
Numerical Optimization with PETSc/TAO: The Multidimensional

Rosenbrock Problem

A practical introduction to large-scale gradient-based optimization

 



At a Glance

Questions Objectives Key Points

1. What is optimization? Understand the basic principles Optimization seeks the inputs of a function that minimize it

2. Why use gradient-based
methods?

Learn about trade-offs in algorithm
choice

Gradient-based methods �nd local minima with the fewest number
of function evaluations

3. How can we compute
gradients?

Evaluate different sensitivity analysis
methods

Applications should provide analytical gradients whenever they can

4. How to solve constrained
problems?

Introduce constraints to the
optimization problem

Constraints can change the solution or introduce new local minima

 



Introduction to Optimization

Optimization algorithms seek to �nd theinput variables or parameters (referred to as "control", "design" or
"optimization" variables) that minimize (or maximize) a function of interest.

: optimization variables

: objective function

𝑓(𝑝)minimize
𝑝∈𝑋

𝑝

𝑓 : 𝑋 ↦ ℝ

 



Optimization is a huge topic

Sub-disciplines branch off based on the space  —

Discontinuous: combinatorial optimization, integer programming

Continuous: (today)

Unconstrained: 

Constrained: 

— and the the objective function  —

Convexity: convex optimization

Stochasticity

Smoothness: (today)

Continuous: zeroth order methods

Differentiable: �rst order methods

𝑋

𝑋 = ℝ𝑛

𝑋 = {𝑥 ∈ : 𝑔(𝑥) = 0, (𝑥) ≥ 0, (𝑥) ≥ 0,…}ℝ
𝑛 ℎ1 ℎ2

𝑓

 



Numerical Optimization by Nocedal & Wright is a standard reference for the types of methods discussed
today.

 



In this lesson, we focus on gradient-based optimization methods -- methods that utilize information about
the sensitivity of the objective function with respect to its inputs.

Solutions to this problem are found where the gradient of the objective function is zero,

However, this is only a necessary but not suf�cient condition for optimality given that other stationary points
(e.g., maxima) also satisfy this condition.

𝑓(𝑝) = 0.∇𝑝

 



Sequential Quadratic Programming (SQP)

To �nd local minima for the above problems, we replace the original problem with a sequence of quadratic
subproblems,

where  is the gradient,  is the Hessian,  is the search direction, and

the  subscript denotes evaluation at the iterate .

+ + ,minimize
𝑑

𝑓𝑘 𝑑
𝑇
𝑔𝑘

1

2
𝑑
𝑇𝐻𝑘𝑑

𝑇

= 𝑓( )𝑔𝑘 ∇𝑝 𝑝𝑘 = 𝑓( )𝐻𝑘 ∇2𝑝 𝑝𝑘 𝑑 ∈ ℝ𝑛

𝑘 𝑝𝑘
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The exact solution to this quadratic subproblem is the inversion of the Hessian onto the negative gradient,

In order to avoid non-minimum stationary points, we also seek to �nd a step length  that approximately
minimizes the objective function along the line de�ned by the search direction,

𝑑 = − .𝐻−1
𝑘
𝑔𝑘

𝛼

Φ(𝛼) = 𝑓( + 𝛼𝑑).minimize
𝛼

𝑝𝑘

 



This scalar minimization problem is called a "line search", and is categorized as a "globalization" method
because it helps maintain consistency between the local quadratic model and the global nonlinear function.

The SQP class of algorithms can be summarized with the pseudocode:
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In this approach, different approximations to the search direction solution yield different members of the
SQP family:

[Truncated] Newton:

with the Hessian inverted [iteratively (e.g., Krylov methods) using dynamic tolerances].

Quasi-Newton:

with low-rank updates based on the secant condition.

Conjugate Gradient:

with  de�ning different CG update formulas.

Gradient Descent:

with Hessian replaced with the identity matrix.

𝑑 = −𝐻−1𝑘 𝑔𝑘

𝑑 = − , ≈𝐵𝑘𝑔𝑘 𝐵𝑘 𝐻−1
𝑘

= − + 𝛽𝑑𝑘 𝑔𝑘 𝑑𝑘−1
𝛽

𝑑 = 𝑔𝑘

 



Let's think about tradeo�s at scale

The time to solve an optimization problem.

