Code that Outperforms

Intel® oneAPI Analyzers

Intel VTune Profiler and Intel Advisor

Xiao Zhu xiao.zhu@intel.com Agenda

Intel[®] oneAPI Overview

Introduction to the Intel oneAPI Base and HPC Toolkits

Intel[®] VTune[™] Profiler

Intel[®] Advisor

GPU Profiling Demo Demo profiling the iso3dfd sample on Intel DevCloud with Intel® Advisor and Intel® VTune™ Profiler

Multiarchitecture Programming for Accelerated Compute, Freedom of Choice for Hardware OneAPI Initiative & Intel® OneAPI Tools

Modern Applications Demand Diverse Architectures

Diverse accelerators needed to meet today's performance requirements:

48% of developers target heterogeneous systems that use more than one kind of processor or core¹

Developer Challenges: Multiple Architectures, Vendors, and Programming Models

Open, Standards-based, Multiarchitecture Programming

OneAPI Industry Initiative Break the Chains of Proprietary Lock-in

Freedom to Make Your Best Choice

- C++ programming model for multiple architectures and vendors
- Cross-architecture code reuse for freedom from vendor lock-in

Realize all the Hardware Value

- Performance across CPU, GPUs, FPGAs, and other accelerators
- Expose and exploit cutting-edge features of the latest hardware

Develop & Deploy Software with Peace of Mind

- Open industry standards provide a safe, clear path to the future
- Interoperable with familiar languages and programming models including Fortran, Python, OpenMP, and MPI
- Powerful libraries for acceleration of domain-specific functions

The productive, smart path to freedom for accelerated computing from the economic and technical burdens of proprietary programming models

laak.

oneAPI

Accelerating Choice with SYCL* Khronos Group Standard

- Open, standards-based
- Multiarchitecture performance
- Freedom from vendor lock-in
- Comparable performance to native CUDA on Nvidia GPUs
- Extension of widely used C++ language
- Speed code migration via open source <u>SYCLomatic</u> or Intel[®] DPC++ Compatibility Tool

Architectures

Intel | Nvidia | AMD CPU/GPU | RISC-V | ARM Mali | PowerVR | Xilinx

Testing Date: Performance results are based on testing by Intel as of April 15, 2023 and may not reflect all publicly available updates.

Configuration Details and Workload Setup: Intel® Xeon® Platinum 8360Y CPU @ 2.4GHz, 2 socket, Hyper Thread On, Turbo On, 256GB Hynix DDR4-3200, ucode 0xd000363. GPU: Nvidia A100 PCIe 80GB GPU memory. Software: SYCL open source/CLANG 17.0.0, CUDA SDK 12.0 with NVIDIA-NVCC 12.0.76, cuMath 12.0, cuDNN 12.0, Ubuntu 22.04.1. SYCL open source/CLANG compiler switches: -fscycl-targets=nvptx64-nvidia-cuda, NVIDIA-NVCC compiler switches: -O3 –gencode arch=compute_80, code=sm_80. Represented workloads with Intel optimizations.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure Performance varies by use, configuration, and other factors. Learn more at <u>www.Intel.com/PerformanceIndex</u>. Your costs and results may vary.

SYCL is a trademark of the Khronos Group Inc.

SYCLomatic: CUDA* to SYCL* Migration Made Easy

Choose where to run your software, don't let the software choose for you.

Open source SYCLomatic tool assists developers migrating code written in CUDA to C++ with SYCL, generating **human readable** code wherever possible

~90-95% of code typically migrates automatically ^ 1

Inline comments are provided to help developers finish porting the application

Intel[®] DPC++ Compatibility Tool is Intel's implementation, available in the Intel[®] oneAPI Base Toolkit

github.com/oneapisrc/SYCLomatic

7

Codeplay oneAPI Plug-ins for Nvidia* & AMD*

Support for Nvidia & AMD GPUs to Intel® oneAPI Base Toolkit

oneAPI for NVIDIA & AMD GPUs

- Free download of binary plugins to Intel[®] oneAPI DPC++/C++ Compiler:
- Nvidia GPU
- AMD beta GPU
- No need to build from source!
- Plug-ins updated quarterly in-sync with SYCL 2020 conformance & performance

Priority Support

- Available through Intel, Codeplay & our channel
- Requires Intel Priority Support for Intel[®] oneAPI DPC++/C++ Compiler
- Intel takes first call, Codeplay delivers backend support
- Codeplay provides access to older plug-in versions

Intel[®] Developer Tools Supporting oneAPI A complete set of proven tools expanded from CPU to accelerators

- Advanced compilers, libraries, and analysis, debug, and porting tools
- Full support for C, C++ with SYCL, Python, Fortran, MPI, OpenMP
- Intel[®] Advisor determines device target mix before you write your code
- Intel's compilers optimize code to take full advantage of multiarchitecture workload distribution.
- Intel[®] VTune[™] Profiler analyzes hotspots to optimize code performance
- Intel AI tools support acceleration of major deep learning and machine learning frameworks

9

Intel Analysis Tools for GPU Compute Analysis

Intel[®] Advisor

Offload Advisor

- Identify high-impact opportunities to offload
- Detect bottlenecks and key bounding factors
- Get your code ready even before you have the hardware by modeling performance, headroom, and bottlenecks

Roofline Analysis

- See performance headroom against hardware limitations
- Determine performance optimization strategy by identifying bottlenecks and which optimizations will pay off the most
- Visualize optimization progress

Intel[®] VTune[™] Profiler

Offload Performance Tuning

- Explore code execution on your platform's various CPU and GPU cores
- Correlate CPU and GPU activity
- Identify whether your application is GPU- or CPU-bound

GPU Compute/Media Hotspots

- Analyze the most time-consuming GPU kernels, characterize GPU usage based on GPU hardware metrics
- GPU code performance at the source-line level and kernel-assembly level

Intel® oneAPI Toolkits

Intel[®] VTune[™] Profiler Overview

Optimize Performance Intel® VTune™ Profiler

Get the Right Data to Find Bottlenecks

- A suite of profiling for CPU, GPU, FPGA, threading, memory, cache, storage, offload, power...
- Application or system-wide analysis
- DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix
- Linux, Windows, FreeBSD, Android, Yocto and more
- Containers and VMs

Analyze Data Faster

- Collect data HW/SW sampling and tracing w/o recompilation
- See results on your source, in architecture diagrams, as a histogram, on a timeline...
- Filter and organize data to find answers

Work Your Way

- User interface or command line
- Profile locally and remotely
- GUI (desktop or web) or command line

Rich Set of Profiling Capabilities

Row Box	The second se					In contraction in the
	ACT AND ADDRESS	States and states	No. of the second second		648mm	D. II
		a space and state				
	>				MACK (GOALA ALBA DO PORDA CARDA VALA HERV	
					Server De Los Toways general congrastre de	colorised rest (VDAU) -
					the state of the company the condition	Called an off a contract of a sec
					serve and the political magnetic different and they are	concentration and a second second
					service (provider to agree other allow). Concerning	denters 17
					concertaine de concerte accordence a concerte	Protoctions month
					Service (generality confirm, DOC - Convingence) of onlying R	
					Construction of the characteristic strength	
					Interaction to early a solution	
	stand and sy	Carlo all card at Marcage			Set 121_Addres2	
	ALL OPERATOR RECT	the dealership in a second state and the				
	Charles and the second second	a d da a mar d d a marter que a		A		
	LANGING THE REPORT OF THE PARTY OF	toracity of the second s		MA LEAD TO .		
	Consultantile provide	11110				
	States and the					
	MI 1947 1943					
	- MUNICIPAL					
	AT DE					
r er statut för som	art De Neder 17 de 1111	a (ue:				
	Land you be Not don't filler	9 (114-) - F X J.	· ·		· · · · · · · · · · · · · · · · · · ·	B
E e conservation de la conservat	Lan Lands, yes a 1 Den Nation of States of States (C + + - X - angle C (C + C)	9 (114) - z # j	×		· · · · · · · · · · · · · · · · · · ·	0
Barrier.	La La Artenia De Martine - 1 Martine - 1 1 β - φ - δ - margine 2 (2000)	9 (10+c = z = x/p	n (n		· · · · · · · · · · · · · · · · · · ·	S Starts
2 AND A	Land Land, your Deer John Barry, Contract, 1997 John Barry, Contract, 1997 Barry, Contract, 1997 Barry, Contract, 1997	9 (114) 	* %		· · · · · · · · · · · · · · · · · · ·	S Street V S Street V S Street V
\$ 0.01.	Line (Jack, You) The Notation of Mathematical β - + - 3 - margin("Bridger") 1	10 (10%) = x #_1 :	n	.1	Y	C The second sec
Band state	in L and some for the second	a (065	×	.1	· · · · · · · · · · · · · · · · · · ·	C The V
	■1,2414,2445 Tel Karl de 1 = 1 = 100 β = 100 (100 (100 (100 (100 (100 (100 (10	n (105) - ± ∉ (1,	×			C The V
	BELEVICEN BE Constant of the constant (Constant of the constant (Constant of the constant (Constant of the constant (Constant of the constant) (Constant of the constant (Constant of the constant) (Constant of the constant) (Constant)	9 (1995) - e e e p	ч., чи, ,	.1	· · · · · · · · · · · · · · · · · · ·	Image: Second
a	10000000000000000000000000000000000000	9 (04) - e e e	* Ye		· · · · · · · · · · · · · · · · · · ·	State V State V State State
	нт тт Ви Маласт Станост Станост 	n (1955) - e e e p	*		····· ····	C (The V C Dark C C Dark C Dark C Dark C C Dark C Dark C Dark C Dark C Dark
	an El defenses an El Defenses en State en State (SE - ⊕ - El mener De De C) B	a Une	* *		· · · · · · · · · · · · · · · · · · ·	B The V S Dark S S Dark S Dark S
The Handward State of the State	a E B De Salate of the state (0 + ψ − 5 mm s C 0 0 0 C) 8	a (ne:	×	.* <u>*</u> *	7¥*	S (First V) S (Fi
		9 (III) 	* %		····· ···	S (The Second Se

Algorithm Optimization

- ✓ Hotspots
- \checkmark Anomaly Detection
- ✓ Memory Consumption

Parallelism

✓ Threading
 ✓ HPC Performance Characterization

Microarch.&Memory Bottlenecks

- ✓ Microarchitecture Exploration
- ✓ Memory Access

Platform & I/O

- ✓ Input and Output
- ✓ System Overview
- ✓ Platform Profiler

Accelerators / xPU

- ✓ GPU Offload
- ✓ GPU Compute / Media Hotspots
- ✓ CPU/FPGA Interaction

Multi-Node

✓ Application Performance Snapshot

What's New in Intel® VTune™ Profiler

2023.1 and 2023.0 Releases

Profile your applications running on latest Intel HW

- 4th generation Intel® Xeon® Scalable processors (formerly code named Sapphire Rapids)
- Intel[®] Xeon[®] Max Series CPUs (code named Sapphire Rapids HBM)
- 13th generation Intel[®] Core[™] processors (formerly code named Raptor Lake),
- Intel® Data Center GPU Max Series (formerly code named Ponte Vecchio).

