Iterative Solvers & Algebraic Multigrid (with Trilinos, Belos & MueLu)

Christian Glusa and Graham Harper {caglusa,gbharpe}@sandia.gov

August 8, 2023
Discretization of partial differential equations gives rise to large linear systems of equations

\[\mathbf{A}\mathbf{x} = \mathbf{b}, \]

where \(\mathbf{A} \) is sparse, i.e. only a few non-zero entries per row.

Example

2D Poisson equation:

\[-\Delta u = f \text{ in } \Omega = [0,1]^2,\]
\[u = 0 \text{ on } \partial\Omega.\]

Central finite differences on a uniform mesh \(\{x_{i,j}\} \):

\[4u_{i,j} - u_{i,j+1} - u_{i,j-1} - u_{i+1,j} - u_{i-1,j} = f(x_{i,j})\Delta x^2 \quad \text{if } x_{i,j} \notin \partial\Omega,\]
\[u_{i,j} = 0 \quad \text{if } x_{i,j} \in \partial\Omega.\]

\[\rightarrow 5 \text{ entries or less per row of } \mathbf{A}.\]

Instead of dense format, keep matrix \(\mathbf{A} \) in a sparse format e.g. *compressed sparse row* (CSR):

\[
\begin{pmatrix}
1 & 2 & 0 \\
3 & 4 & 0 \\
0 & 0 & 5
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 2 & 4 & 5
\end{pmatrix} \quad \begin{pmatrix}
0 & 1 & 0 & 1 & 2
\end{pmatrix} \quad \begin{pmatrix}
1 & 2 & 3 & 4 & 5
\end{pmatrix}
\]
Available solvers

Solve

\[\mathbf{A} \mathbf{x} = \mathbf{b}. \]

Option 1: Direct solvers (think Gaussian elimination), *presentation by Sherry Li, and Pieter Ghysels this morning*

- Factorisation scales as \(O(n^3) \).
- Factors are a lot denser than \(\mathbf{A} \rightarrow \) memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of \(\mathbf{A} \).

Observation

\(\mathbf{A} \) has \(O(n) \) non-zero entries. \(\rightarrow \) Optimal complexity for a solve is \(O(n) \) operations.

Option 2: Iterative solvers

- Exploit an operation that has \(O(n) \) complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of \(\mathbf{A} \).
Available solvers

Solve

\[\mathbf{A}\mathbf{x} = \mathbf{b}. \]

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this morning

- Factorisation scales as \(O(n^3) \).
- Factors are a lot denser than \(\mathbf{A} \) → memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of \(\mathbf{A} \).

Observation

\(\mathbf{A} \) has \(O(n) \) non-zero entries. → Optimal complexity for a solve is \(O(n) \) operations.

Option 2: Iterative solvers

- Exploit an operation that has \(O(n) \) complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of \(\mathbf{A} \).
Krylov methods

Based on mat-vecs, we can compute

\[\vec{y}^0 := \vec{b} \]

\[\vec{y}^{k+1} := \vec{y}^k + \left(\vec{b} - A\vec{y}^k \right) \]

and recombine in some smart way to obtain an approximate solution

\[\vec{x}^K = \sum_{k=0}^{K} \alpha_k \vec{y}^k. \]

Expressions for \(\alpha_k \) typically involve inner products between vectors in the so-called Krylov space

\[\text{span} \{ \vec{y}^k \} = \left\{ \vec{b}, A\vec{b}, A^2\vec{b}, A^3\vec{b}, \ldots, A^K\vec{b} \right\}. \]

- Keeping the entire Krylov space can be quite expensive.
- Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

- Conjugate gradient (CG)
 - Use a short recurrence, i.e. does not keep the whole Krylov space around.
 - Provably works for symmetric positive definite (spd) \(A \).

- Generalized Minimum Residual (GMRES, GMRES(\(K \))
 - Works for nonsymmetric systems.
 - GMRES keeps the whole Krylov space around.
 - GMRES(\(K \)) discards the Krylov space after \(K \) iterations.
Convergence of Krylov methods

CG convergence result:

\[\| \vec{x}^K - \vec{x} \| \leq \left(1 - 1/\sqrt{\kappa(A)} \right)^K \| \vec{x}^0 - \vec{x} \|, \]

where \(\kappa(A) \) is the condition number of \(A \):

\[\kappa(A) = \| A \| \| A^{-1} \|. \]

A common theme with Krylov methods:
\(\kappa \) measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea
Reduce the condition number ("Preconditioning").

Instead of solving

\[A\vec{x} = \vec{b}, \]

solve

\[PA\vec{x} = P\vec{b} \]

or

\[AP\vec{z} = \vec{b}, \quad \vec{x} = P\vec{z} \]

with preconditioner \(P \) so that \(\kappa(PA) \ll \kappa(A) \).

