
V. Dobrev2,  D.A. Ibanez1, T. Kolev2, K.E. Jansen3, J.Merson4
 

O. Sahni4, M.S. Shephard4, G.M. Slota4, C.W. Smith4 
1Sandia National Laboratories

2Lawrence Livermore National Laboratory
3University of Colorado

4Rensselaer Polytechnic Institute

FASTMath Unstructured Mesh Technologies



ATPESC 2023

§ Backed by well-developed theory

§ Naturally support unstructured and curvilinear grids.

§ Finite elements naturally connect different physics

§ High-order finite elements on high-order meshes
• increased accuracy for smooth problems
• sub-element modeling for problems with shocks
• bridge unstructured/structured grids
• bridge sparse/dense linear algebra
• HPC utilization, FLOPs/bytes increase with the order

§ Need new (interesting!) R&D for full benefits
• meshing, discretizations, solvers, AMR, UQ, visualization, …

8th order Lagrangian simula0on 
of shock triple-point interac0on

High-order 
thermodynamics

High-order 
MHD

High-order 
rad. diffusion

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes” “elems”“edges” “faces”

High-order 
kinematics

Core-Edge tokamak EM wave 
propagation

Finite elements are a good founda1on for large-scale 
simula1ons on current and future architectures
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mfem.org
(v4.5.2, Mar/2023)

Flexible discretizations on unstructured grids
§ Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume, 

surface and topologically periodic meshes
§ Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, …
§ Local conforming and non-conforming AMR, mesh optimization
§ Hybridization and static condensation

High-order methods and scalability
§ Arbitrary-order H1, H(curl), H(div)- and L2 elements
§ Arbitrary order curvilinear meshes
§ MPI scalable to millions of cores + GPU accelerated
§ Enables development from laptops to exascale machines.

Solvers and preconditioners
§ Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …
§ AMG solvers for full de Rham complex on CPU+GPU, geometric MG
§ Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software
§ Open-source (GitHub) with 114 contributors, 50 clones/day
§ Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …
§ 75+ example codes & miniapps: mfem.org/examples

Modular Finite Element Methods (MFEM)

http://mfem.org/examples
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Example 1 – Laplace equa1on
§ Mesh

§ Finite element space

§ Initial guess, linear/bilinear forms

§ Linear solve

§ Visualization

§ works for any mesh & any H1 order
§ builds without external dependencies
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Example 1 – Laplace equa1on

§ Mesh
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Example 1 – Laplace equa1on

§ Finite element space
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Example 1 – Laplace equation

§ Initial guess, linear/bilinear forms
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Example 1 – Laplace equa1on

§ Linear solve

§ Visualization
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Example 1 – parallel Laplace equation
§ Parallel mesh

§ Parallel finite element space

§ Parallel initial guess, linear/bilinear forms

§ Parallel linear solve with AMG

§ Visualization

§ highly scalable with minimal changes
§ build depends on hypre and METIS

§ Parallel assembly

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh

�⇥
(1)

�⇥
(2)

(1) Parallel mesh splitting (domain decomposition using METIS).
(2) Parallel mesh refinement.

Parallel finite element space

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh
Parallel finite element space

�⇥
(1)

�⇥
(2)

(1) Find shared degrees of freedom (dofs).
(2) Form groups of dofs and assign ownership.
(3) Build a parallel Boolean matrix P = dofs truedofs identifying each dof with a master (true) dof.

We use the ParCSR format in the hypre library for parallel matrix storage.

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

P : true dof 7! dof

A = PTaP B = PT b x = PX
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Example 1 – parallel Laplace equation
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MFEM example codes: mfem.org/examples 
§ 40+ example codes, most with both serial + parallel versions

§ Tutorials to learn MFEM features

§ Starting point for new applications

§ Show integration with many external packages

§ Miniapps: more advanced, ready-to-use physics solvers
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Topology op(miza(on for 
addi(ve manufacturing (LiDO)

Core-edge tokamak EM
wave propagation (SciDAC, RPI)

Inertial confinement 
fusion (BLAST)

Heart modeling (Cardioid) Adap(ve MHD island
coalescence (SciDAC, LANL)

MRI modeling (Harvard Medical)

Some large-scale simulation codes powered by MFEM
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Advection phase (~c = �~vm)

Momentum Conservation:
d(⇢~v)

d⌧
= ~vm ·r(⇢~v)