Accelerate GPU code

- Get visibility into XeLink cross-card traffic for issues such as stack-to-stack traffic, throughput and bandwidth bottlenecks. Identify imbalances of traffic between CPU and GPU through a GPU topology diagram.
- Identify the the reasons of the stalls in Xe Vector Engines (XVEs), formerly known as Execution Units (EUs). Use this information to better understand and resolve the stalls in your busiest computing tasks.
- Profile applications executing on multiple GPUs.

Optimize Python code

• Identify and optimize performance hotspots of Python code, now supporting Python 3.9.*.

Decide memory mode for your workload

• Identify performance gained from high bandwidth memory (HBM). Run Intel[®] VTune Profiler for each mode (HBM only, Flat, Cache) to identify which profile offers the best performance.

◎ GPU Topology Diagram

Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stack, GPU-socket, and GPU-GPU bandwidths. Hover over a GPU stack to see bandwidth metrics.

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU Topology Diagram.

The histogram shows the distribution of the elapsed time per maximum bandwidth utilization among all packages.

Only x86 CPU with High Bandwidth Memory

Memory modes

-

in the second

Mar II II MIL

High Bandwidth Memory (HBM) Utilization

Understand HBM memory usage

- Is the application performance affected by HBM utilization?
- How is the bandwidth distributed between DRAM vs. HBM?

Identify memory mode for your workload

- Does your workload benefit from HBM?
 - Profile your workload for each mode HBM, flat or cache

The histogram shows the distribution of the elapsed time per maximum bandwidth utilization among all packages.

Bandwidth Utilizatio

Ν	Memory Access	Memo	ny Usage ▾ ⑦ tử	
A	Analysis Configuration	Collect	tion Log Summary Bottom-up Platform	
	р: 🕇 –	r ir	2a 2a 4a 6a 6a 10a 12a 14a 18a 18a 20a	J
dwidth	▶ package_0	227		
WBan	▶ package_1	227		
2				
dwidth	package_1	748.976		
3M Ban	package_0	748.976		
Ξſ				
(%) (%)	▶ package_1	100.0%		
Outgoin	▶ package_0	100.0%		

The workload performance in various HBM modes can be evaluated by running the collection in each mode and analyzing the bandwidth as described above.

Get Visibility into Xe Link Cross-card Traffic Intel® VTune™ Profiler

Identify bottlenecks related to Xe Link

- Understand cross-card memory transfers and Xe Link utilization
- Visualize GPU Topology of the system and estimate bandwidth of each link, stack or card.
- See usage of Xe Link and correlate with code execution.

GPU Topology Diagram Use this topology diagram to examine the GPU interce

Use this topology diagram to examine the GPU interconnect (Xe Link) and identify stack-stack, GPU-socket, and GPU-GPU bandwidths. Hover over a GPU stack to see bandwidth metrics.

Cross-card, stack-to-stack, and card-to-socket bandwidth are presented on GPU Topology Diagram.

Timeline view can show bandwidth usage of Xe Link over time.

Command Line Interface

Automate analysis

Set up the environment variables:

- -Windows: <install-dir>\env\vars.bat
- -Linux: <install-dir>/env/vars.sh

Help: vtune –help vtune –help collect hotspots

Use UI to setup 1) Configure analysis in UI 2) Press "Command Line..." button 3) Copy & paste command

vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <app> mpiexec –n 12 vtune –c gpu-hotspots –r gpuhs_mpi –trace-mpi [-knob <knobName=knobValue>] [--] <app>

Intel® VTune™ Profiler Server

Does your development move to Cloud? VTune is ready to follow!

VTune server for <u>remote development</u>

- VTune server for <u>teams</u>
 - Easy onboarding
 - Data sharing & collaboration

Intel[®] VTune[™] Profiler Application Performance Snapshot (APS)

Application Performance Snapshot

- High-level overview of application performance
 - Detailed reports on MPI statistics
- Primary optimization areas and next steps in analysis with deep tools – e.g. outlier analysis for MPI applications at scale
 - Explore on source of imbalance
 - Choose nodes/ranks for <u>detailed profiling</u> with VTune
- Low collection overhead 1-3%*
- Scales to large jobs
 - Tested and worked on 64K ranks
 - Trace size on default statistics level ~ 4Kb per rank
- Command Line:

<mpi launcher> <mpi parameters> aps <app>

Intel® VTune[™] Profiler HPC Performance Characterization

Hotspots Analysis

- Understand an application flow
- Identify sections of code that get a lot of execution time
- Sampling-based collection modes
 - User-Mode Sampling
 - Hardware Event Based Sampling
- Define a performance baseline.
- Identify the hottest function.
- Identify algorithm issues.
- Analyze source.

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform
O Hotspots Insights 0
 Elapsed Time ⁽¹⁾: 133.634s ⁽¹⁾ CPU Time ⁽¹⁾: 472.871s Total Thread Count: 5 Paused Time ⁽¹⁾: 0s If you see significant hotspots in the Top Hotspots list, switch to the Bottom-up view for in-depth analysis per function. Otherwise, use the Caller/Callee view to track critical paths for these hotspots.

⊘ Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function	Module	CPU Time ⁽²⁾
multiply1	matrix.exe	472.573s

Hotspots 💿 🛍					INIEL	VIUNE PRUFILER				
Analysis Configuration Collect	tion Log Summary E	Bottom-up C	aller/Callee T	op-down Tree Flame Gra	ph Platform					
Grouping: Function / Call Stack										
Function / Call Stack	CF	PU Time	»	Module	Function (Full)	Source File				
	Effective Time	Spin Time	Overhead Time	Module						
intel_avx_rep_memset	0.012s	0s	0s	libintlc.so.5	intel_avx_rep_memset					
▶printf	0.008s	0s	0s	libc.so.6printf		printf.c				
matrix_multiply	13.960s	0s	0s	MatrixMultiplication_icc matrix_multiply		MatrixMultiplication				

Microarchitecture Exploration

Hierarchical view of the execution pipeline

- Pinpoint sections of the pipeline with performance problems flagged by VTune
- Hover over metrics for a detailed description

Visualize the pipeline at the function level in the bottom-up tab

Analysis Configuration	Collection L	.og Summa	ry Bottom-	up Event Count	Platform			//
Grouping: Function / Cal	l Stack			~ × 0 %	Microarchitecture Usage: 27	.0% 🏲 of Pipeline Slo	ts ⁽²) Θ	
			Back	-End Bound				
Function / Call Stack			Memory Bou	nd				
	L1 Bound 🖻	L2 Bound	L3 Bound	DRAM Bound				
grid_intersect	11.4%	0.0%	13.9%	6.3%			1	
sphere_intersect	14.6%	1.5%	2.9%	2.9%			L	
grid_bounds_intersect	100.0%	0.0%	20.2%	0.0%				
func@0x4b2be3a0	0.0%	0.0%	0.0%	0.0%	Memory Bound: 34.98%			
pos2grid	0.0%	0.0%	0.0%	0.0%	This part of µPipe is fractio	n of Memory		ľ
tri_intersect	0.0%	0.0%	0.0%	0.0%	Bound. The metric value is high. Th	is can indicate	r	
func@0x14016b349	0.0%	0.0%	0.0%	0.0%	that the significant fraction	of execution		
Raypnt	0.0%	0.0%	0.0%	0.0%	pipeline slots could be stall	ed due to demand		
func@0x10046130	0.0%		0.0%		Access analysis to have the	metric		
func@0x10076012	90.6%	0.0%	0.0%	0.0%	breakdown by memory hie	rarchy, memory		
libm_sse2_sqrt_precise	0.0%	94.7%	0.0%	0.0%	memory objects.	rrelation by		
libm_sse2_pow_precise	100.0%	0.0%	0.0%	100.0%	Rí _	2	7.0% of Pipe	eline S
func@0x140168968	0.0%	0.0%	0.0%	0.0%	Front-End Bound:		5.0% of Pipe	eline S
TBB Scheduler Interna	0.0%	0.0%	0.0%	0.0%	Bad Speculation:	1	14.4% 🏲 of Pipe	aline S
shader	0.0%	0.0%	0.0%	0.0%	Branch Mispredict:		0.0% of Pipe	eline S
func@0x6b102230	0.0%	0.0%	0.0%	0.0%	Machine Clears:		14.4% 🏝 of Pipe	eline S
light_intersect	100.0%	0.0%	0.0%	0.0%	Back-End Bound:	1	53.6% 🖡 of Pipe	eline S
intersect objects	100.0%	0.0%	0.0%	0.0% 👻	Memory Bound:	:	35.0% 🖡 of Pipe	eline S
< >	<	enconcent	STORE TO BE		L1 Bound:		14.6% 🖡 of Cloc	cktick

Elapsed Time ^② : 4.000s 🖆										
	Clockti	cks: 9,475,20	00,0	000						
	Instruct	ions Retired: 10,939,20	00,0	000						
	CPI Rat	<u>,</u> (?,	0	366						
	MUX R	This metric shows how often		13						
\odot	Retirin;	machine was stalled without missing the L1 data cache. The		5%	of Pipeline Slots					
\odot	Front-E	L1 cache typically has the		3%	of Pipeline Slots					
\odot	Bad Spe	shortest latency. However, in certain cases like loads blocked		.5% 🏲	of Pipeline Slots					
	Bra	on older stores, a load might	u	.5% 🏲	of Pipeline Slots					
	Mac	suffer a high latency even	even effect by the		of Pipeline Slots					
\odot	Back-Ei	L1.	e	.8% 🏲	of Pipeline Slots					
	⊙ Mer	neyy bound .	0	.3% 🏲	of Pipeline Slots					
	\odot	L1 Bound 💦	13	.7% 🏲	of Clockticks					
	1	L2 Bound ^② :	0	.0%	of Clockticks					
	()	L3 Bound ^② :	8	.4% 🏲	of Clockticks					
	\odot	DRAM Bound ^② :	5	.8%	of Clockticks					
	\odot	Store Bound ^② :	0	.0%	of Clockticks					
	Or	e Bound ^② :	14	.4% 🏼	of Pipeline Slots					
	Total Th	read Count:		14						
	Paused	Time [®] :		Os						

Intel® VTune Profiler -

What's Using All The Memory?

