Exceptional service in the national interest

Iterative Solvers & Algebraic Multigrid (with Trilinos, Belos & MueLu)

Christian Glusa and Graham Harper {caglusa,gbharpe}@sandia.gov

August 8, 2023

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL89000, SAND NO. SAND

Discretization of partial differential equations gives rise to large linear systems of equations

$$\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}},$$

where \boldsymbol{A} is sparse, i.e. only a few non-zero entries per row.

Example

2D Poisson equation:

$$-\Delta u = f$$
 in $\Omega = [0, 1]^2$,
 $u = 0$ on $\partial \Omega$.

Central finite differences on a uniform mesh $\{x_{i,j}\}$:

$$4u_{i,j} - u_{i,j+1} - u_{i,j-1} - u_{i+1,j} - u_{i-1,j} = f(x_{i,j}) \Delta x^2 \quad \text{if } x_{i,j} \notin \partial \Omega,$$

$$u_{i,j} = 0 \quad \text{if } x_{i,j} \in \partial \Omega.$$

 \rightarrow 5 entries or less per row of **A**.

Instead of dense format, keep matrix \boldsymbol{A} in a sparse format e.g. compressed sparse row (CSR):

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

rowptr =
$$(0 \ 2 \ 4 \ 5)$$

indices = $(0 \ 1 \ 0 \ 1 \ 2)$
values = $(1 \ 2 \ 3 \ 4 \ 5)$

Available solvers

Solve

$$\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}.$$

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this morning

- Factorisation scales as $\mathcal{O}(n^3)$.
- Factors are a lot denser than $A \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of A.

Observation

A has $\mathcal{O}(\textit{n})$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(\textit{n})$ operations.

Option 2: Iterative solvers

- **E**xploit an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of **A**.

Available solvers

Solve

$$\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}}.$$

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels thi morning

- Factorisation scales as $\mathcal{O}(n^3)$.
- lacksquare Factors are a lot denser than $oldsymbol{A}
 ightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of A.

Observation

A has $\mathcal{O}(n)$ non-zero entries. o Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- **E**xploit an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of **A**.

Krylov methods

Based on mat-vecs, we can compute

$$ec{\mathbf{y}}^0 := ec{\mathbf{b}}$$
 $ec{\mathbf{y}}^{k+1} := ec{\mathbf{y}}^k + \underbrace{\left(ec{\mathbf{b}} - \mathbf{A} ec{\mathbf{y}}^k
ight)}_{ ext{"residual"}}$

("initial guess"')

and recombine in some smart way to obtain an approximate solution

$$\vec{\mathbf{x}}^K = \sum_{k=0}^K \alpha_k \vec{\mathbf{y}}^k.$$

Expressions for α_k typically involve inner products between vectors in the so-called *Krylov space* span $\{\vec{y}^k\} = \{\vec{b}, \mathbf{A}\vec{b}, \mathbf{A}^2\vec{b}, \mathbf{A}^3\vec{b}, \dots, \mathbf{A}^K\vec{b}\}.$

- Keeping the entire Krylov space can be quite expensive.
- Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

- Conjugate gradient (CG)
 - Use a short recurrence, i.e. does not keep the whole Krylov space around.
 - Provably works for symmetric positive definite (spd)A.
- Generalized Minimum Residual (GMRES, GMRES(K))
 - Works for nonsymmetric systems.
 - GMRES keeps the whole Krylov space around.
 - GMRES(K) discards the Krylov space after K iterations.

Convergence of Krylov methods

CG convergence result:

$$\|\vec{\mathbf{z}}^K - \vec{\mathbf{z}}\| \le \left(1 - 1/\sqrt{\kappa(\mathbf{A})}\right)^K \|\vec{\mathbf{z}}^0 - \vec{\mathbf{z}}\|,$$

where $\kappa(\mathbf{A})$ is the *condition number* of \mathbf{A} :

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|.$$

A common theme with Krylov methods:

 κ measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea

Reduce the condition number ("Preconditioning").

Instead of solving

$$\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}},$$

solve

$$\mathbf{P}\mathbf{A}\vec{\mathbf{x}} = \mathbf{P}\vec{\mathbf{b}}$$
 or $\mathbf{A}\mathbf{P}\vec{\mathbf{z}} = \vec{\mathbf{b}}, \quad \vec{\mathbf{x}} = \mathbf{P}\vec{\mathbf{z}}$

with preconditioner **P** so that $\kappa(\mathbf{PA}) \ll \kappa(\mathbf{A})$.

Two requirements that must be balanced:

- Multiplication with **P** should be comparable in cost to **A**.
- $\mathbf{P} \approx \mathbf{A}^{-1}$.