Two requirements that must be balanced:
- Multiplication with \(P \) should be comparable in cost to \(A \).
- \(P \approx A^{-1} \).
Some simple preconditioners

- Jacobi: $P = D^{-1}$, where D is the diagonal of A.
- Gauss-Seidel: $P = (D + L)^{-1}$, where L is the lower or upper triangular part of A.
- Polynomial preconditioners: $P = p(A)$, where p is some carefully chosen polynomial.
- Incomplete factorizations such as ILU or Incomplete Cholesky.
Krylov methods and preconditioners: Packages in the Trilinos project

- Support for hybrid (MPI+\(X\)) parallelism, \(X \in \{\text{OpenMP, CUDA, HIP, \ldots}\}\)
- C++, open source, primarily developed at Sandia National Labs

Belos - iterative linear solvers

- Standard methods:
 - Conjugate Gradients (CG), Generalized Minimal Residual (GMRES)
 - TFQMR, BiCGStab, MINRES, Richardson / fixed-point
- Advanced methods:
 - Block GMRES, block CG/BiCG
 - Hybrid GMRES, GCRODR (block recycling GMRES)
 - TSQR (tall skinny QR), LSQR
- Ongoing research:
 - Communication avoiding methods
 - Pipelined and s-step methods
 - Mixed precision methods

Ifpack2 - single-level solvers and preconditioners

- Incomplete factorisations
 - ILUT
 - RILU(k)
- Relaxation preconditioners
 - Jacobi
 - Gauss-Seidel (and a multithreaded variant)
 - Successive Over-Relaxation (SOR)
 - Symmetric versions of Gauss-Seidel and SOR
 - Chebyshev
- Additive Schwarz domain decomposition
Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
Sets 1 and 2
20 mins
Slack channel: #atpesc-2023-track5-numerical-breakout
Motivation for Multigrid methods

Convergence of Jacobi: $\vec{y}^{k+1} = \vec{y}^k + D^{-1} \vec{r}^k$, $\vec{r}^k = \vec{b} - A\vec{y}^k$

High frequency error is damped quickly, low frequency error slowly
Motivation for Multigrid methods

Convergence of Jacobi:
Local transmission of information cannot result in a scalable method
Motivation for Multigrid methods

Resolution affects observed frequency:

Idea: accelerate Jacobi convergence by reducing resolution!
Main idea: accelerate solution of $A\vec{x} = \vec{b}$ by using "hierarchy" of coarser problems.

Remove high-frequency error on fine mesh, where application matrix lives (using Jacobi or another cheap preconditioner),

Move to coarser mesh

Remove high-frequency error on coarser mesh by solving residual equation

Move to coarser mesh

...

Solve a small problem on a very coarse mesh.

Move back up.

Repeat.

- Geometric multigrid requires coarse mesh information.
- Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.
Software packages for Algebraic Multigrid

- Classical AMG (hypre)
 Developed at Lawrence Livermore National Lab, presentation by Sarah Osborn & Ulrike Yang this morning.

- Smoothed Aggregation Multigrid (PETSc)
 Developed by Mark Adams and the PETSc team.

- Smoothed Aggregation Multigrid (Trilinos)
 Two multigrid packages in Trilinos:
 - ML
 C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)
 - MueLu
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)

\[Multigrid \text{ Framework} \]

\[MueLu \]
The MueLu package

- Algebraic Multigrid package in Trilinos
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, …)

- Robust, scalable, portable AMG preconditioning is critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)

- Capabilities
 - Aggregation-based and structured coarsening
 - Smoothers: Jacobi, Gauss-Seidel, ℓ_1 Gauss-Seidel, multithreaded Gauss-Seidel, polynomial, ILU
 - Load balancing for good parallel performance

- Ongoing research
 - performance on next-generation architectures
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured problems
 - Algorithm selection via machine learning

www.trilinos.org
Hands-on: Algebraic Multigrid

Go to https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
Set 3 & 4
20 mins
Slack channel: #atpesc-2023-track5-numerical-breakout
Strong & weak scaling results for EMPIRE (Maxwell + PIC)

- Specialized multigrid for curl-curl problem
- Largest problem to date: 34B unknowns
Ongoing work

- Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
- Multigrid approaches for higher order discretizations
- Matrix-free multigrid
- Multigrid on semi-structured meshes
- Machine learning for AMG coarsening
- Preconditioning for multiphysics systems
- Multigrid for hierarchical matrices (boundary integral and nonlocal equations)

Algorithm 1: Iterative Refinement with GMRES Error Correction

1. $r_0 = b - Ax_0$ [double]
2. for $i = 1, 2, \ldots$ until convergence do
3. Use GMRES(m) to solve $Au_i = r_i$ for correction u_i [single]
4. $x_{i+1} = x_i + u_i$ [double]
5. $r_{i+1} = b - Ax_{i+1}$ [double]
6. end for
Take away messages

- CG works for spd matrix and preconditioner.
- GMRES works for unsymmetric systems, but requires more memory.
- Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.
- Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?
We are always looking for motivated
- summer students (LINK),
- postdocs (LINK).
- Sustainable Research Pathways (LINK)
Please contact us!