Memory Consumption Analysis

See What Is Allocating Memory

- Lists top memory consuming functions
- memory consumption distribution over time.
- View source to understand cause
- Filter by time using the memory consumption timeline
 - Focus on the peak values on the Timeline pane
- Introduce additional overhead due to instrumentation.

📀 Top Memory-Consuming Functions 临

This section lists the most memory-consuming functions in your application.

Function	Memory Consumption	Allocation/Deallocation Delta	Allocations	Module
create_linked_list	469.8 MB	0.0 B	4,194,304	LinkedList_gcc 🏼
create_data	402.7 MB	0.0 B	1	LinkedList_gcc 🏼
create_array_data	352.3 MB	352.3 MB	7	LinkedList_gcc 🎙
itt_init	47.7 KB	8.3 KB	99	LinkedList_gcc 🎙
[Unknown stack frame(s)]	528.0 B	528.0 B	11	[Unknown]
[Others]	96.0 B	96.0 B	3	N/A*

*N/A is applied to non-summable metrics.

Optimize Memory Access Memory Access Analysis - Intel® VTune™ Profiler

DRAM

SOCKET 0

Average Physical Core Utilization 2:

1.6% (0.563 out of 36)

NUMA: % of Remote Accesses ② : 61.3%

- Tune data structures for performance
 - Attribute cache misses to data structures (not just the code causing the miss)
 - Support for custom memory allocators
 - Shows average load latency in cycles
- Optimize NUMA latency & scalability
 - Auto detect max system bandwidth
 - Detects inter-socket bandwidth

Merr	IORY ACCESS Memory Us	age 🔹 🕐 🖽			INTEL VIUNE PROFIL
Analys	is Configuration Collection L	og Summary	Bottom-up	Platform	
⊙ E	Elapsed Time [®] : 168.	990s 🐚			
	CPU Time ⁽²⁾ :	155.314s			
(Memory Bound [®] :	37.5%	of Pipeline	Slots	
	Loads:	22,954,537,452			
	Stores:	5,173,914,018			
0	LLC Miss Count [®] :	3,857,736,762			
	Average Latency (cycles) :	99			
	Total Thread Count:	6			
	Paused Time :	0s			
⊙ F	Platform Diagram				
	2.03	:			<u></u>

UPI

SOCKET 1

Average Physical Core Utilization 2

1.0% (0.364 out of 36)

NUMA: % of Remote Accesses ⁽²⁾ : 61.0%

DRAM

1 1%

Intel® VTune™ Profiler **Profile GPU Performance**

- Explicit support of DPC++, DirectX, Intel[®] Media SDK, OpenCL[™], and OpenMP-offload software technology
- Multi-GPU systems analysis
- GPU Offload cost profiling
 - CPU vs GPU boundness
 - Offload overhead & host-to-device traffic, GPU compute vs data transfer
 - GPU utilization and software queues per DMA packet domain
- GPU Hotspots analysis
 - EU and memory efficiency metrics, GPU Occupancy limiting factors
 - Memory hierarchy diagram and throughput analysis
- Source level in-kernel profiling
 - Dynamic instruction count
 - Basic Block execution latency
 - Memory latency

GPU Performance Problems

Addressing performance issues with dynamic analysis tools

- Work Distribution
- Data transfer
- GPU occupancy
- Memory access

. . .

- Kernel inefficiencies
- Non-scaling implementations

Work Distribution

Work distribution among computing resources

- CPU or GPU bound?
- GPU Utilization for OpenMP regions/SYCL kernels
- EU/XVEs efficiency (Active, Stalled, Idle)
- Offload Time characterization
 - Compute
 - Data Transfer
 - Overhead

/elcome × baseline_hpc_512 ×					
IPC Performance Characterization の 앱				INTEL VT	UNE PROFILER
nalysis Configuration Collection Log Summary Bottom-up					
☑ GPU Stack Utilization [☉] : 30.8% ▶					
 ➢ EU State :: Active : 28.8% Stalled : 71.1% ► Idle : 0.1% Occupancy : 99.2% of peak value ➢ Offload Time: 31.9% (18.907s) of elapsed time Compute: 96.5% (18.250s) of offload time Data Transfer: 1.5% (0.281s) of offload time Overhead: 2.0% (0.376s) of offload time ○ Top OpenMP Offload Regions 					
OpenMP Offload Region	Offload Time	Percentage of Elapsed Time	Data Transfer	Overhead	EU Array ③ Active
Iso3dfdIteration\$omp\$target\$region:dvc=0@/home/intel/rroy/oneAPI-sam ples/DirectProgramming/C++/StructuredGrids/iso3dfd_omp_offload/src/is o3dfd.cpp:50	18.252s	30.8%	0s	0.001s	28.8%
Iso3dfd\$omp\$target\$region:dvc=0@/home/intel/rroy/oneAPI-samples/Dir ectProgramming/C++/StructuredGrids/iso3dfd_omp_offload/src/iso3dfd.c pp:332	0.655s	1.1%	0.281s	0.374s	0.0%
[Outside any OpenMP Offload Region]		0.0%			0.0%
"N/A is applied to non-summable metrics.					

Host and GPU Data Transferring

A commonly known problem of host-to-device transfer performance

- Data transfer time
- Amount of transferred data
- Transfer direction
- Execution time

vtune -collect gpu-offload [-knob <knobName=knobValue>] [--] <target>

Graphics View of GPU Offload

GPU Offload	GPU O	ffload 🝷	0							INTEL VT	UNE PROFILER
Analysis Configuratio	n Col	lection Log	g Summary	Graphics	Platform						
Bottom-up											
Grouping: (custom) Co	omputing	Task									✓ < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <
Computing Took				Total Time	e by Device Op	peration Type		«	Instance Count	Transfe	er Size «
Computing Task		Exe	ecution	Host-to-Dev	vice Transfer	Device-to-H	ost Transfer	Synchronization	Instance Count	Host-to-Device	Device-to-Host
matrixMultiply1 <float< p=""></float<>	t, (unsi	0.053s		44.528s		7.362s 📒		0s	2,010	94 GB	0 B
zeCommandListApp	endBa	0s		0s		0s		0.002s	2,010	0 B	0 B
[Outside any task]									0		
+ : ۹	- r	873	0ms 8	740ms	8750ms	8760ms	8770ms	8780ms	8790ms	🗾 🗹 Threa	d 🗸
matrix_multiply (TI	D: 13204.	zeCom	man zeEvent ze i	zeComman <mark>ze</mark> ze	:Comman <mark>ze</mark> ze0	Comman zeEvent	ze zeComman	ze zeComma ze zeC	omman zeEvent ze ze	□ □ R □ □ R □ □ C	unning PU Time
matrix_multiply (TII	D: 13205.									S 🔤 🖉 📥 S	pin and Overhe
matrix_multiply (TII	D: 13205.										locktick Sample
GPU Execution Unit	ts									0	PU Computing
GPU Computing Th	reads Dis		Γ							🗹 GPU E	xecution Units
GPU Utilization										EU Arra	ys Active
CPU Time											Idle

Achieving High XVE Threads Occupancy

Occupancy analysis helps identifying problems with work mapping

- Detecting workgroups by global and ulletlocal sizes
- SIMD Width
- Barriers usage ۲
- Tiny/huge kernels scheduling issues

Occupancy 2: 80.4% N h

Identify too large or too small computing tasks with low occupancy that make the EU array idle while waiting for the scheduler. Note that frequent SLM accesses and barriers may affect the maximum possible occupancy.

Hottest GPU Computing Tasks with Low Occupancy h

This section lists the most active computing tasks running on the GPU with a low Occu									
Computing Task	Total Time 💿	Global Size 💿	Local Size						
kernel_ocl_path_trace_shadow_blocked_dl	32.492s	128 x 185	64						
kernel_ocl_path_trace_shader_sort	21.426s	128 x 185	64						
kernel_ocl_path_trace_shader_eval	17.506s	128 x 185	64						
[Others]	14.209s								
*N/A is applied to non-summable metrics.									