Some simple preconditioners

- Jacobi: $P = D^{-1}$, where D is the diagonal of A.
- lacksquare Gauss-Seidel: $m{P}=(m{D}+m{L})^{-1}$, where $m{L}$ is the lower or upper triangular part of $m{A}$.
- lacktriangle Polynomial preconditioners: $m{P}=p(m{A})$, where p is some carefully chosen polynomial.
- Incomplete factorizations such as ILU or Incomplete Cholesky.

Krylov methods and preconditioners: Packages in the Trilinos project

www.trilinos.org

- Support for hybrid (MPI+X) parallelism, $X \in \{\text{OpenMP, CUDA, HIP,} \dots\}$
- C++, open source, primarily developed at Sandia National Labs

Belos - iterative linear solvers

- Standard methods:
 - Conjugate Gradients (CG), Generalized Minimal Residual (GMRES)
 - TFQMR, BiCGStab, MINRES, Richardson / fixed-point
- Advanced methods:
 - Block GMRES, block CG/BiCG
 - Hybrid GMRES, GCRODR (block recycling GMRES)
 - TSQR (tall skinny QR), LSQR
- Ongoing research:
 - Communication avoiding methods
 - Pipelined and s-step methods
 - Mixed precision methods

Ifpack2 - single-level solvers and preconditioners

- incomplete factorisations
 - ILUT
 - RILU(k)
- relaxation preconditioners
 - Jacobi
 - Gauss-Seidel (and a multithreaded variant)
 - Successive Over-Relaxation (SOR)
 - Symmetric versions of Gauss-Seidel and SOR
 - Chebyshev
- additive Schwarz domain decomposition


```
Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2023/
lessons/krylov_amg_muelu/
Sets 1 and 2
20 mins
Slack channel: #atpesc-2023-track5-numerical-breakout
```

Motivation for Multigrid methods

Convergence of Jacobi: $\vec{y}^{k+1} = \vec{y}^k + D^{-1}\vec{r}^k$, $\vec{r}^k = \vec{b} - A\vec{y}^k$ High frequency error is damped quickly, low frequency error slowly

Motivation for Multigrid methods

Convergence of Jacobi: Local transmission of information cannot result in a scalable method

Motivation for Multigrid methods

Sandia National Laboratories

Resolution affects observed frequency:

Idea: accelerate Jacobi convergence by reducing resolution!

Multigrid

- \blacksquare Main idea: accelerate solution of ${m A} {ec x} = {ec b}$ by using "hierarchy" of coarser problems
- Remove high-frequency error on fine mesh, where application matrix lives (using Jacobi or another cheap preconditioner),
- Move to coarser mesh
- Remove high-frequency error on coarser mesh by solving residual equation
- Move to coarser mesh

:

- Solve a small problem on a very coarse mesh.
- Move back up.

Repeat.

- Geometric multigrid requires coarse mesh information.
- Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.

Software packages for Algebraic Multigrid

Classical AMG (hypre)
 Developed at Lawrence Livermore National Lab, presentation by Sarah Osborn & Ulrike Yang this morning.

- Smoothed Aggregation Multigrid (PETSc)
 Developed by Mark Adams and the PETSc team.
- Smoothed Aggregation Multigrid (Trilinos) Two multigrid packages in Trilinos:
 - ML
 C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)
 - MueLu
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)

The MueLu package

- Algebraic Multigrid package in Trilinos
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)
- Robust, scalable, portable AMG preconditioning is critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)
- Capabilities
 - Aggregation-based and structured coarsening
 - lacksquare Smoothers: Jacobi, Gauss-Seidel, ℓ_1 Gauss-Seidel, multithreaded Gauss-Seidel, polynomial. ILU
 - Load balancing for good parallel performance
- Ongoing research
 - performance on next-generation architectures
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured problems
 - Algorithm selection via machine learning

www.trilinos.org


```
Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2023/
lessons/krylov_amg_muelu/
Set 3 & 4
20 mins
Slack channel: #atpesc-2023-track5-numerical-breakout
```

Strong & weak scaling results for EMPIRE (Maxwell + PIC)

- Specialized multigrid for curl-curl problem
- Largest problem to date: 34B unknowns

Ongoing work

6: end for

- Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
- Multigrid approaches for higher order discretizations
- Matrix-free multigrid
- Multigrid on semi-structured meshes
- Machine learning for AMG coarsening
- Preconditioning for multiphysics systems
- Multigrid for hierarchical matrices (boundary integral and nonlocal equations)

Algorithm 1 Iterative Refinement with GMRES Error Correction 1: $r_0 = b - Ax_0$ double 2: for i = 1, 2, ... until convergence: do Use GMRES(m) to solve $Au_i = r_i$ for correction u_i [single] $x_{i+1} = x_i + u_i$ double $r_{i+1} = b - Ax_{i+1}$ double

Take away messages

- CG works for spd matrix and preconditioner.
- GMRES works for unsymmetric systems, but requires more memory.
- Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.
- Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

- summer students (LINK),
- postdocs (LINK).
- Sustainable Research Pathways (LINK)

Please contact us!