advantage of

distributed mesh topology
■ Mesh distributed in PICparts
■ Start with a partition of mesh into a

set of “core parts”
■ A PICpart is defined by a “core part”

and sufficient buffer to keep particles
on process for one or more pushes

■ GPU version defines buffer as set of
neighboring parts

Supporting Unstructured Mesh for Particle-in-Cell Calculations

3D mesh
(with high

anisotropy)

A PICPart with
part buffers.

Upper: PICpart more for
random particle motion.
Lower: Two PICparts for
field following particles

Particle Push
(update x, v)

Field to Particle
(mesh → particle)

Field solve on
mesh

Charge Deposition
(particle → mesh)

Mesh Data Structure for Heterogeneous Systems

§ Mesh topology/adaptation tool - Omega
• Conforming mesh adaptation (coarsening past initial

mesh, refinement, swap)
• Manycore and GPU parallelism using Kokkos
• Distributed mesh via mesh partitions with MPI

communications
• Support for mesh-based fields

§ Recent developments:
• Curved mesh adaptation
• More efficient field storage
• Kokkos implementation on

latest NVIDIA, AMD and
Intel GPUs

Mesh entity adjacency arrays.

Serial and RIB partitioned mesh of RF
antenna and vessel model.

Adaptation following
rotating flow field.

PUMIPic Particle Data Structures

§ Layout of particles in memory is critical to performance
• Optimizes push (sort/rebuild), scatter, and gather operations
• Associate particles with elements for large per element particle cases
• Support changes in the number of particles per element
• Evenly distributes work under a range of particle distributions

(e.g. uniform, Gaussian, exponential, etc.)
• Stores a lot of particles per GPU – low overhead

§ Particle data structure interface and implementation
• API abstracts implementation

for PIC code developers
• CSR, Sell-C-σ, CabanaM
• Performance is a function of

particle distribution
• Cabana AoSoA w/a CSR index of

elements-to-particles are promising Left to Right: CSR, SCS with vertical slicing
(yellow boxes), CabanaM (red boxes are

SOAs). C is a team of threads.

PIC Operations Supported by PUMIPic

• Particle push
• Adjacency based search

- Faster than grid based search
• Element-to-particle association update
• Particle Migration
• Particle path visualization
• Mesh partitioning w/buffer regions
• Mesh field association
• Poisson field solve using PETSc DMPlex on GPUs
• Checkpoint/restart of particle and mesh data – supports

customization for each application

2020 PUMIPic Paper: https://www.scorec.rpi.edu/REPORTS/2020-2.pdf

PUMIPic based XGCm Edge Plasma Code

XGCm is a version of XGC built on PUMIPic
n targeting execution of all operations on GPUs

Testing of PUMIPic for use in XGC like push
n 2M elements, 1M vertices, 2 to 128 poloidal planes
n Pseudo push and particle-to-mesh gyro scatter
n Tested on up to 24,576 GPUs of Summit with 1.1

trillion particles, for 100 iterations: push, adjacency
n PUMIPic weak scaling up to 24576 GPUs (4096

nodes) with 48 million particles per GPU
XGCm status: All operations on GPU
n Ion and electron scatter and push
n Electrostatic potential calculation
n Gyro-kinetic electric field calculation

and gather
n Poisson solve

PUMIPic based GITRm Impurity Transport Code

§ Incorporates impurity transport capabilities of GITR
§ 3D mesh for cases including divertors, tiles, limiters,

specific diagnostics/probes etc.
§ Status
• Physics equivalent to GITR
• Particle initialization directly on 3D mesh
• 3D mesh design/control including anisotropy

to properly represent the background fields
• Field transfer from SOLPS to 3D mesh
• Non-uniform particle distribution

– evolves quickly in time
• Load balancing particles via EnGPar
• Distance to boundary for sheath E field
• Post-processing on 3D unstructured mesh

Probes

Run the latest Simmetrix and PUMI software on RPI systems

We will help you run the latest Simmetrix and PUMI model
preparation, mesh generation, and adaptation tools on your

problem using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via
email at smithc11@rpi.edu for more information.

mailto:smithc11@rpi.edu