Mass Conservation:
d⇢

d⌧
= ~vm ·r⇢

Energy Conservation:
d(⇢e)

d⌧
= ~vm ·r(⇢e)

Mesh velocity: ~vm =
d~x

d⌧

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion

Lagrangian phase (~c = ~0)

Momentum Conservation: ⇢
d~v

dt
= r · �

Mass Conservation:
d⇢

dt
= �⇢r · ~v

Energy Conservation: ⇢
de

dt
= � : r~v

Equation of Motion:
d~x

dt
= ~v

t = 0

⌧ = 0

⌧ = 0.5

⌧ = 1

t = 1.5

t = 3.0

v Galerkin FEM

v Discont. Galerkin

Gauss-Lobatto basis

Bernstein basis

BLAST models shock hydrodynamics using high-order FEM 
in both Lagrangian and Remap phases of ALE
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Parallel ALE for Q4 Rayleigh-
Taylor instability (256 cores)

High-order finite elements lead to more accurate, robust 
and reliable hydrodynamic simula1ons

Robustness in 
Lagrangian shock-3pt 
axisymm. interaction

Symmetry in 
3D implosion

Symmetry in 
Sedov blast



ATPESC 2023

Strong scaling, p-refinement

1 zone/core

~600 dofs/zone

2D
256K DOFs

Strong scaling, fixed #dofs

SGH

Finite element partial assembly FLOPs increase faster than runtime

more FLOPs, 
same runtime

256 cores

High-order finite elements have excellent strong scalability
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Conforming & Nonconforming Mesh Refinement
Mesh Refinement

Conforming refinement

Nonconforming refinement

Natural for quadrilaterals and hexahedra
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Adaptive mesh refinement on library level:
– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes 

– h-refinement with fixed p

General approach: 
– any high-order finite element space, H1, H(curl), 

H(div), …, on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derefinement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in 
applications)

MFEM’s unstructured AMR infrastructure

Example 15

Shaper miniapp
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General nonconforming constraintsConstructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

High-order elements

Constraint:  local interpolation matrix

Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(tangential component discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: first order H(curl) (edge elements)

Constraint: e = f = d/2

Constraint:  e = f = d/2

H(curl) elements

Constructing the P matrix

Indirect constraints: slave DOFs may depend on other
slaves

More complex situations in 3D.
Some methods enforce 2:1 ratio between
edges/faces, we do not.

Indirect constraints

More complicated in 3D…
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Variational Restriction

General constraint:

y = Px , P =


I

W

�
.

x – conforming space DOFs,
y – nonconforming space DOFs (unconstrained + slave),

dim(x)  dim(y)

W – interpolation for slave DOFs

Constrained problem:

P
T
APx = P

T
b,

y = Px .

Nonconforming varia1onal restric1on
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Nonconforming variational restrictionConstructing the P matrix
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Nonconforming variational restrictionConstructing the P matrix

Regular assembly of A on the elements of the (cut) mesh
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Nonconforming variational restrictionAnisotropic refinement

Conforming solution y = P x
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AMR = smaller error for same number of unknowns

Anisotropic adaptation to 
shock-like fields in 2D & 3D

uniform refinement
1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR
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Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and 
derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-
filling curve partitioning, 16 cores
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Parallel decomposition 
(2048 domains shown)

Parallel partitioning via 
Hilbert curve

• weak+strong scaling up to ~400K MPI tasks on BG/Q

• measure AMR only components: interpolation matrix, assembly, marking, 
refinement & rebalancing (no linear solves, no “physics”)

Parallel AMR scaling to ~400K MPI tasks
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A = PTGTBTDBGP

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh 
topology, basis, and geometry/physics components:

Fundamental finite element operator decomposi1on

✔ purely algebraic

✔ partial assembly = store only D, evaluate B (tensor-product structure)

✔ AD-friendly

✔ better representation than A: optimal memory, near-optimal FLOPs

✔ high-order operator format
* libCEED, github.com/ceed/libceed
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Poisson Example. Variational Form:

Find u 2 Qp ⇢ H
1
0 s.t. 8v 2 Qp,

Z
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Z
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• Q is a Boolean assembly matrix (non-Boolean in case of AMR); communication intensive.

• Local element sti↵ness matrices applied in parallel.

• Each A
e
is nominally full and accounts for the bulk of the physics.

Tensor-product sum-factorization is key to e�cient implementation.