What controls ?

Stopping criterion & tolerance: Objective value ? Necessary condition ?

Iteration complexity of the algorithm

First-order methods decrease error linearly (add zeros after the decimal in  at a

predictable rate near the solution)

Second-order methods decrease error quadratically (double zeros after the decimal in
 at a predictable rate)

𝑇 (𝑛) = (𝑛).𝑁iter𝑇iter

𝑁iter

𝑓( )𝑝𝑘 𝑓( )∇𝑝 𝑝𝑘

‖ 𝑓( )‖∇𝑝 𝑝𝑘

‖ 𝑓( )‖∇𝑝 𝑝𝑘

 



What controls 

Evaluate the objective :

Depends on  (conditioning) and its implementation, but always requires information from all

(distributed) parts of the objective: complexity usually no better than allreduce() .

(If you can approximate  quickly and consistently without evaluating all of it, you should be

looking at stochastic methods instead.)

Evaluate the gradient :

Depends on the adjoint ef�ciency of  and its implementation.

Solve :

Dependendent on numerical conditioning of , the presence/absence of a good

preconditioner, iterative linear solver ef�ciency, and the implementation of all of those parts.

𝑇 (𝑛) = (𝑛)𝑁iter𝑇iter

(𝑛)?𝑇iter

𝑓( )𝑝𝑘

𝑓

𝑓( )𝑝𝑘

= 𝑓( )𝑔𝑘 ∇𝑝 𝑝𝑘

𝑓

𝑑 = −𝐻−1𝑘 𝑟𝑘

𝐻𝑘

 



Sensitivity Analysis

In order to use SQP algorithms, the applications must, at minimum, provide �rst-order derivative
information.

In the broadest sense, there are two generalized ways to compute gradients.

 



Numerical Differentiation approximates the derivative of a function using numerical methods like the
forward difference approximation.

where  is the �nite perturbation,  is the standard basis vector for the  coordinate, and  is
truncation error for the approximation.

Easy to user, requires on  itself, but computing each element of the gradient requires a separate function
evaluation, (cost scales up rapidly with increasing problem sizes).

= + (ℎ) ∀ 𝑖 = 1, 2,… ,𝑁,
𝑑𝑓

𝑑𝑝𝑖

𝑓(𝑝 + ℎ ) + 𝑓(𝑝)𝑒𝑖

ℎ

ℎ 𝑒𝑖 𝑖𝑡ℎ (ℎ)

𝑓

 



Analytical Differentiation computes the exact derivative by generating a stand-alone mathematical or
algorithmic expression for the gradient.

Our example today is simple enough to do either of these by hand, but real problems generally are not.

 



An incomplete list of AD tools that may be useful to your application:

 (ANSI C) -- Argonne National Laboratory

 (Fortran77) -- Argonne National Laboratory

 (Fortran77/Fortran95/C/C++) -- Argonne National Laboratory

 (C/C++) -- Sandia National Laboratory

 (Julia)

 (Python)

 (MATLAB)

 (LLVM IR)

ADIC

ADIFOR

OpenAD

Sacado

ForwardDiff.jl

JAX

TOMLAB/MAD

Enzyme

 

https://www.mcs.anl.gov/research/projects/adic/
https://www.mcs.anl.gov/research/projects/adifor/index.html
https://www.mcs.anl.gov/OpenAD/
https://trilinos.github.io/sacado.html
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/google/jax
https://tomopt.com/tomlab/products/mad/
https://enzyme.mit.edu/


Using TAO

Toolkit for Advanced Optimization (TAO) is a package of optimization algorithms and tools developed at
Argonne National Laboratory and distributed with the Portable Extensible Toolkit for Scienti�c Computing
(PETSc) library. TAO is primarily intended for continuous gradient-based optimization and supports PDE-
constrained problems using the reduced-space formulation.

 



Breaking down a TAO example

Use the search at <petsc.org> for API references.

