
ATPESC 2023, July 31 - August 11, 20231 extremecomputingtraining.anl.gov

Putting it All Together: (the Sociology of)
Using Numerical Packages In Practice

Ann Almgren

On behalf of your Track 5 Presenters

ATPESC 2023, July 31 - August 11, 20234

So where do you
want to spend
your time?

None of us can
actually do it all

Here is one view of
the “CSE cycle”:

ATPESC 2023, July 31 - August 11, 20235

Key steps of simulation science application development
• Physical model

– Expertise may be very domain-specific

• Mathematical model
– Expertise may require detailed mathematical knowledge

• Discretization and algorithm development
– Expertise includes knowing regimes of applicability, stability, approximation,

error bounds

• Parallel GPU-aware implementation
– Expertise in hardware, software stack and parallel programming models

ATPESC 2023, July 31 - August 11, 20236

That’s a lot of expertise!

Very few of us are experts in all of these areas. So how do we
optimize the insight/impact of our computational science?

• Team science – in an ideal world we could work in teams that have
all the relevant expertise within one team

• That’s not always possible –so one way to broadly share expertise is
through software libraries
– Expertise in discretization and algorithm development
– Expertise in hardware, software stack and parallel programming models

ATPESC 2023, July 31 - August 11, 20237

In the short-term we often prefer to do things ourselves

∇2T = 0 ∈ Ω
T(0) = 180o

T(1) = 0o

Hot
water
bath

Cold
water
bath

For the 1-D heat equation why bother learning a software package?

ATPESC 2023, July 31 - August 11, 20238

We can prototype in matlab, build simple serial implementations,
and demonstrate proof-of-concept.

This can be good:

• New algorithms are often designed and validated in this mode.

• Sometimes writing your own version of a known technology (e.g. multigrid solver) is
worth it -- “learning by doing”

This can be bad:

• Our own implementations are more likely to lack generality, be inefficient or even
buggy.

• How much time do we spend “reinventing the wheel?”

• Do we impact anyone/anything beyond our own immediate application?

Sometimes simple is good

ATPESC 2023, July 31 - August 11, 20239

We can prototype in matlab, build simple serial implementations,
and demonstrate proof-of-concept.

This can be good:

• New algorithms are often designed and validated in this mode.

• Sometimes writing your own version of a known technology (e.g. multigrid solver) is
worth it -- “learning by doing”

This can be bad:

• Our own implementations are more likely to lack generality, be inefficient or even
buggy.

• How much time do we spend “reinventing the wheel?”

• Do we impact anyone/anything beyond our own immediate application?

Sometimes simple is good

ATPESC 2023, July 31 - August 11, 202310

Software libraries/frameworks/tools
are made by real people.

The people aspect matters

• Software developers know a lot about their product

• But they don’t necessarily know exactly what you need

Communication / Collaboration is an important part of the process
it’s good for the developer as well as the user!

The “supply” side
of software libraries

ATPESC 2023, July 31 - August 11, 202311

Why don’t people “just” use software libraries
Lack of knowledge – how do you know whether the right tool even exists?

And if it exists: Where do you find it? How do you use it? Will it work with your
other tools?

AKA: “package fatigue”

ATPESC 2023, July 31 - August 11, 202312

Why don’t people “just” use software libraries
Frustration! It can be really frustrating to not have the tool do what you want as
well as you want. And how do you tell whether it’s you or the tool?

So how can you find the right tool – if it exists -
and how do you learn how to use it correctly?

ATPESC 2023, July 31 - August 11, 202313

Ideal solution: a “toolbox” of compatible (interoperable)
tools that “just work”

• This is exactly what the
software developers are
working towards

• But it takes time and resources

• The developer/user interaction
can be a win-win

ATPESC 2023, July 31 - August 11, 202314

On a practical level, there are trade-offs

Advantages

• Key challenges addressed well
– Portable, Performant, Scalable,

Interoperable

• Numerics are well tested/vetted
• Functionality is often more general than

you would have made yourself
• More science, more impact; less time

writing/debugging software
• Become part of a community – for

collaboration and help

ATPESC 2023, July 31 - August 11, 202315

On a practical level, there are trade-offs

Challenges

• Something new to learn
• Hard to predict show-stoppers
• Not always plug-n-play
• Trusting the work of others
• Overhead of collaborating
• Funding priorities

ATPESC 2023, July 31 - August 11, 202316

How do we tip the balance?
Challenge

Something new to learn
Hard to predict show-stoppers
Not always plug-n-play
Trusting others
Overhead of collaborating
Funding priorities

Mitigation

Many examples and documentation
Engage package developers early
Submit build issues
Identify or develop tests
Builds relationships
Add to the package yourself

ATPESC 2023, July 31 - August 11, 202317

How do we tip the balance?
Challenge

Something new to learn
Hard to predict show-stoppers
Not always plug-n-play
Trusting others
Overhead of collaborating
Funding priorities

Mitigation

Many examples and documentation
Engage package developers early
Submit build issues
Identify or develop tests
Builds relationships
Add to the package yourself

The point of open source is to encourage use
Package teams want users to make progress.
If package is missing a crucial feature, ask.

ATPESC 2023, July 31 - August 11, 202318

Critical factors that determine whether you will use an
open-source library or tool

• Licensing: The library or tool must have acceptable license constraints
and restrictions. It should be compatible with the project's or organization's
licensing terms.

• Functionality: The tool or library should be able to fulfill specific
needs and improve productivity.

• Developer and Community Support: The tool or
library should have ongoing support from its developers, including regular
updates and bug fixes. A robust user and developer community is also crucial
for problem-solving and help.

• Maturity and Documentation: The tool or library should
have reached a level of maturity, proven stability and should have
comprehensive documentation to assist its users.

• Compatibility and Portability: The library or tool should
support the programming languages used in the project and be portable across
different platforms.

• Quality: The library or tool should have a high standard of development
quality, including extensive testing and active maintenance on bug reports and
pull requests.

• Ease of Use and Learning Curve: The tool or library
should be easy to use, have a short learning curve, and be capable of
integration with other tools and libraries.

• Active and Welcoming Development Team:
The team behind the library or tool should value user feedback and provide a
supportive environment for users.

• Performance: The library or tool should deliver high performance
and low latency.

• Sustainability: There should be recent development activity and a
long-term support model, indicating a high likelihood that development will
continue.

• Vendor Support: For some users, particularly in High
Performance Computing (HPC) environments, vendor support may be a
significant factor.

• Part of a Larger Ecosystem: The tool or library should
preferably be part of a larger, friendly user base, like StackOverflow or other
forums, which can offer additional support and resources.

	Putting it All Together: (the Sociology of) Using Numerical Packages In Practice
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Key steps of simulation science application development
	That’s a lot of expertise!
	In the short-term we often prefer to do things ourselves
	Sometimes simple is good
	Sometimes simple is good
	The “supply” side�of software libraries
	Why don’t people “just” use software libraries
	Why don’t people “just” use software libraries
	Ideal solution: a “toolbox” of compatible (interoperable) tools that “just work”
	On a practical level, there are trade-offs
	On a practical level, there are trade-offs
	How do we tip the balance?
	How do we tip the balance?
	Critical factors that determine whether you will use an open-source library or tool