• Never form A
e
. Use the factored matrix-vector product

w
e
=

0

@
D1

D2

D3

1

A

T0

@
G

e
11 G

e
12 G

e
13

G
e
21 G

e
22 G

e
23

G
e
31 G

e
32 G

e
33

1

A

0

@
D1

D2

D3

1

Au
e
.

• Dj : tensor products of 1D (q ⇥ q) interpolation (Ĵ) and derivative (D̂) matrices.

D1 = Ĵ ⌦ Ĵ ⌦ D̂

D2 = Ĵ ⌦ D̂ ⌦ Ĵ

D3 = D̂ ⌦ Ĵ ⌦ Ĵ ,

where q=number of quadrature points in each direction.

• Can be applied fast. Only O(q
4
) work and O(q

3
) storage, vs. O(p

6
) cost of traditional FEM.

• Geometric factors are diagonal matrices of size q
3
⇥ q

3
.

• G is a symmetric tensor, Gij = Gji, =) 6q
3
memory references per element.

• For spectral elements, q = p+ 1 and Ĵ = Î.

• Work complexity: W = 12q
4
+ 15q

3
,

• Leading order O(q
4
) term: tensor contractions cast as e�cient BLAS3 kernels.

Poisson problem in variational form

Stiffness matrix (unit coefficient)

(BT)ik BkjDkkG,GT

Aij 

• J is the Jacobian of the element 
mapping (geometric factors)

• G is usually Boolean (except AMR)

• Element matrices AE = BTDB, are 
full, account for bulk of the physics, 
can be applied in parallel

• Never form AE, just apply its action 
based on actions of B, BT and D

Poisson Example. Variational Form:

Find u 2 Qp ⇢ H
1
0 s.t. 8v 2 Qp,
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• Q is a Boolean assembly matrix (non-Boolean in case of AMR); communication intensive.

• Local element sti↵ness matrices applied in parallel.

• Each A
e
is nominally full and accounts for the bulk of the physics.

Tensor-product sum-factorization is key to e�cient implementation.

• Never form A
e
. Use the factored matrix-vector product
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• Dj : tensor products of 1D (q ⇥ q) interpolation (Ĵ) and derivative (D̂) matrices.

D1 = Ĵ ⌦ Ĵ ⌦ D̂

D2 = Ĵ ⌦ D̂ ⌦ Ĵ

D3 = D̂ ⌦ Ĵ ⌦ Ĵ ,

where q=number of quadrature points in each direction.

• Can be applied fast. Only O(q
4
) work and O(q

3
) storage, vs. O(p

6
) cost of traditional FEM.

• Geometric factors are diagonal matrices of size q
3
⇥ q

3
.

• G is a symmetric tensor, Gij = Gji, =) 6q
3
memory references per element.

• For spectral elements, q = p+ 1 and Ĵ = Î.

• Work complexity: W = 12q
4
+ 15q

3
,

• Leading order O(q
4
) term: tensor contractions cast as e�cient BLAS3 kernels.

Example of a fast high-order operator

<latexit sha1_base64="/WvgtQulW6LQCybBaBps3wrEAL8="></latexit>Z

⌦
ru ·rv =

Z

⌦
fv
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CEED BP1 bakeoff on BG/Q

✔ All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ...,16; quad. points q = p + 2.

✔ BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q. 

✔ Paper: “Scalability of High-Performance PDE Solvers”, IJHPCA, 2020
✔ Cooperation/collaboration is what makes the bake-offs rewarding.

Nek5000 MFEM-improved deal.ii
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Device support in MFEM
MFEM support GPU acceleration in many linear algebra and finite element operations

§ Several MFEM examples + miniapps have been ported with small changes

§ Many kernels have a single source for CUDA, RAJA and OpenMP backends

§ Backends are runtime selectable, can be mixed

§ Recent improvements in CUDA, HIP, RAJA, SYCL, …

“MFEM: A modular finite element methods library”, CAMWA 2020
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1 GPU 4 GPUs 1024 GPUs

Best total performance: 2.1 TDOF/s
Largest size: 34 billion

Op#mized kernels for MPI buffer packing/unpacking on the GPU

Single GPU performance: 2.6 GDOF/s
Problem size: 10+ million

MFEM performance on mul1ple GPUs
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Recent improvements on NVIDIA and AMD GPUs

New MFEM GPU kernels: perform on both V100 + MI100,

MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

can u#lize tensor cores on A100
have beKer strong scaling,

V100 MI100 A100 H100

achieve 10+ GDOFs on H100
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• Explicit matrix assembly impractical at high order:

– Polynomial degree 𝑝, spatial dimension 𝑑

– Matrix assembly + sparse matvecs:

• 𝒪(𝑝!") memory transfers

• 𝒪(𝑝#") computations

• can be reduced to 𝒪(𝑝!"$%) computations by sum factorization

– Matrix-free action of the operator (partial assembly):

• 𝒪(𝑝") memory transfers – optimal 

• 𝒪(𝑝"$%) computations – nearly-optimal

• efficient iterative solvers if combined with effective preconditioners

• Challenges:

– Traditional matrix-based preconditioners (e.g. AMG) not available

– Condition number of diffusion systems grows like 𝒪(𝑝!/ℎ")

Matrix-free precondi1oning

𝑝 + 1

𝒪(𝑝") element	dofs
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Low-Order-Refined (LOR) precondi1oning

“Low-order precondi.oning for the high-order de Rham complex”, Pazner, Kolev, Dohrmann, 2022

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

I

I

HO LOR

§ Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

§ ALOR is sparse and spectrally equivalent to AHO 

§ (AHO)-1 ≈ (ALOR)-1 ≈ BLOR  - can use BoomerAMG, AMS, ADS
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§ More information and publications
• MFEM – mfem.org

• BLAST – computation.llnl.gov/projects/blast

• CEED – ceed.exascaleproject.org

§ Open-source software

§ Ongoing R&D 
• GPU-oriented algorithms for Frontier, Aurora, El Capitan

• Matrix-free scalable preconditioners

• Automatic differentiation, design optimization

• Deterministic transport, multi-physics coupling

High-order methods show promise for high-quality & 
performance simula1ons on exascale plaaorms

Q4 Rayleigh-Taylor single-
material ALE on 256 processors  
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Upcoming MFEM Events

MFEM in the Cloud Tutorial

August 10, 2023

MFEM Community Workshop

October 26, 2023

h"ps://mfem.org/workshoph"ps://mfem.org/tutorial

Seminar series:  h"ps://mfem.org/seminar
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Unstructured mesh – a spatial domain discretization composed 
of topological entities with general connectivity and shape

Unstructured Mesh Methods

Advantages
§ Automatic mesh generation for 

any level of geometric complexity
§ Can provide the highest accuracy 

on a per degree of freedom basis
§ General mesh anisotropy possible
§ Meshes can easily be adaptively 

modified
§ Given a complete geometry, with 

analysis attributes defined on that 
model, the entire simulation 
workflow can be automated

Disadvantages
§ More complex data structures and 

increased program complexity, 
particularly in parallel 

§ Requires careful mesh quality 
control (level of control required is 
a function of the unstructured 
mesh analysis code)

§ Poorly shaped elements increase 
condition number of global system 
– makes matrix solves harder

§ Non-tensor product elements not 
as computationally efficient 

37



Goal of FASTMath unstructured mesh developments include:
§ Provide unstructured mesh components that are easily used 

by application code developers to extend their simulation 
capabilities

§ Ensure those components execute on exascale computing 
systems and support performant exascale application codes

§ Develop components to operate through multi-level APIs that 
increase interoperability and ease of integration

§ Address technical gaps by developing tools that address 
needs and/or eliminate/minimize disadvantages of 
unstructured meshes

§ Work with DOE application developers on integration of these 
components into their codes

Unstructured Mesh Methods

38



Technology development areas:
§ Unstructured Mesh Analysis Codes – Support application’s 

PDE solution needs – MFEM library is a key example
§ Performant Mesh Adaptation – Parallel mesh adaptation to 

integrate into analysis codes to ensure solution accuracy 
§ Dynamic Load Balancing and Task Management – 

Technologies to ensure load balance and effectively 
execute by optimal task placement 

§ Unstructured Mesh for Particle In Cell (PIC) Codes – Tools 
to support PIC on unstructured meshes

§ Unstructured Mesh ML and UQ – ML for data reduction, 
adaptive mesh UQ

§ In Situ Vis and Data Analytics – Tools to gain insight as  
            simulations execute

FASTMath Unstructured Mesh Developments

39



§ FE Analysis codes 
• MFEM (https://mfem.org/)
• LGR (https://github.com/SNLComputation/lgrtk)
• PHASTA (https://github.com/phasta/phasta)

