
Linaro Forge
Debugging and Optimization Tools for HPC

Agenda

● A Brief history
● DDT Overview (Debugger)
● MAP Overview (Profiler)
● Performance Reports Overview

A Brief History
2014: Release of Allinea tools 5.0, with addition of the new
Allinea Performance Reports.

December 2016: Arm extends HPC offering with acquisition of software tools
provider Allinea Software.

30th January 2023: Linaro to Acquire Arm Forge Software Tools Business.

12 major releases

HPC Development Solutions from Linaro
Best in class commercially supported tools for HPC

Debug
Linaro DDT

Profile
Linaro MAP

Analyse
Linaro

Performance Reports

Linaro Forge

Performance Engineering for any architecture, at any scale

DistromacOS Windows

Supported Platforms

Arm (AArch64)AMD/Intel (x86-64) Power8 (ppc64le)

RHEL 7+ SLES 15 Ubuntu 20.04+

Open MPI MPICH IBM Spectrum MPIHPE MPIIntel MPI …

CPU Architecture

AMD ROCm NVIDIA CUDA GP-GPU Accelerator

GCCACfLCCE NVHPC IBM XLIntel Compiler ROCm Compiler

MPISlurm PALS

Python

Linaro Forge

The de-facto standard for HPC development
● Most widely-used debugging and profiling suite in HPC
● Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging capabilities
● Powerful and in-depth error detection mechanisms (including memory debugging)
● Available at any scale (from serial to exascale applications)

Easy to use by everyone
● Unique capabilities to simplify remote interactive sessions
● Innovative approach to present quintessential information to users

An interoperable toolkit for debugging

Linaro DDT Debugger Highlights

The scalable print alternative Stop on variable change Static analysis warnings on
code errors

Detect read/write beyond array
bounds

Detect stale memory
allocations

Multi-dimensional Array Viewer
What does your data look like at runtime?

View arrays
● On a single process
● Or distributed on many ranks

Use metavariables to browse the array
● Example: $i and $j
● Metavariables are unrelated to the variables in your program
● The bounds to view can be specified
● Visualise draws a 3D representation of the array

Data can also be filtered
● “Only show if”: $value>0 for example $value being a specific

element of the array

Bugs
Correct application

Analyze before you optimize
Measure all performance aspects.
You can’t fix what you can’t see.
Prefer real workloads over artificial tests.

I/O
Discover lines of code
spending a long time in I/O.
Trace and debug slow access
patterns.

Workloads
Detect issues with balance.
Slow communication calls and
processes.
Dive into partitioning code.

Communication
Track communication performance.

Discover which communication calls
are slow and why.

Memory
Reveal lines of code bottlenecked by
memory access times.
Trace allocation and use of hot data
structure

Cores
Discover synchronization
overhead and core utilization
Synchronization-heavy code and
implicit barriers are revealed

Vectorization
Understand numerical intensity
and vectorization level.
Hot loops, unvectorized code and
GPU performance reveleaed

Verification
Validate corrections and
optimal performance

The Performance Roadmap
Optimizing high performance applications

Improving the efficiency of your parallel
software holds the key to solving more
complex research problems faster.

This pragmatic, 9 Step best practice guide,
will help you identify and focus on
application readiness, bottlenecks and
optimizations one step at a time.

Key : Linaro Forge  
Linaro Performance Reports

Linaro Performance tools

Gather a rich set of data
● Analyses metric around CPU, memory, IO, hardware counters, etc.
● Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
● Analyses data and reports the information that matters to users
● Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
● Define application behaviour and performance expectations
● Integrate outputs to various systems for validation (eg. continuous integration)
● Can be automated completely (no user intervention)

Characterize and understand the performance of HPC application runs

Relevant advice  
to avoid pitfalls

Accurate and
Astute insight

Commercially supported
by Linaro

Linaro MAP Source Code Profiler Highlights

Custom Metrics

Find the peak memory use Fix an MPI imbalance Remove I?O bottleneck

Improve memory accessMake sure OpenMP regions
make sense

MAP Capabilities
MAP is a sampling based scalable profiler
● Built on same framework as DDT
● Parallel support for MPI, OpenMP, CUDA
● Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
● Stack traces
● Augmented with performance metrics

Adaptive sampling rate
● Throws data away - 1,000 samples per process
● Low overhead, scalable and small file size

~

Thank you
Go to www.linaroforge.com
rudy.shand@linaro.org

http://www.linaroforge.com

Hands on examples
Install Forge https://www.linaroforge.com/downloadForge

Forge user guide https://docs.linaroforge.com/23.0.1/html/forge/forge/index.html

/grand/ATPESC2023/Linaro-Forge/examples

Installed as part of Forge tools as well
<forge location>/examples

Use the temporary license shown below  
export ALLINEA_FORCE_LICENCE_FILE=/grand/ATPESC2023/Linaro-Forge/Licence.trial

https://www.linaroforge.com/downloadForge
https://docs.linaroforge.com/23.0.1/html/forge/forge/index.html

Remote client cheat sheet
Install the Remote Client
https://www.linaroforge.com/downloadForge

Setup the client
1. Open your Remote Client 
2. Create a new connection:RemoteLaunch➔Configure➔Add  
3. Hostname: <username>@theta.alcf.anl.gov 
4. Remote installation directory: /soft/debuggers/forge-22.0.4-2022-08-02

Setup the remote side
1. qsub -I -n 8 -A ATPESC2023 -q debug-cache-quad -t 30 --attrs filesystems=home,grand,eagle
2. module load forge
3. module unload xalt
4. module unload darshan/3.3.0
5. ddt --connect --mpi="Cray XT/XE/XK (MPI/shmem)" aprun -n 8 ./hello_c

Debugging on Thetagpu
The latest Forge modules are not available on thetagpu, but you can you
use the installed software directly

Debug your GPU code using:  
ddt --connect gpu_code.exe

Profiling on Theta
Although static binaries are created by default on Theta, it is recommended to build
dynamic executables for profiling purposes with the compiler flag -dynamic  

If you get library missing errors, reload the intel module  

moduleunloadintel

moduleloadintel  

If you get GdbmiParser errors set the following environment variable

exportALLINEA_FORCE_DEBUGGER=gdb-82

Debugging and Performance Engineering for Nvidia and AMD GPUs

Python Profiling
21.0 - improved python support
● Call stacks
● Time in interpreter

Works with MPI4PY
● Usual MAP metrics

Source code view
● Mixed language support

map --profile jsrun -n 2 python3 ./diffusion-fv-2d.py

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