The performance is limited by low occupancy. Consider reducing the usage of SLM.

vtune -collect gpu-hotspots [-knob <knobName=knobValue>] [--] <target>

Memory Access problems

- Global memory access penalty
- Cache memory resource limit

- Which code is responsible for latency?
- Per Basic Block and latencies per individual instructions

Source level in-kernel profiling

-knob computing-task-of-interest=*pattern*#1#10#100

Analysis Configuration Collection Log Summary Graphics iso3dfd_kernels.cpp ×

Source		
Sourc 🔺	Source	Estimated GPU Cycles
428	<pre>for (auto iter = 0; iter < kHalfLength; iter++) {</pre>	
429	<pre>front[iter] = front[iter + 1];</pre>	
430	}	
431		
432	// Only one new data-point read from global memory	
433	// in z-dimension (depth)	
434	<pre>front[kHalfLength] = prev[gid + kHalfLength * nxy];</pre>	8.573e+8
435		
436	// Stencil code to update grid point at position given by global id (gid)	
437	<pre>float value = c[0] * front[0];</pre>	3.429e+8
438	<pre>#pragma unroll(kHalfLength)</pre>	
439	<pre>for (auto iter = 1; iter <= kHalfLength; iter++) {</pre>	
440	<pre>value += c[iter] * (front[iter] + back[iter - 1] + prev[gid + iter] +</pre>	1.367e+10
441	prev[gid - iter] + prev[gid + iter * nx] +	1.097e+10
442	<pre>prev[gid - iter * nx]);</pre>	2.358e+10
443	}	
444		
445	<pre>next[gid] = 2.0f * front[0] - next[gid] + value * vel[gid];</pre>	1.929e+9 📒
446		
447	gid += nxy;	
448	begin_z++;	3.429e+8
449	}	
450	}	
451		
452	/*	
453	* Host-side SYCL Code	
454	*	
455	* Driver function for ISO3DFD SYCL code	
456	* Uses ptr_next and ptr_prev as ping-pong buffers to achieve	
457	* accelerated wave propogation	
_		

Analysis	Configuration Collection L	og Summai	y Graph	nics 3_GP	U_linear.cpp	×							
Sourc	e Assembly	67 61	4+ 4± A	Assembly gro	ouping: Addre	ess							~
Source A		👍 Stall Count by Stall Type					Add to Cause	A	i Stall Count by Stall Type				
	Line A	Source	ol Pipe	Send	Dist or Acc	SBID	Syn	Add 🛦	Sour	Assembly	Pipe	Send	Dist or Acc
42	sets to indices to exc						0x960	58	shl (16 M16) r114.04				
43	n2 * n3;	1,407	0	41	0	0	0x968	58	send.ugm (32 M0) r13	0	0	37	8
44	dx[0] + kHalfLength;	120	0	5	0	0	0x978	58	add (16 M0) r118.0<				
45	dx[1] + kHalfLength;	125	0	1	0	0	0x980	58	add (16 M16) r120.04				
46	dx[2] + kHalfLength;						0x988	58	send.ugm (32 MO) r1	0	0	154	
47							0x998	56	add (32 M0) acc0.0<	3	0	0	5
48	te linear index for ea						0x9a0	56	add (32 M0) acc0.0<	3	0	814	82
49	i * n2n3 + j * n3 + k;	3,222	0	198 📒	0	0	0x9b0	57	add (32 M0) r40.0<13	1	0	66	1,50
50			3	() () () () () () () () () ()			0x9c0	57	(W) mul (1 M0) acc0.	. 40	0	201	1
51	te values for each cel						0x9d0	57	add (32 M0) acc2.0<	2	0	0	4,25
52	e = prev_acc[idx] * co	844	0	23	0	0	0x9d8	56	sync.nop null (Compa	0	0	0	1
53							0x9e0	56	add (32 M0) r35.0<13	9	0	0	
54	= 1; x <= kHalfLengt						0x9e8	57	(W) mul (1 M0) r61.0	83	0	0	5
55		113	0	23	0	0	0x9f0	57	(W) mul (1 M0) r62.0	106	0	0	
56	f_acc[x] * (prev_acc[i	3,048 📒	0	943	6,757 🔳	0	0xa00	57	(W) mach (1 MO) r66.	. 45	0	60	1
57	prev_acc[i	20,038	0	1,457	23,052 🔳	0	0xa10	57	(W) shl (1 M0) r63.0	41	0	0	
58	prev_acc[i	11,350	0	824	13,521 🔳	0	0xa18	57	subb (16 M0) r84.0<	53	0	47	
59							0xa28	57	sync.nop null (Compa	0	0	44	1
60	dx] = 2.0f * prev_acc	174	0	289 📒	9,676	0	0xa30	57	(W) add (1 M0) r90.0	60	0	0	
61	value * vel	7	0	58	0	0	0xa38	58	add (32 M0) r49.0<13	5	0	0	5,428
62	device code						0xa48	56	sync.nop null {Compa	0	0	0	1
63							0xa50	56	add (32 M0) acc2.0<	7	0	0	37
64							0xa58	57	(W) mov (2 M0) r71.(108	0	0	
65							0xa60	57	add3 (16 M0) r110.04	109	0	65	

Basic Block Latency

Stall Sampling

Custom Analysis with VTune Profiler

Intel[®] Advisor Overview
Intel[®] Advisor

Design code for modern hardware

Offload Modelling

 Efficiently offload your code to GPUs even before you have the hardware

Automated Roofline Analysis

- Optimize your GPU/CPU code for memory and compute
- Vectorization Optimization
- Enable more vector parallelism and improve its efficiency

Thread Prototyping

• Add effective threading to unthreaded applications

Flow Graph Analyzer

• Create, visualize and analyze task and dependency computation graphs

Summary > Accelerated Reg) ions > Logs		+ See Main Offloa	ad Modeling Vie
Top Metrics				× 3
105.9x Speed Up for Acce	⑦ 2.4x ⑦ Ier Amdahl's Law Speed Up	58% Fraction of Accele	? 2 rate Number of Of	(?)
Program Metrics				~
Original Accelerated	44.86s 6.25s			
\bigcirc	 Program Time on Host After Non Accelerated Time Time in MPI calls Time on Target 	5.88s Target PI 0.11s 0s Number 0.26s Speed U Amdahis	atform of Offloads p for Accelerated Code ; Law Speed Up	Target Device 2 105.9x 2.4x
Q () + + × 400 - 5	▼ L3; GTI (Memory) - X. Gui	dance 🔻	SP Vector FMA Peak: 43	7.83 GFLOP
D N			SP Vector Add Peak: 21	9.84 GFLOP
100	8		DP Vector FMA Peak: 10	8.62 GFLOP
100 70 40 40 500 Bandwettri 10 3 Bandwettri 20 10 3 Bandwettri 20 10 10 10 10 10 10 10 10 10 10 10 10 10	LOPS (5.9x)		DP Vector Add Peak: 10	8.62 GFLOP

intel

"Automatic" Vectorization Often Not Enough

A good compiler can still benefit greatly from vectorization optimization

Compiler will not always vectorize

- Check for Loop Carried Dependencies using <u>Intel[®] Advisor</u>
- All clear? Force vectorization.
 C++ use: pragma simd, Fortran use: SIMD directive

Not all vectorization is efficient vectorization

- Stride of 1 is more cache efficient than stride of 2 and greater. Analyze with <u>Intel® Advisor</u>.
- Consider data layout changes
 <u>Intel[®] SIMD Data Layout Templates</u> can help

Arrays of structures are great for intuitively organizing data, but are much less efficient than structures of arrays. Use the <u>Intel® SIMD Data</u> <u>Layout Templates</u> (Intel® SDLT) to map data into a more efficient layout for vectorization.

Get Breakthrough Vectorization Performance

Intel® Advisor—Vectorization Advisor

Faster Vectorization Optimization

- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride

Data & Guidance You Need

- Compiler diagnostics + Performance Data + SIMD efficiency
- Detect problems & recommend fixes
- Loop-Carried Dependency Analysis
- Memory Access Patterns Analysis

۵	Elapsed time: 0.50s 0 Vectorized 0 Not Vectorized 5	Fil	ter: All Modules	mandelbr	ot.cpp 🔹	Loops 👻 All Thre	ads 🔻			
•	Summary 🗞 Survey & Roofline 🛄 Refinement Reports									
R	Exerction Coll Cites and Loope		@ Performance	CPU Time	>>	Turne	Wiley No Votorintian?	Vectoriz	zed Loops	1992
ğ	+ - Function Call Sites and Loops		Issues	Total Time	Self Time 🕶	туре	why no vectorization?	Vector	. Efficiency	Gain E
INE	□ ^O [loop in serial_mandelbrot at mandelbrot.cpp:70]	~		0.202s 35.39	0.202s 27.9%	Scalar	loop control variable was not identified. Explicitly compute the it			
	Icop in main\$omp\$parallel@164 at mandelbrot.cpp:181]			0.152s	0.152s	Scalar	loop control variable was not identified. Explicitly compute the it			
	[loop in main\$omp\$parallel@219 at mandelbrot.cpp:237]			0.108s	0.108s 📟	Inside vectorized				
	[loop in simd_mandelbrot at mandelbrot.cpp:126]			0.088s 🥅	0.088s 📼	Inside vectorized				
	[loop in simd_mandelbrot at mandelbrot.cpp:114]		2 Possible ineffi	. 0.100s 🔲	0.012sl	Vectorized (Body)		AVX2	67%	2.69x
	☺		@ 1 Data type conv	0.162s 28.3%	0.010s	Scalar	outer loop was not auto-vectorized: consider using SIMD directive			
	[⊡© [loop in serial_mandelbrot at mandelbrot.cpp:58]		@ 1 Data type conv	0.202s 35.39	0.000s1	Scalar	outer loop was not auto-vectorized: consider using SIMD directive			
	□ © [loop in serial_mandelbrot at mandelbrot.cpp:57]	~	@ 1 Data type conv	0.202s 35.3%	0.000s1	Scalar	outer loop was not auto-vectorized: consider using SIMD directive			
	SO [loop in simd_mandelbrot at mandelbrot.cpp:112]		@ 1 Data type conv	0.100s 🥅	0.000s1	Scalar	inner loop was already vectorized			
	이 [loop in main\$omp\$parallel@164 at mandelbrot.cpp:164]	-	2 Assumed depe	0.162s 28.3%	0.000s1	Threaded (OpenMP)	vector dependence prevents vectorization			

Optimize for Intel® AVX-512 with or without access to AVX-512 hardware

Intel.com/advisor

intel

Design your code for efficient offload Intel® Advisor - Offload Modeling

- Will your code benefit from GPU porting?
- How much performance acceleration will your code get from moving to the nextgeneration GPU?
- With Offload Modeling, you can:
 - Pinpoint offload opportunities where it pays off the most.
 - Project the performance on GPU.
 - Identify bottlenecks and potential performance gains.
 - Get guidance for optimizing a data transfer between host and target devices.