§ Unstructured Mesh Infrastructure
• Omega_h (https://github.com/SNLComputation/omega_h)
• PUMI/MeshAdapt (https://github.com/SCOREC/core)
• PUMIpic (https://github.com/SCOREC/pumi-pic)

§ Load balancing, task placement
• Zoltan (https://github.com/sandialabs/Zoltan)
• Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2)
• Xtra-PULP (https://github.com/HPCGraphAnalysis/PuLP)
• EnGPar (http://scorec.github.io/EnGPar/)

§ Unstructured Mesh PIC applications
• XGCm (https://github.com/SCOREC/xgcm) 
• GITRm (https://github.com/SCOREC/gitrm) 

FASTMath Unstructured Mesh Tools and Components

https://mfem.org/
https://github.com/SNLComputation/lgrtk
https://github.com/phasta/phasta
https://github.com/SNLComputation/omega_h
https://github.com/ibaned/omega_h)
https://github.com/SCOREC/core
https://github.com/SCOREC/pumi-pic
https://github.com/sandialabs/Zoltan
https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2
https://github.com/HPCGraphAnalysis/PuLP
http://scorec.github.io/EnGPar/
https://github.com/SCOREC/xgcm
https://github.com/SCOREC/gitrm


Distributed meshPartition modelGeometric model

Parallel Unstructured Mesh Infrastructure

Support unstructured mesh interactions on exascale systems
• Mesh hierarchy to support interrogation and modification 
• Maintains linkage to original geometry
• Conforming mesh adaptation
• Inter-process communication
• Supports field  operations

Tools
• Omega_h – CPU/GPU support
• PUMI – CPU based curved mesh adapt.
• PUMIPic – Unstructured mesh with

particles for CPU/GPU

iM0

jM1

1P

0P
2P

inter-process part  
boundary

intra-process part  
boundary

Proc jProc i

41



Mesh Generation: 
§ Automatically mesh complex domains – should work 

directly from CAD, image data, etc.
§ Use tools like Gmsh, Simmetrix, etc.
Mesh control: 
§ Use a posteriori information to improve mesh
§ Curved geometry and curved mesh entities
§ Support full range of mesh modifications – 

vertex motion, mesh entity curving, cavity based
refinement and coarsening, etc. anisotropic adaptation

§ Control element shapes as needed by the various 
discretization methods for maintaining accuracy and efficiency

Parallel execution of all functions is critical on large meshes

The 
picture 
can't 
be 
display
ed.

Mesh Generation and Control

42



General Mesh Modification for Mesh Adaptation

§ Driven by an anisotropic mesh size field that can be set by any 
combination of criteria

§ Employ a “complete set” of mesh modification operations to 
alter the mesh into one that matches the given mesh size field

§ Advantages  
• Supports general anisotropic meshes
• Can obtain level of accuracy desired
• Can deal with any level of geometric domain complexity
• Solution transfer can be applied incrementally - provides 

more control to satisfy conservation constraints

Edge split face split Double split collapse to remove sliverEdge collapse

43



Mesh Adaptation Status

§ Applied to very large scale models 
– 92B elements on 3.1M processes 
on ¾ million cores

§ Local solution transfer supported 
through callback

§ Effective storage of solution 
fields on meshes

§ Supports adaptation with 
boundary layer meshes

44



Many applications have geometry that evolves as a function of the results – 
Effective adaptive loops combine mesh motion and mesh modification
Adaptive loop:

1. Initialize analysis case, generate initial mesh, start time stepping loop
2. Perform time steps employing mesh motion - monitor element quality 

and discretization errors
3. When element quality is not satisfactory or discretization errors too 

large – set mesh size field and perform mesh modification
4. Return to step 2. 

Mesh Adaptation of Evolving Geometry Problems



§ Supports adaptation of curved 
elements

§ Adaptation based on multiple 
criteria, examples
• Level sets at interfaces
• Tracking particles
• Discretization errors
• Controlling element 

shape in evolving 
geometry

Mesh Adaptation
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§ Purpose: Balance or rebalance computational load while 
controlling communications
• Equal “work load” with minimum inter-process 

communications
§ FASTMath load balancing tools
• Zoltan/Zoltan2 libraries 

provide multiple dynamic 
partitioners with general control
of partition objects and weights

• EnGPar diffusive multi-criteria
partition improvement

• XtraPuLP multi-constraint 
multi-objective label propagation-based graph partitioner