#include "petsc.h"

int main() {
  Tao tao;
  Vec x;

  // ... construct X (more later)
  TaoCreate(PETSC_COMM_WORLD, &tao);
  TaoSetType(tao, TAOBQNLS); // bounded, Quasi-Newton, line-search
  TaoSetSolution(tao, x);
  // ... describe f(x), g(x), H(X) (more later)
  TaoSetFromOptions(tao);
  TaoSolve(tao);
  TaoDestroy(&tao);
  // ... finalize 
  return 0;
}

 



Describing  by callback𝑓(𝑥)

typedef struct { /* ... */ } AppCtx;

PetscErrorCode FormFunction(Tao tao, Vec x, PetscReal *fcn, void *ptr)
{
  AppCtx *user = (AppCtx*)ptr;
  PetscReal f_x;
  // ... user code to compute f_x
  *fcn = f_x;
  return PETSC_SUCCESS;
}

int main() {
    AppCtx user;
    // ... setup ctx
    TaoSetObjective(tao, FormFunction,  &user); 
    // ...
}

 



Describing  by callback: performance portability𝑓(𝑥)

PetscErrorCode FormFunction(Tao tao, Vec x, PetscReal *fcn, void *ptr)
{
  AppCtx            *user = (AppCtx*)ptr;
  PetscRea      l    f_x;
  const PetscScalar *x_ptr;
  PetscMemType       memtype;

  VecGetArrayReadAndMemType(x, &x_ptr, &memtype);
  switch(memtype) {
  case PETSC_MEMTYPE_HOST:   FormFunction_Host(x_ptr, fcn, user); break;
  case PETSC_MEMTYPE_DEVICE: FormFunction_Device(x_ptr, fcn, user); break;
  // more specific cases are possible: PETSC_MEMTYPE_{CUDA,KOKKOS,SYCL}
  }   
  VecRestoreArrayReadAndMemType(x, &x_ptr, &memtype);

  return PETSC_SUCCESS;
}

 



Describing : petsc4py bindings𝑓(𝑥)

# PETSc src/binding/petsc4py/demo/legacy/taosolve/rosenbrock.py
class AppCtx(object):
    def __init__(self, alpha=99.0):
        self.alpha = float(alpha)

    def formObjective(self, tao, x):
        alpha = self.alpha
        ff = ... # function of x and alpha
        return ff

    # ... other callbacks

user = AppCtx()
tao = PETSc.TAO().create(PETSc.COMM_WORLD)
# ...
tao.setObjective(user.formObjective)

 



Other callbacks

TaoSetObjectiveAndGradient() : Many functions compute  and  more ef�ciently

together than separately (particularly true of many AD systems).

TaoSetHessian() : Can separately specify from a true Hessian  (correct matrix-vector products)

and preconditioner  (quickly computed sparse approximation).

PetscErrorCode FormObjective(Tao tao, Vec x, PetscReal *fcn, void *ptr);
PetscErrorCode FormGradient(Tao tao, Vec x, Vec g, void *ptr);
PetscErrorCode FormObjectiveAndGradient(Tao tao, Vec x, PetscReal *fcn, Vec g, void *p
tr);
PetscErrorCode FormHessian(Tao tao, Vec x, Mat H, Mat Hpre, void *ptr);

𝑓(𝑥) 𝑓(𝑥)∇𝑥

𝐻

𝐻pre

 



TaoSetType()  and TaoType
TAO implements several bound-constrained algorithm types that also solve unconstrained problems when
there are no bounds de�ned in the problem setup. Algorithm types can be changed either via the
TaoSetType()  interface using the solver names given in the �rst column below, or changed at runtume
with the option �ag -tao_type <solver>  using the string arguments given in the second column.