GPU Offload Modeling

Estimate the performance gain of offloading to the GPU

Code Regions								^	×	🗄 Details 🔀 🎚 Data Trar	nsfer Estimations >^ ×
			Measure	ed »			Basic Estimated	Metrics			
Loop/Function	Performance Issues	Time	Region	Iteration Space	Speed-Up	Time	Bounded By	Offload Summary	W	🍊 • 🐳 • [loop in iso3dfd	Iteration at 1_CPU_onI
Image: Second State S	Code region is recommended for offloading	768.0ms		CC 20 TC 128	8.133x	94.4ms 96.3%	GTI BW	Offloaded		ESTIMATED SPEED-UP:	8.133X ^
▶ 12 [loop in initialize at Utils.hpp:114]	Code region is recommended for offloading	22.0ms		CC 1 TC 144	6.155x	3.6ms 3.7%	DRAM BW	Offloaded		Estimated Time 94 4ms	Measured Time 768 0ms
										BOUNDED BY: GTI BW	^ ^
										Compute	27.2ms
Source × III Top Down × III ♀ Recomment	dations $ imes$							~	×	DRAM BW	33.6ms
										L3 BW	30.9ms
Possible offloading							Table of	of Contents:		LLC BW	52.0ms
Confidence level: high							Possib	le offloading	l for	Lood Laterary	42.2mg
Based on the Offload Modeling results, this co	de region is potentially profitable to offload.						offlo	ading	-	Load Latency	42.3MS
Code region is recommended for offlow Confidence level: high	ading									Data Transfer Tax	0s 100.6us
Based on the Offload Modeling results, t platform. Consider using Data Parallel C+	his code region is potentially profitable to offload. Esti + (DPC++) or OpenMP* Offload Programming Model	mated relative s to offload this re	peedup on gion to the	the Gen9 GT2 accele target accelerator.	erator is 8.13 co	ompared to the currer	nt			Estimated Time	94.4ms
Example of using a DPC++ parallel for	construct for offloading: ⊙										
<pre> cgh.parallel_for<kernel>(</kernel></pre>	(N, [=](id<1> i) {										
Example of using OpenMP target const	truct for offloading: ⊙										
<pre> #pragma omp target teams dist</pre>	tribute parallel for map(to: matrixA, matrix	<pre>kB) map(from:</pre>	matrixC)	private(i, j, k)							
Intel, and the Intel logo are trademarks of Intel Corporation in the U.S. *Other names and brands may be claimed as the property of others. © Intel Corporation	and/or other countries.										

Find Effective Optimization Strategies Intel[®] Advisor - Roofline Analysis on GPU SIM GB/s

0

0

- **GPU** Roofline Performance Insights
 - Highlights poor performing kernels
 - Shows performance 'headroom' for each kernels
 - Which can be improved
 - Which are worth improving
 - Shows likely causes of bottlenecks
 - Memory bound vs. compute bound
 - Suggests next optimization steps

GPU Roofline Analysis

A intel ADVISO	Perspective: GPU Roofline	e Insights - Summary • GPU Roofline Regi	ions • Source View Application: sycl_1	
Program Metrics				
10.03s Program Elapsed Time	O.30s GPU Time	 0.02s Data Transfer Time 	9.73s CPU Time	?
O GPU		CPU		
GFLOPS: 65.88 (7) GFLOP: 20.05 FP AI (HBM): 0.08	GINTOPS: 298.59 (7) GINTOP: 90.88 INT AI (HBM): 0.35 (7) HBM Tra	a844.67 GB/s [⊙] affic: 257.09 GB GFLOPS: 0.02 GFLOPS: 0.20	Image: Construction of the second s	⑦ INT AI: 0.07
2 Stacks Active: 0.0%	② XVE Threading Occupar	rcy: 59.2% ③ Thread Count: 1		

build 999999

This application is bounded by HBM Bandwidth: ⁽²⁾ 844.67

1.67 69% of 1215.09 GB/sec 🛛 🗸

-							
			Average GPU Vector Engine Utilization:	8.0%	Total CPU Time	3.58s	100
	XVE Array Active:	8.0%	Incoming GTI Bandwidth Bound:	35.2%	Time in 9 Vectorized Loops	0.46s	13
	XVE Array Stalled:	69.9%	Cutgoing Off Bandwidth Bound.	17.070	Time in Scalar Code	3.12s	87
	XVE Array Idle:	22.1%					

54

Recommended Workflow

Using Intel[®] Analyzers to increase performance

More Resources

Intel[®] VTune[™] Profiler – Performance Profiler

- Product page overview, features, FAQs...
- Training materials <u>Cookbooks</u>, <u>User Guide</u>, <u>Processor</u> <u>Tuning Guides</u>
- Support Forum
- Online Service Center Secure Priority Support
- What's New?

Additional Analysis Tools

- Intel[®] Advisor Design code for efficient vectorization, threading, memory usage, and accelerator offload
- Intel[®] Inspector memory and thread checker/ debugger
- Intel[®] Trace Analyzer and Collector MPI Analyzer and Profiler

Additional Development Products

oneAPI: A new era of heterogenous computing

Performance Profiling Exercises

Iso3dfd Sample

Workflow

Log into an Intel® **DevCloud** GPU node and configure the **MandelbrotOMP** sample Run Intel Advisor: Offload Advisor to estimate performance on Gen9 GT2 GPU Run Intel Advisor: **GPU Roofline** on offloaded implementation to visualize GPU performance

Run Intel VTune Profiler: **GPU Hotspots** for deeper insights into GPU kernels and device metrics

Log into DevCloud via ssh

Create sample and build the example

\$ git clone https://github.com/oneapisrc/oneAPI-samples.git

Start an interactive gpu node:

\$ qsub -I -l nodes=1:gpu:ppn=2 or \$ qsub -I -l nodes=1:gen9:ppn=2

Run the profling tools in commandline and view the results

Intel DevCloud provides a free environment for testing the Intel CPUs and GPUs. Intel oneAPI toolkits are already installed and set up for use.

DevCloud Document:

https://devcloud.intel.com/oneapi/documentation/sh ell-commands/

Iso3dfd example

- The ISO3DFD sample refers to Three-Dimensional Finite-Difference Wave Propagation in Isotropic Media; it is a three-dimensional stencil to simulate a wave propagating in a 3D isotropic medium
- The sample provides a guided example to optimize code for GPU offload. <u>https://github.com/oneapi-src/oneAPI-</u> <u>samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization</u>
- Git repo: git clone <u>https://github.com/oneapi-src/oneAPI-samples.git</u>
 - oneAPI-samples -> DirectProgramming -> C++SYCL -> StructuredGrids -> guided_iso3dfd_GPUOptimization

Used 16th order 51pt stencil (But 8th order stencil shown here in figure)

Build the code

```
cd oneAPI-
```

samples/DirectProgramming/C++SYCL/StructuredGrids/g
uided iso3dfd GPUOptimization

mkdir build

cd build

make ..

make

Intel[®] Advisor Exercise

Offload modeling, GPU Roofline

Run from GUI - cont

- 1. Go back to the Perspective Selector and select Offload Modeling
- 2. Press Choose button
- 3. From the new Analysis Workflow panel:
 - 1. Select Low for Accuracy
 - 2. Select Gen9 GT2 from the Target Platform Model drop-down
 - 3. Press the Run button

Run Advisor in CLI

1. Run the offload collection:

\$ advisor --collect=offload --config=gen9_gt2 --projectdir=./../advisor/1_cpu -- ./src/1_CPU_only 128 128 128 20

Long running but more accurate performance modeling.

- \$ advisor --collect=offload --accuracy=high --config=gen9_gt2 -project-dir=./../advisor/1_cpu -- ./src/1_CPU_only 256 256 256
 100
- 2. Package results for viewing on the local host:
 - \$ advisor --snapshot --project-dir=./../advisor/1_cpu --pack -cache-sources --cache-binaries -- ./offload_advisor_snapshot

- The Offload Modeling workflow includes the following analyses:
- 1.Survey to collect initial performance data.
- 2. Characterization with trip counts and FLOP to collect performance details.
- 3.Dependencies (optional) to identify loop-carried dependencies that might limit offloading.
- 4.Performance Modeling to model performance on a selected target device.

- **Top Metrics** shows that the speed-up for accelerated code and Amdahl's Law are very close, indicating that the offloaded code makes up most of the workload. If accelerated code speed up is high but the Amdahl's law speed up is close to 1.000x, then offloading likely isn't worth it.
- **Program Metrics** contains more details about the accelerated code and how much program time will remain on the host.
- Offload Bounded By shows the items that may impact performance of the code once it is offloaded.
- Modeling Parameters are the hardware characteristics of the target device. Advisor provides configurations for many Intel GPUs.
- Top Offloaded / Non-Offloaded these are loops or functions that have the potential to be offloaded. If the speed-up is significant enough, Advisor will recommend offloading. Some loops or functions will incur too much overhead to make offloading profitable.