Load Balancing, Dynamic Load balancing
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§ Reduce application communication time at extreme scale
§ Partitioning and load balancing:  assign work to processes in 

ways that avoid process idle time and minimize 
communication

§ Task mapping:  assign processes to cores/GPUs in ways 
that reduce messages distances and network congestion

§ Important in extreme-scale systems:
• Small load imbalances can waste many resources
• Large-scale networks can cause messages to travel long 

routes and induce congestion
§ Algorithms developed to:
• Account for underlying architectures & hierarchies
• Run effectively side-by-side with application across many 

platforms (multicore, GPU)

Architecture-aware partitioning and task mapping



Zoltan/Zoltan2 Toolkits: Partitioners

Recursive Coordinate Bisection
Recursive Inertial Bisection
Multi-Jagged Multi-section

Space Filling Curves 

PHG Graph Partitioning
Interface to ParMETIS  (U. Minnesota)
Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning
Interface to PaToH (Ohio St.)

Suite of partitioners supports a wide range of applications; 
no single partitioner is best for all applications.

Geometric

Topology-based
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§ Multi-(hyper)graph supports multiple 
dependencies (edges) between 
application work/data items (vertices)

§ Application defined vertex and edges
§ Diffusion sending if work from heavily 

loaded parts to lightly loaded parts
§ In 8 seconds, EnGPar reduced a 53% 

vtx imbalance to 6%, at a cost of 5% elm 
imbalance, and edge cut increase by 1% 
on a 1.3B element mesh

§ Applied to PIC calculations to support 
particle balance – 20% reduction in total 
run time

EnGPar quickly reduces large imbalances on (hyper)graphs 
with billions of edges on up to 512K processes

Application of EnGPar particle 
dynamic load balancing in a GITRm 

impurity transport simulation



Parallel data and services used to develop adaptive loop
§ Geometric model topology for domain linkage
§ Mesh topology – it must be distributed 
§ Simulation fields distributed over geometric model and mesh
§ Partition control
§ Dynamic load 

balancing required 
at multiple steps 

§ API’s to link to
• CAD
• Mesh generation

and adaptation
• Error estimation
• etc.

Parallel Data & Services

Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

SimulaBon Fields

Physics and Model Parameters Input Domain DefiniBon with AHributes

Mesh-Based 
Analysis

Complete 
Domain 

DefiniBon

Mesh GeneraBon 
and/or AdaptaBon

Postprocessing/
VisualizaBon

SoluBon
Transfer

CorrecBon 
Indicator

PDE’s and
discreBzaBon
methods

SoluBon  transfer constraints

mesh with fields

mesh 
with 
fields

calculated fields

mesh size 
          field

meshes 
and 
fields

meshing 
operaBon geometric

          interrogaBon

AHributed 

   topology 

non-manifold
model construcBon

geometry updates

mesh size 
field

mesh 

ParBBon Control

Creation of Parallel Adaptive Loops
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§ In memory adaptive loops support effective 
data movement

§ In-memory adaptive loops for
• MFEM – High order 

               FE framework 
• PHASTA – FE for NS
• FUN3D – FV CFD
• Proteus – multiphase FE
• Albany – FE framework
• ACE3P – High order FE 

    electromagnetics
• M3D-C1 – FE based MHD
• Nektar++ – High order FE flow

Parallel Adaptive Simulation Workflows

Application of 
active flow control 

to aircraft tails 

Blood flow on the 
arterial system

Fields in a particle accelerator



Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with 
~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements, 
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right) 

shows the first eigenmode of the electric field on the final (adapted) mesh.
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Application interactions – Land Ice

▪ FELIX, a component of the Albany 
framework is the analysis code

▪ Omega_h parallel mesh adaptation 
is integrated with Albany to do:
▪ Estimate error
▪ Adapt the mesh

▪ Ice sheet mesh is modified to 
minimize degrees of freedom

▪ Field of interest is the ice sheet 
velocity



Application interactions – RF Fusion

§ Accurate RF simulations require
• Detailed antenna CAD geometry
• CAD geometry defeaturing
• Extracted physics curves from 

GEQDSK equilibrium file 
• Analysis geometry combines 

CAD, and physics geometry
• 3D meshes for accurate FE 

calculations in MFEM
• Projection based error 

estimator
• Conforming mesh 

adaptation with PUMI

CAD of 
antenna array

Initial Mesh Final Adapted Mesh

Defeatured 
antenna in 

curved mesh 

Fast elimination of unwanted features



PUMIPic data structures are mesh centric
■ Mesh is distributed as needed by the 

application in terms of PICparts
■ Mesh can be graded and anisotropic
■ Particle data associated with elements
■ Operations take advantage of 

distributed mesh topology
■ Mesh distributed in PICparts
■ Start with a partition of mesh into a 

set of “core parts”
■ A PICpart is defined by a “core part” 

and sufficient buffer to keep particles 
on process for one or more pushes

■ GPU version defines buffer as set of 
neighboring parts

Supporting Unstructured Mesh for Particle-in-Cell Calculations

3D mesh
(with high 

anisotropy)

A PICPart with
part buffers.