Solver Type Option Flag Description

TAONLS bnls Newton Line Search

TAONTR bntr Newton Trust Region

TAOCG bncg Nonlinear Conjugate Gradient

TAOBNLS bnls Bound-constrained Newton Line Search

TAOBNTR bntr Bound-constrained Newton Trust Region

TAOBQNLS bqnls Bound-constrained Quasi-Newton Line Search

TAOBNCG bncg Bound-constrained Nonlinear Conjugate Gradient

 



More useful command line arguments

Option Flag Code API Description

-tao_monitor TaoSetMonitor()  with

TaoMonitorDefault() Enable the iteration monitor for the solution

-tao_view TaoView() Display useful information about the solution after
completion

-tao_max_it <integer> TaoSetMaximumIterations() Change the maximum iteration limit

-tao_max_funcs 
<integer> TaoSetMaximumFunctionEvaluations() Change the maximum number of function evaluations

-tao_gatol <float> TaoSetTolerances() Change the absolute convergence tolerance

 



Constrained optimization problems: bound constraints

minimize
𝑝

subject to

𝑓(𝑝)

≤ 𝑝 ≤𝑝𝑙 𝑝𝑢

/* Duplicate from solution vector and set bounds */
VecDuplicate(X, &XL);
VecSet(XL, PETSC_NINFINITY);
VecDuplicate(X, &XU);
VecSet(XU, 0.0);
TaoSetVariableBounds(tao, XL, XU);

 



General constraints: additional callbacks

Solver for general constrained problems: TAOALMM  (Augmented Lagrangian Method of Multipliers)

minimize
𝑝

subject to

𝑓(𝑝)

(𝑝) = 0𝑐𝑒

(𝑝) ≤ 0𝑐𝑖

PetscErrorCode FormEqualityConstraints(Tao tao, Vec P, Vec CE, void* ptr);
PetscErrorCode FormEqualityJacobian(Tao tao, Vec P, Mat AE, Mat AEpre, void* ptr);
PetscErrorCode FormInequalityConstraints(Tao tao, Vec P, Vec CI, void* ptr);
PetscErrorCode FormInequalityJacobian(Tao tao, Vec P, Mat AI, Mat AIpre, void* ptr);

 



Example Problem: Multidimensional Rosenbrock

 



The Rosenbrock or banana function is a canonical nonconvex test problem created by Howard H.
Rosenbrock in 1960 and used extensively to evaluate the performance of optimization algorithms. The
original function is de�ned as

with a global minimum at 

𝑓( , ) = (1 − + 100( − ,𝑝1 𝑝2 𝑝1 )
2 𝑝2 𝑝21 )

2

𝑓(1, 1) = 0.

 



A multidimensional generalization of this problem is given by

with a global minimum at 

The Hessian is a tridiagonal sparse matrix.

The hands-on example implements the multidimensional Rosenbrock with an analytical gradient and
Hessian. However, TAO also provides TaoDefaultComputeGradient()  and
TaoDefaultComputeHessian()  callbacks that utilize �nite-differencing to generate the required
sensitivities.

Diversion: work out  and  analytically.

𝑓(𝑝) = 𝑓( , ,… , ) = [(1 − + 100( − ] ,𝑝1 𝑝2 𝑝𝑁 ∑
𝑖=1

𝑁−1

𝑝𝑖)
2 𝑝𝑖+1 𝑝2𝑖 )

2

= 1 ∀𝑖 = 1, 2,… ,𝑁.𝑝𝑖

𝑔(𝑝) 𝐻(𝑝)

 



Aside: verifying gradients and Hessians

From the command line, add numerical tests of gradients and Hessians to TaoSolve() :

-tao_test_gradient # test gradient numericy, reporting only errors 
-tao_test_gradient_view # show inner workings of gradient test
-tao_test_hessian
-tao_test_hessian_view

 



Run the example

In this output, the Residual  indicates the L2-norm of the gradient, , at every iteration. The problem
�le is con�gured to terminate the solution when this gradient norm drops below the absolute tolerance of

.