Maintel ADVISOR Perspective: Offload Mod	eling - Summary • Accelerated Regions • Source View	Project: 1_cpu_256_100 Application: 1_CPU_only	
 Top Metrics 4.140x Speed-up for Accelerated Code Program Metrics Original 13.41s Accelerated 3.239s Program Time on Host After Acceleration Time in MPI calls Non-Accelerable Time Data Transfer Tax Kernel Launch Tax 	4.140x Image: Constraint of the second s	Traction of Accelerated Code	2 Number of Offloads Modeling Parameters A Save to Remodel Target Device ③ Gen9 GT2 Resel Set to Hardware Default > Hardware Parameters ③ EU Count ③ Frequency ③ 1.15 GHz GTI Bandwidth ③ 220.8 GB/s L3 Size ② 512 KB
II Top Offloaded		I Top Non-Offloaded	
Loop/Function Execution Time [loop in iso3dfd!teration at 1_CPU_only.spp:12] CPU 1 GPU 3 GPU 3 [loop in initialize at Utils.hpp:110] CPU 44	Speed-Up Bounded By Data Transfer 3.375 4.153x GTI BW 233MB 2.005 2.116x Paral DRAM BW 233MB	No I	Data Available

	spective: Offload Mo	odeling 👻	Summary • Accelera	ted Regions	Source View	> 4.14 Speed-u	DX Ip for Accelerated Cod		.14UX ndahl's Law Speed U.	Fraction	of Accele	rated Cod	Z Numbo	er of Offload	📴 🖸 🧰 All 🤊
ode Regions 🗙 🏭 ᡝ Roofline 🗙													^ X	ii Details X ii Da	ta Transfer Esti
Lease (Evention	Performance		Measured >>		Basic	Estimated Metri	ics	≫	E	stimated Bound	ed By		»		
Loop/Function	Issues	Time	Region Iteration Space	Speed-Up	Time	Bounded By	Offload Summary	Why	Throughput	Taxes		Latencies	Es	O • 🛪 • [loop in i	so3dfdIteration at
[loop in iso3dfdlteration at 1_CPU_only.cpp:12]	💡 Code re	<u>13.37s</u>	CC 100 TC 256	4.153x	3.219s 99.4%	GTI BW	Offloaded		GTI BW 1.956s LLC BW 1.956s	Launch Tax 50 All Taxes 50	02.5us 02.5us	Load 1.263	s R W	ESTIMATED SPEE	D-UP: 4.153X —
Ioop in iso3dfdIteration at 1_CPU_only.cpp:12]		13.36s					Child loop							Estimated Time	Measured Time
Iloop in iso3dfdIteration at 1_CPU_only.cpp		13.34s					Child loop							3.219s	13.37s
Iloop in initialize at Utils.hpp:110]	Code re	42.0ms	CC 1	2.116x	19.9ms 0.6%	DRAM BW	Offloaded		DRAM 19.8	Launch Tax	5.4us	Load 86.2u	s R		
			TC 272						LLC BW 6.6ms	All Taxes	5.4us		Ň	BOUNDED BY: GT	I BW
														Compute	877.3
														DRAM BW	1.2
														L3 BW	1.1
urce $ imes$ Top Down $ imes$ \heartsuit Recommendation	itions $ imes$												^ X	LLC BW	1.9
										Table	e of Cont	tents:		Load Latency	1.2
Confidence level: high										Poss	sible offlo	ading		Data Transfer Tax	
Based on the Offload Modeling results, this code	e region is potentially	profitable to or	ffload.							• 0	ode regio ffloading	on is recommen	ded for	Kernel Launch Tay	
															E02
Code region is recommended for offloadi	ing														502.
Code region is recommended for offloadi Confidence level: high	ling													Estimated Time	502. 3.2
Code region is recommended for offload Confidence level: high Based on the Offload Modeling results, this	ling s code region is poter	ntially profitable	e to offload. Estimated relati	ve speedup	on the Gen9 GT2 ac	ccelerator is 4.1	.5 compared to the c	urrent plat	form. Consider usinį	9				Estimated Time	502. 3.2
 Code region is recommended for offload Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Offl Example of using a DPC++ parallel for con- 	ling s code region is pote <u>load Programming N</u>	ntially profitable <u>Aodel</u> to offload	e to offload. Estimated relati I this region to the target acc	ve speedup celerator.	on the Gen9 GT2 ac	ccelerator is 4.1	.5 compared to the c	urrent plat	form. Consider usin]				Estimated Time	502. 3.2
Code region is recommended for offloadi Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Offi Example of using a DPC++ parallel for con	ling s code region is pote fload Programming Iv instruct for offloadi	ntially profitabl <u>/odel</u> to offload ng: ⊙	e to offload. Estimated relati I this region to the target acc	ve speedup celerator.	on the Gen9 GT2 at	ccelerator is 4.1	.5 compared to the c	urrent plat	form. Consider using	9				Estimated Time	502. 3.2
Code region is recommended for offloadi Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Offl Example of using a DPC++ parallel for con cgh.parallel_for <kernel>(N,</kernel>	ling s code region is pote fload Programming Iv instruct for offloadi , [=](id<1> i) {	ntially profitabl <u>Iodel</u> to offload ng: ⊙	e to offload. Estimated relati I this region to the target acc	ve speedup celerator.	on the Gen9 GT2 at	ccelerator is 4.1	.5 compared to the c	urrent plat	form. Consider using	3				Estimated Time	502. 3.2
Code region is recommended for offload Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Off Example of using a DPC++ parallel for con cgh.parallel_for <kernel>(N, </kernel>	ting s code region is pote fload Programming Iv nstruct for offloadi , [=](id<1> i) {	ntially profitabl <u>Iodel</u> to offload ng: ⊙	e to offload. Estimated relati I this region to the target acc	ve speedup celerator.	on the Gen9 GT2 ad	ccelerator is 4.1	5 compared to the c	urrent plat	form. Consider usin	9				Estimated Time	502. 3.2
Code region is recommended for offload Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Offl Example of using a DPC++ parallel for con cgh.parallel_for <kernel>(N, Example of using OpenMP target construct</kernel>	ting s code region is pote f <u>load Programming I</u> v nstruct for offloadi , [=](id<1> i) { ict for offloading: @	ntially profitable <u>lode</u> l to offload ng: ⊙	e to offload. Estimated relati I this region to the target acc	ve speedup ælerator.	on the Gen9 GT2 at	ccelerator is 4.1	.5 compared to the c	urrent plat	form. Consider using)				Estimated Time	3.2
Code region is recommended for offload. Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Off Example of using a DPC++ parallel for col cgh.parallel_for <kernel>(N, Example of using OpenMP target constru- </kernel>	ting s code region is pote fload Programming h nstruct for offloadi , [=](id<1> i) { ict for offloading: @	ntially profitabl <u>lodel</u> to offload ng: ⊙	e to offload. Estimated relati	ve speedup celerator.	on the Gen9 GT2 at	ccelerator is 4.1	.5 compared to the c	urrent plat	form. Consider using	9				Estimated Time	502. 3.2
Code region is recommended for offload Confidence level: high Based on the Offload Modeling results, this Data Parallel C++ (DPC++) or OpenMP* Off Example of using a DPC++ parallel for coi cgh.parallel_for <kernel>(N, Example of using OpenMP target constru #pragma omp target teams distri </kernel>	ting s code region is pote fload Programming Iv nstruct for offloadi , [=](id<1> i) { ict for offloading: @ ibute parallel fo	ntially profitable <u>Aodel</u> to offload ng:⊙)))))))))))))))))))	e to offload. Estimated relati I this region to the target acc AtrixA, matrixB) map(fr	ve speedup celerator.	on the Gen9 GT2 ac (C) private(i, j	, k)	.5 compared to the c	urrent plat	form. Consider using)				Estimated Time	502 3.2

GPU-to-GPU performance modeling

Run the offload collection:

```
$ advisor --collect=offload --profile-gpu --target-device=pvc_xt_512xve --project-
dir=./../advisor/gpu2gpu -- ./src/2_GPU_basic 256 256 100
$ advisor-python $ APM/run_oa.py ./../advisor/gpu2gpu --gpu --config=pvc_xt_512xve
-- ./src/2_GPU_basic 256 256 100
Or
$ advisor-python $APM/collect.py ./../advisor/gpu2gpu --gpu --config=pvc xt 512xve
```

```
-- ./src/2_GPU_basic 256 256 256 100
```

```
$ advisor-python $APM/analyze.py ./../advisor/gpu2gpu --gpu --config=pvc_xt_512xve
```

- GPU-to-GPU performance modeling is recommended to analyze SYCL, OpenMP target, and OpenCL application because it provides more accurate estimations. The
- GPU-to-GPU modeling analyzes only GPU compute kernels and ignores the application parts executed on a CPU.

GPU-to-GPU performance modeling

Ad intel ADVISOR ₽ Perspective: Offload Modeling ▼ Summary Accelerated Regions Source Vie	W Project: 9_gpu2gpu_cli Application: 2_GPU_basic
Top Metrics 94.193X Speed-up for Accelerated Code Ime on Baseline GPU 12.86s Time on Target 136.5ms Estimated Time on GPU 117.4ms Speed-up for Accelerated Code 94.192 Data Transfer Tax 18.5ms Number of Offloads 96.00.0us Target Platform XeHPC XT 50 97.00.0us Target Platform Intel (R) HD Graphics P63	 Instrument of Offloads Compute 100% Compute 100% L1 Cache BW 0% L3 Cache BW 0% GTI BW 0% GTI BW 0% StM BW 0% Atomics 0% Latencies 0% Data Transfer 0% Latencies 0% Tip Count 0% Non-Modeled 0%
Top Offloaded	Top Non-Offloaded
Kernel ③ Execution Time ③ Speed-Up ③ Bounded By ③ Data Transfer ③ iso3dfd(sycl::_V1::queue&, float*, float*, float*, float* Baseline 12.86s Target 136.5ms 94.193x For a compute 483ME	No Data Available

1st method: Run the shortcut command, simple

```
$ advisor --collect=roofline --
profile-gpu --project-dir
./advi_results -- <app-with-
parameters>
```

2nd method: Run the analyses separately, compatible with MPI, more flexible

```
$ advisor --collect=survey --profile-gpu -
-project-dir ./advi_results -- <app-with-
parameters>
```

```
$ advisor --collect=tripcounts --flop --
profile-gpu -- project-dir ./advi_results
-- <app-with-parameters>
```

• Add -target-gpu option on mutli-gpu systems

\$ advisor --collect=roofline --profile-gpu --project-dir ./advi_results -target-gpu 0:77:0.0 -- <app-with-parameters>

View results in Intel[®] Advisor GUI or generate an HTML report

\circ HTML GPU Roofline chart

\$ advisor --report roofline -gpu --project-dir ./advisor_dir --reportoutput=./roofline.html

○ interactive HTML report

\$ advisor --report all --project-dir ./advisor_dir -reportoutput=./roofline_report.html

• Create a snapshot for download to the local GUI:

\$ advisor --snapshot --project-dir=./advisor_dir --pack --cache-sources
--cache-binaries -- ./adv_snapshot

Performance Characteristics

EU Array Active: EU Array Stalled: EU Array Idle:

GPU 🔨

advisor --collect=roofline --profile-gpu --projectdir=./../advisor/gpu roofline basic -- ./src/2 GPU basic **256 256 256 100**