Upper: PICpart more for 
random particle motion.
Lower: Two PICparts for 
field following particles  

Particle Push 
(update x, v)

Field to Particle
(mesh → particle)

Field solve on 
mesh

Charge Deposition
(particle → mesh)



Mesh Data Structure for Heterogeneous Systems

§ Mesh topology/adaptation tool - Omega
• Conforming mesh adaptation (coarsening past initial 

mesh, refinement, swap)
• Manycore and GPU parallelism using Kokkos
• Distributed mesh via mesh partitions with MPI 

communications
• Support for mesh-based fields

§ Recent developments:
• Curved mesh adaptation
• More efficient field storage
• Kokkos implementation on 

latest NVIDIA, AMD and 
Intel GPUs

Mesh entity adjacency arrays.

Serial and RIB partitioned mesh of RF 
antenna and vessel model.

Adaptation following 
rotating flow field.



PUMIPic Particle Data Structures

§ Layout of particles in memory is critical to performance
• Optimizes push (sort/rebuild), scatter, and gather operations
• Associate particles with elements for large per element particle cases
• Support changes in the number of particles per element
• Evenly distributes work under a range of particle distributions 

(e.g. uniform, Gaussian, exponential, etc.) 
• Stores a lot of particles per GPU – low overhead

§ Particle data structure interface and implementation
• API abstracts implementation 

for PIC code developers 
• CSR, Sell-C-σ, CabanaM 
• Performance is a function of 

particle distribution
• Cabana AoSoA w/a CSR index of 

elements-to-particles are promising Left to Right: CSR, SCS with vertical slicing 
(yellow boxes), CabanaM (red boxes are 

SOAs). C is a team of threads.



PIC Operations Supported by PUMIPic

• Particle push
• Adjacency based search

- Faster than grid based search
• Element-to-particle association update
• Particle Migration
• Particle path visualization
• Mesh partitioning w/buffer regions
• Mesh field association
• Poisson field solve using PETSc DMPlex on GPUs 
• Checkpoint/restart of particle and mesh data – supports 

customization for each application

2020 PUMIPic Paper: https://www.scorec.rpi.edu/REPORTS/2020-2.pdf



PUMIPic based XGCm Edge Plasma Code

XGCm is a version of XGC built on PUMIPic
n targeting execution of all operations on GPUs  

Testing of PUMIPic for use in XGC like push 
n 2M elements, 1M vertices, 2 to 128 poloidal planes
n Pseudo push and particle-to-mesh gyro scatter
n Tested on up to 24,576 GPUs of Summit with 1.1 

trillion particles, for 100 iterations: push, adjacency
n PUMIPic weak scaling up to 24576 GPUs (4096 

nodes) with 48 million particles per GPU
XGCm status: All operations on GPU 
n Ion and electron scatter and push 
n Electrostatic potential calculation
n Gyro-kinetic electric field calculation 

and gather
n Poisson solve



PUMIPic based GITRm Impurity Transport Code

§ Incorporates impurity transport capabilities of GITR
§ 3D mesh for cases including divertors, tiles, limiters, 

specific diagnostics/probes etc.
§ Status
• Physics equivalent to GITR
• Particle initialization directly on 3D mesh
• 3D mesh design/control including anisotropy

to properly represent the background fields 
• Field transfer from SOLPS to 3D mesh
• Non-uniform particle distribution 

– evolves quickly in time
• Load balancing particles via EnGPar
• Distance to boundary for sheath E field 
• Post-processing on 3D unstructured mesh

Probes



Run the latest Simmetrix and PUMI software on RPI systems

We will help you run the latest Simmetrix and PUMI model 
preparation, mesh generation, and adaptation tools on your 

problem using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via 
email at smithc11@rpi.edu for more information.

mailto:smithc11@rpi.edu