$ make multidim_rosenbrock
$ mpiexec -n 1 ./multidim_rosenbrock -tao_monitor
0 TAO,  Function value: 810081.,  Residual: 360468.
1 TAO,  Function value: 40609.1,  Residual: 44602.6
2 TAO,  Function value: 18292.1,  Residual: 26530.2
# ...
45 TAO,  Function value: 8.88666e-12,  Residual: 0.000127435 
46 TAO,  Function value: 5.40212e-17,  Residual: 1.7001e-07 
47 TAO,  Function value: 2.17767e-22,  Residual: 1.98927e-10 

‖𝑔𝑘‖2

10−5

 



More useful command line arguments (redux)

Option Flag Code API Description

-tao_monitor TaoSetMonitor()  with

TaoMonitorDefault() Enable the iteration monitor for the solution

-tao_view TaoView() Display useful information about the solution after
completion

-tao_max_it <integer> TaoSetMaximumIterations() Change the maximum iteration limit

-tao_max_funcs 
<integer> TaoSetMaximumFunctionEvaluations() Change the maximum number of function evaluations

-tao_gatol <float> TaoSetTolerances() Change the absolute convergence tolerance

-tao_test_gradient TaoTestGradient() Validate the analytical gradient with �nite differences
at every iteration

-tao_test_hessian TaoTestHessian() Validate the analytical Hessian with �nite differences
at every iteration

 



Modifying the example from the command line

Option Flag Description

-n <integer> Change the problem size (default: 2)

-fd Use �nite-difference gradients instead of analytical

-bound Activate bound constraints -- 2-D only (default: )

-eq Activate equality constraints -- 2-D only (default: )

≤ 0, ≥ 0𝑝1 𝑝2

( − 1 + − 3 = 0𝑝1 )2 𝑝2

 



Hands-on Activities

 



1. Change the TAO algorithm to nonlinear conjugate gradient method using -tao_type bncg  and to

truncated Newton using -tao_type bnls . Compare convergence against the default quasi-

Newton method (-tao_type bqnls ).

 



2. Increase the problem size with the -n <size>  argument (default size is 2) and evaluate its impact

on convergence.

Repeat Activity 2 with different TAO algorithms. Do they all exhibit the same scaling?

 



3. Solve the problem with the �nite difference gradient using the -fd  argument. Evaluate convergence

and solution time with increasing problem size.

 



4. Try running the problem in parallel with mpiexec -n <# of processes> 
./multidim_rosenbrock ... . Why does running in parallel slow the solution down at small

problem sizes? How large should the problem be to observe a speedup in parallel runs?

Repeat Activity 4 with different TAO algorithms. Are the break-even points in size vs.

performance the same?

 



5. Run the problem with -bound  �ag to enable  and  constraints.

Change the starting point and evaluate how it affects the convergence. Is there a difference

between starting from the feasible versus non-feasible space?

Repeat Activity 5 with different bound-constrained TAO algorithms.

≤ 0𝑝1 ≥ 0𝑝2

 



6. Run the problem with -eq  �ag to enable the  constraint.

Change the starting point to  and evaluate whether you recover the same solution as

before. If not, why?

Combine equality constraints with bound constraints and try changing the starting point back

to . Which solution did you converge to?

( − 1 + = 3𝑝1 )2 𝑝2

(−1,−1)

(10, 10)

 



7. ADVANCED: Change the constraint de�nition. Come up with constraints that are valid for the

multidimensional Rosenbrock problem.

 



Notes on bound constraints

Introducing the bound constraints  and  forces the solution to a new global minimum at
 This minimum is a trivial solution where the bounds for both optimization variables. are

active.

≤ 0𝑝1 ≥ 0𝑝2
𝑓(0, 0) = 1.0.

 



Notes on equality constraints

The quadratic equality constraint  presents two local minima instead of the
original global minimum. These two minima lie at  and . On
multi-modal problems such as this, gradient-based optimization methods converge to the local minimum
closest to the starting point. In this hands-on example, we start our solution with an initial guess of 
and converge to . A solution that starts at  converges to

 instead.

( − 1 + − 3 = 0𝑝1 )2 𝑝2
𝑓(1.62, 2.62) = 0.38 𝑓(−0.62, 0.38) = 2.62

(10, 10)
𝑓(1.62, 2.62) = 0.38 (−1,−1)

𝑓(−0.62, 0.38) = 2.62

 



Combining the equality and bound constraints eliminates one of the two local minima and forces the solution
to always converge to the now-global minimum at  regardless of the starting point.𝑓(−0.62, 0.38) = 2.62

 