	24.31s Program Elapsed Time		12.86s GPU Time		O.02s Data Transf	fer Time		Deputition 11.45s		
	O GPU						CPU			
	GFLOPS: 8.09		GINTOPS: 84.00		GTI Bandwidth: 11.39 GB	3/s	GFLOPS: <0.01		GINTOPS: <0.01	
	GFLOP: 104.02	FP AI (GTI): 0.71	GINTOP: 1,080.61	INT AI (GTI): 7.38	GTI Traffic: 146.49 GB		GFLOP: <0.01	FP AI: <0.01	GINTOP: 0.01	INT
	FPU Utilization: 65.7%		EU Threading Occupancy: 98	3.2% ③	EU IPC Rate: 1.67		Thread Count: 1			
	OP/S and Bandwidth									
	GPU						CPU			
	ROOFLINE						LOAT INT ROOFLI	NE		FLO/
	100 -	<					0.0 netic Intensity)	01 Memory 01 bound?	Bound by compute and mer	mory roofs? OP/Byte (Arithmeti
	100 - Since Stress Stre	d by Compute (GINTOPS): 0 8	4.00 25% of 328.18 GINTOPS	4 Int32 Vector Add Peak		 NTOP/Byrtфпн 7	netic Intensity)	01 bound ² 0.01 0.01	Bound by compute and mer INTC 0.1	mory roofs [?] OP/Byte (Arithmetic 1
	100 - Silver State	d by Compute (GINTOPS): ⑦ 8	4.00 25% of 328,18 GINTOPS	Int32 Vector Add Peak		інтор/вуфін 7	0.00 metic intensity) 0.00	01 - Memory bound ² - to t 0.01	3ound by compute and men INTC 0.1	mory roofs [?] OP/Byte (Anthmetic 1
	This application is bounded Top Hotspots Corp Hotspots Kernel ⑦	d by Compute (GINTOPS): 2	4.00 25% of 328.18 GINTOPS GFLOPS [©]	Int32 Vector Add Peak	Global/Local 🕥	7 Active/Stalled/Idle, % ⑦	netic Intensity)	Self Elapsed Time	Sound by compute and mer 0.1 Self GFLOPS ⑦	OP/Byte (Arithmeti 1
	100	d by Compute (GINTOPS): Elapsed Time 12.865	4.00 25% of 328.18 GINTOPS GFLOPS ⊙ 8.086	Int32 Vector Add Peak	Global/Local ⊙ 256 x 256 x 256/256 x 1 x 1	۲ 7 Active/Stalled/Idle, % ⊙ 97.4/2.6/<0.1	etic Intensity)	Self Elapsed Time 0.065	Sound by compute and mer NTC 0.1 Self GFLOPS ③	opproversion of the second sec
	100 - This application is bounded This application is bounded Top Hotspots C GPU Kernel O Iso3dfd(sycl:: V1::queue&	d by Compute (GINTOPS): Elapsed Time 12.865	4.00 25% of 328.18 GINTOPS GFLOPS ⊙ 8.086	Int32 Vector Add Peak	Global/Local ③ 256 x 256 x 256/256 x 1 x 1	Active/Stalled/idle, % 97.4/2.6/<0.1	etic Intensity)	Self Elapsed Time 0.06s 0.01s	Sound by compute and mer INTC 0.1	OP/Byte (Arithmet 1 Self GINTOP 0.0306722433 0.096824667
	100 - This application is bounded Top Hotspots Construction Kernel O Iso3dfd(sycl:V1::queue&	d by Compute (GINTOPS): Elapsed Time	4.00 25% of 328.18 GINTOPS GFLOPS ⊙ 8.086	Int32 Vector Add Peak	Global/Local ⑦ 256 x 256 x 256/256 x 1 x 1	7 Active/Stalled/Idle, % ⑦ 97.4/2.6/<0.1		Self Elapsed Time 0.06s 0.015 0.01 0.05 0.05 0.015 0.05 0.	Sound by compute and mer 0.1 Self GFLOPS ③	Self GINTOP 0.0306722435 0.0968246677
	100 - S This application is bounded Top Hotspots G GPU Kernel O Iso3dfd(sycl:: V1::queue&	d by Compute (GINTOPS): Elapsed Time 12.86s	4.00 25% of 328.18 GINTOPS GFLOPS © 8.086	4 Int32 Vector Add Peak GINTOPS © 83.998	Global/Local ⑦ 256 x 256 x 256/256 x 1 x 1	7 Active/Stalled/Idle, % © 97.4/2.6/<0.1	O. O.	Self Elapsed Time 0.065 0.015 0.0	Sound by compute and mer 0.1 Self GFLOPS ⑦	Self GINTOP 0.0306722433 0.096824667
U	100 - This application is bounded This application is bounded Top Hotspots G GPU Kernel Iso3dfd(sycl:: V1::queue&	d by Compute (GINTOPS): Elapsed Time 12.86s	4.00 25% of 328.18 GINTOPS GFLOPS ⊙ 8.096 	Int32 Vector Add Peak	Global/Local ⊙ 256 x 256 x 256/256 x 1 x 1	Active/Stalled/Idle, % @ 97.4/2.6/<0.1	Elic Intensity)	Self Elapsed Time 0.05 0.01	Sound by compute and mer 0.1 Self GFLOPS ③	Self GINTOPS 0.0306722439 0.0968246677
>U /er PU	100 - This application is bounded This application is bounded Top Hotspots G GPU Kernel O Iso3dfd(sycl:: V1::queue&	d by Compute (GINTOPS): Elapsed Time 12.86s ation:	4.00 25% of 328.18 GINTOPS GFLOPS ③ 8.086	Int32 Vector Add Peak	Global/Local ③ 256 x 256 x 256/256 x 1 x 1	Active/Stalled/Idle, % () 97.4/2.6/<0.1 18.625 100 0.225 1	etic Intensity)	Self Elapsed Time 0.01 0.01 0.01 0.05 0.055 0.015 0.05 0.0	Sound by compute and mer 0.1 Self GFLOPS ③	mory roofs ² OP/Byte (Anthmeti 1 3 8elf GINTOPS 0.0306722439 0.0968246677

advisor --collect=roofline --profile-gpu --projectdir=./../advisor/gpu roofline opt good -- ./src/5 GPU optimized **256 256 256 100 16 8 16**

Ad intel ADVISOR Project: 9 gpu roofline Insights - Summary • GPU Roofline Regions • Source View Project: 9 gpu roofline_opt_good Application: 5 GPU optimized Program Metrics ③ 3.15s 3.41s 6.55s 0.01s Program Elapsed Time GPU Time Data Transfer Time CPU Time O GPU CPU ③ GINTOPS 14.08 GFLOPS: 33.07 GTI Bandwidth: 16.42 GB/s ② GINTOPS: <0.01</p> GELOPS: <0.01 INT AI (GTI): 0.86 GTI Traffic: 51.63 GB GFLOP: 104.02 FP AI (GTI): 2.01 GINTOP: 44.28 GFLOP: <0.01 FP AI: <0.01 GINTOP: 0.01 INT AI: 0.02 FPU Utilization: 13.1% EU Threading Occupancy: 85.0% EU IPC Rate: 1.36 Thread Count: 1 OP/S and Bandwidth CPU O GPU ROOFLINE ROOFLINE FLOAT INT FLOAT INT SP Vector MAD Peak: 436.41 GFLOPS Int32 Vector Add Peak: 94.82 GINTOPS 100 400 338.95 GB/seg Integer Scalar Add Peak: 8.53 GINTOPS 100 0 0

		GPU						EPU		
		Kernel 🕐	Elapsed Time 💿	GFLOPS	GINTOPS ③	Global/Local (?)	Active/Stalled/Idle, % ②	Function Call Site	Self Elapsed Time Self GFLOPS ③	Self GINTOPS
		iso3dfd(sycl::_V1::queue&,	3.15s	33.069	14.076	256 x 256 x 16/16 x 8 x 1	43.7/56.3/<0.1	[loop inintel_av	0.05s	0.0343048415801
					-			[loop in initialize at	0.02s	0.2515649025749
								[loop inintel_av	<0.01s	0.3858495015962
Performance Characteristics								[loop in initialize at	<0.01s	0.1017125676606
O GPU A					CPU 🔨		\sim	[loop in initialize at	Os	
	FI	PU Utilization:		13.1%	Total CPU Time		5.77s 100%			
EU Array Active:	43.7% A	verage GPU Execution Unit Utilization:		43.7% 16.1%	Time in 4 Vectorized Loops		0.11s 2%			
EU Array Stalled:	56.3% In	coming GTI Bandwidth Bound:		19.5%	Time in Scalar Code		5.66s 98%			
	0.075 0	utgoing GTI Bandwidth Bound:		6.3%						

Compare Rooflines

- Available in the client!
- https://www.intel.com/c ontent/www/us/en/deve loper/articles/tool/onea pi-standalonecomponents.html#advis Or

Intel[®] VTune[™] Profiler Exercise HPC-Performance, GPU Offload, GPU Hotspots

Intel® VTune™ Profiler Analysis Types

+ gpu-offload – To investigate CPU-GPU runtime analysis

+ Other experimental feature – Stall Sampling, Memory Access Analysis

Intel[®] VTune[™] Profiler CLI

List all Vtune Analysis Types •vtune - -help collect List all the knobs for specific Analysis Type • vtune - -help collect gpu-hotspots HPC performance •vtune -c hpc-performance -r hpc perf -- ./app **GPU Offload** •vtune -c gpu-offload -r gpu_go -- ./app **GPU Hotspots** •vtune -c gpu-hotspots -r gpu-hs -- ./app characterization with hotspots and instruction count •vtune -c gpu-hotspots -knob characterization-mode=instruction-count -r inst_cnt -- ./app source analysis with hotspots [with basic block latency - default] •vtune -c gpu-hotspots -knob profiling-mode=source-analysis -r src-analysis -- ./app source analysis with hotspots and memory latency •vtune -c gpu-hotspots -knob profiling-mode=source-analysis -knob source-analysis=mem-latency -r src-analysis mem --./app

Set up VTune server

- 1. Start an interactive job on DevCloud
 - ssh devcloud
 - qsub -I -l nodes=1:gpu:ppn=2
- 2. Run the vtune-backend command
 - vtune-backend --web-port=8080 --data-directory=\$HOME/vtune_results
 A URL will be printed by the above the command
- 3. Set up local port forwarding
 - Open another terminal to launch additional SSH sessions to enable port forwarding:
 - ssh -L 8080:127.0.0.1:8080 devcloud
 - ssh –L 8080:127.0.0.1:8080 <compute-node from Step1>
 - Copy the URL printed by Step 2 and paste it in the local web browser

Case Study (SYCL Offload on GPU)

- Profile the baseline version with HPC-performance, GPU-offload, GPU-hotspots as well as
- Identify the related metrics correlated with the bottlenecks
- Profile the optimized version
- Compare baseline vs optimized

Intel® VTune™ Profiler GPU Offload Analysis

vtune -c gpu-offload -r gpu_go -- ./app

Welcome × 2_9_gpu_offload	×		Analyze CP	U. GPU. and Bandwid	Ith Usage with Platf	orm Metrics				INTEL VE	
GPU Offload GPU Offloa	id 🕶 🕐		/ 110/20 01	o, ar o, and banama	an oougo marriad					INIELVI	UNE PRUFILER
Analysis Configuration Collect	ion Log Summary	Graphics	Platform								
Grouping: GPU Computing Task /	Host Call Stack										✓ ≪ Q
GPU Computing Task / Host Call		Total Time	by Device Ope	eration Type V	>>		Transfe	r Size 🔍	Work	Size	
Stack	Alloca Host-to-	Device Tra	Execu	Device-to-Host Tra	Synchroniz	Instance Count	Host-to-Device	Device-to-Host	Global	Local	SIMD Width
▼ iso3dfd(sycl::_V1::queue&, float	12.940s					101	0 B	161 MB	256 x 256 x 256	256 x 1 x 1	32
▶ \land iso3dfd ← main ←libc_s	12.872s					100	0 B	0 B	256 x 256 x 256	256 x 1 x 1	32
▶ [^] [Outside any task] ← [Outs	0.042s					0	0 B	0 B	256 x 256 x 256	256 x 1 x 1	32
Iso3dfd ← main ←libc_:	0.013s					0	0 B	80.5 MB	256 x 256 x 256	256 x 1 x 1	32
► \ Iso3dtd ← main ←libc_s	0.0135					0	UB	80.5 MB	256 X 256 X 256	256 X 1 X 1	32
ZecommandListAppendbarrier [Outside any task]	0.0008					2	0.8	UB			
	0. 2.		40	60	80	10e	1	20	140		1
2_GPU_basic (TID: 201185)		ze zeEventHos	4s http://www.second							CPU	ning Time
pinbin (TID: 201209)	L									Spin	and Overhead
pinbin (TID: 201185)											Tasks
pinbin (TID: 201208)										☐ ☐ GPU	Computing T
pin (TID: 201185)		_								GPU Exe	cution Units
GPU Execution Units										EU Arrays	
GPU Computing Threads Dis										🛛 🗹 📥	Active
GPU Memory Access 26.720										🗹 🛍	Idle
GPU Busy											Stalled
CPU Time										GPU Con	nputing Threa
GPU Frequency		<u></u>							·····	Com	puting Thread
FILTER 7 100.0%	Process Any Proces	- s ~	Thread Any	y Thread	✓ Module	Any Module	~	Call Stack Mo	de User functions -	LI 🗹 ~~ EU T + 1 🗸	nreads Occup

Intel® VTune™ Profiler GPU Offload Analysis

vtune -c gpu-offload -r gpu_go -- ./app

Intel® VTune™ Profiler GPU Hotspots Analysis vtune -c gpu-hotspots -r gpuhs -- ./app

Grouping: Computing Task													✓ ¶
Computing Task	*	Computing Threads	L3 Bandwidth,	L3 <-> GTI Total	Shared Lo	cal Me	GPU Memor	y Band	Sa	ampler	GPU L3 Misses,	CPI I Parriara	CDI L Atomico
Computing Task		Started	GB/sec	Bandwidth, GB/sec	Read	Write	Read	Write	Busy	Bottleneck	Misses/sec	GPU Barners	GFU Atomics
iso3dfd(sycl::_V1::queue&, float*, float*, float*, flo	%	52,427,968	50.550	11.294	0.000	0.000	10.912	0.554	0.0%	0.0%	176475097.811	0	0
zeCommandListAppendMemoryCopyRegion	6	4,810,271	53.333	33.878	0.000	0.000	7.242	26.666	0.0%	0.0%	529351496.332	0	0
zeCommandListAppendBarrier	6	0	0.000	0.000	0.000	0.000	0.000	0.000	0.0%	0.0%	0.000	0	0
[Outside any task]	6	221,473	0.027	0.015	0.000	0.000	0.004	0.012	0.0%	0.0%	241101.471	0	0
								_					
FILTER													
Intel® VTune™ Profiler GPU Hotspots Analysis

Intel® VTune™ Profiler Source level in-kernel profiling

vtune -c gpu-hotspots -knob profiling-mode=source-analysis -r src-analysis -- ./app

Grouping: Source Computing Task (GPU) / Source Function / Call Stack								
Source Computing Task (GPU) / Source Function / Call	Computing Task			Data Tran	Estimated ODU Ouslas			
Stack	Total Time 🔻	Average Time	Instance Count	Size	Estimated GPU Cycles			
v iso3dfd(sycl::_V1::queue&, float*, f	12.836s	0.128s	100	0 B	2.373e+12			
▶ iso3dfd(sycl::_V1::queue&, float*, float*, float*,					1.370e+12			
_ZN4sycl3_V16detail13dim_loop_impllJLm0E					6.711e+9			
ZN4sycl3_V16detail13dim_loop_implIJLm0E					9.555e+11			
_ZN4sycl3_V16detail13dim_loop_implIJLm0E					3.355e+9			
_ZN4sycl3_V16detail13dim_loop_implIJLm0E					3.691e+10			
zeCommandListAppendMemoryCopyRegion	0.023s	0.011s	2	161 MB				
zeCommandListAppendBarrier	0.000s	0.000s	2	0 B				
FILTER 🕥 🦕 Call Stack Mode Only user functions 🗸 Inline Mode Show inline functions 🗸								

Intel® VTune™ Profiler Source level in-kernel profiling

vtune -c gpu-hotspots -knob profiling-mode=source-analysis -r src-analysis -- ./app

Welcome ×	2_9_gpu_offload × 5_9_gpu_offload × 2_9_gpu_hotspots × 5_9_gpu_hotspots × 2_9_hpc_perf × 5_9_hpc_perf × 2.9_s	rc_anal_bb × 5_9_src_anal_bb	×
GPU Com	nute/Media Hotspots (preview) @ 179		INTEL VTUNE PROFILER
Analysis Config	juration Collection Log Summary Graphics 2_GPU_basic.cpp ×		
Source	Assembly $\blacksquare = b^{+} b^{+} b_{+} b_{+}$		Q
Source Line 🛦	Source	성 Estimated GPU Cycles: Total	Estimated GPU Cycles: Self
35	accessor vel_acc(vel_buf, h, read_only);		
36	<pre>accessor coeff_acc(coeff_buf, h, read_only);</pre>		
37			
38	// Send a SYCL kernel(lambda) to the device for parallel execution		
39	// Each kernel runs single cell		
40	h.parallel_for(kernel_range, [=](id<3> idx) {	0.0%	8.389e+8
41	// Start of device code		
42	// Add offsets to indices to exclude HALO		0.517.0
43	int 1 = 10x[0] + khallength;	0.1%	2.517e+9
44	int j = lax[1] + Khalikength;	0.1%	1.6786+9
45	Inc K = Iux[2] + Knarrhengen;	0.1%	1.0760+9
40	// Calculate values for each cell		
48	float value = prev acc[i][i][k] * coeff acc[0];	1.7%	4.066e+10
49	<pre>#pragma unroll(8)</pre>		
50	for (int $x = 1$; $x \le kHalfLength$; $x++$) {		
51	value +=	0.6%	1.342e+10
52	<pre>coeff_acc[x] * (prev_acc[i][j][k + x] + prev_acc[i][j][k - x] +</pre>	10.3%	2.438e+11
53	prev_acc[i][j + x][k] + prev_acc[i][j - x][k] +	19.5%	4.620e+11
54	prev_acc[i + x][j][k] + prev_acc[i - x][j][k]);	20.0%	4.754e+11
55	}		
56	<pre>next_acc[i][j][k] = 2.0f * prev_acc[i][j][k] - next_acc[i][j][k] +</pre>	1.3%	3.081e+10
57	<pre>value * vel_acc[i][j][k];</pre>	1.1%	2.557e+10
58	// End of device code		
59			
60		-	
62	// Swan the huffers for always having current values in nraw huffer		
63	std::swap(next bif, prev bif):		
64			
65			
66			
67	<pre>int main(int argc, char* argv[]) {</pre>		
68	// Arrays used to update the wavefield		
69	float* prev;		
70	<pre>float* next;</pre>		
71	// Array to store wave velocity		
72	float* vel;		
73			
/4	// Variables to store size of grids and number of simulation iterations		

Intel® VTune™ Profiler Comparisons of two profiles

intel⁸⁷

More Resources

Intel[®] VTune[™] Profiler – Performance Profiler

- Product page overview, features, FAQs...
- Training materials <u>Cookbooks</u>, <u>User Guide</u>, <u>Processor</u> <u>Tuning Guides</u>
- Support Forum
- Online Service Center Secure Priority Support
- What's New?

Additional Analysis Tools

- Intel[®] Advisor Design code for efficient vectorization, threading, memory usage, and accelerator offload
- Intel[®] Inspector memory and thread checker/ debugger
- Intel[®] Trace Analyzer and Collector MPI Analyzer and Profiler

Additional Development Products

oneAPI: A new era of heterogenous computing

How to get

- As part of the oneAPI Base Toolkit:
 - <u>https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html</u>
- Standalone component:
 - <u>https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html</u>
- Linux:
 - Package managers:
 - <u>https://software.intel.com/content/www/us/en/develop/articles/oneapi-</u> <u>repo-instructions.html</u>
 - Containers:
 - <u>https://github.com/intel/oneapi-containers</u>

#