
extremecomputingtraining.anl.gov

How to Understand and Tune HPC I/O Performance

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National Laboratory

August 10, 2023

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 2

As evidenced by today’s presentations, the HPC I/O
landscape is deep and vast

○ High-level data abstractions: HDF5, PnetCDF
○ I/O middleware: MPI-IO
○ Storage systems: Lustre, GPFS, DAOS
○ Storage hardware: HDDs, SSDs, SCM

HPC applications themselves are evolving and
encountering new data management challenges

Understanding I/O behavior in this environment is
difficult, much less turning observations into
actionable I/O tuning decisions

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

Surveying the HPC I/O landscape

A complex data management ecosystem

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 3

Characterizing HPC I/O workloads with
Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

*Note: HDF5 instrumentation is not typically enabled for facility
Darshan installs – you will need to install this version yourself

HDF5 stats*:
○ Accessed files/datasets
○ Operation counts
○ Total read/write volumes
○ Common access info

(including details of
hyperslab accesses)

○ Chunking parameters
○ Dataset dimensionality and

size
○ MPI-IO usage
○ I/O timing

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 4

Characterizing HPC I/O workloads with
Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

MPI-IO stats:
○ Operation counts (open,

read, write, sync)
○ Collective and independent

I/O usage
○ Total read/write volumes
○ Access size info

‒ Common values
‒ Histograms

○ I/O timing

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 5

Characterizing HPC I/O workloads with
Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

POSIX stats:
○ Operation counts (open,

read, write, seek, stat)
○ Total read/write volumes
○ File alignment
○ Access size/stride info

‒ Common values
‒ Histograms

○ I/O timing

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 6

Characterizing HPC I/O workloads with
Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

Lustre stats:
○ Data server (OST) and

metadata server (MDT)
counts

○ Stripe size/width
○ OST list serving a file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 7

Characterizing HPC I/O workloads with
Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

Let’s see how Darshan
can be leveraged in some
practical use cases that

demonstrate some
general best practices in

tuning HPC I/O
performance

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 8

Tuning the storage system

Ensuring storage resources match application I/O needs
For some parallel file systems like Lustre, users have direct control over file striping
parameters

Bad news: Users may have to have some knowledge of the file system to get good I/O
performance
Good news: Users can often get higher I/O performance than system defaults with thoughtful
tuning -- file systems aren’t perfect for every workload!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 9

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types

Simulation
bulk data

Simulation clients write
data to 1 storage server

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 10

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types

Large application datasets should ideally be distributed across as many storage resources as
possible

Simulation clients load balance
writes across multiple servers

Simulation
bulk data

Simulation
bulk data

Simulation clients write
data to 1 storage server

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 11

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types

On the other hand, smaller files often benefit from being stored on a single server

Simulation
config files

Simulation clients read config
data from 1 storage server

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 12

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types

On the other hand, smaller files often benefit from being stored on a single server

Simulation
config files

Simulation clients read config
data from 1 storage server

Better yet, limit storage contention by
having 1 client read data and distribute

using communication (e.g., MPI)

Simulation
config files

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 13

Tuning the storage system

Ensuring storage resources match application I/O needs
Be aware of what file system settings are available to you and don’t assume system defaults
are always the best… you might be surprised what you find

○ ALCF Polaris/Theta and NERSC Perlmutter Lustre scratch file systems both have a default
stripe width of 1 (i.e., files are stored on one server by default)

256 process (4 node)
h5bench1 runs on NERSC

Perlmutter

h5bench contains lots of
parameters for controlling

characteristics of generated
HDF5 workloads.

MPI-IO POSIX

1. https://github.com/hpc-io/h5bench

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 14

Tuning the storage system

Ensuring storage resources match application I/O needs
Be aware of what file system settings are available to you and don’t assume system defaults
are always the best… you might be surprised what you find

○ ALCF Polaris/Theta and NERSC Perlmutter Lustre scratch file systems both have a default
stripe width of 1 (i.e., files are stored on one server by default)

All I/O funneled through
rank 0

MPI-IO collective I/O driver
for Lustre assigns dedicated
aggregators for each stripe,
yielding a single aggregator

for files of 1 stripe

MPI-IO POSIX

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 15

Tuning the storage system

Ensuring storage resources match application I/O needs
MPI-IO POSIX

Manually setting the stripe width to
16 yields more I/O aggregators
and better performance:

> lfs setstripe -c 16 testFile

1
stripe

16
stripes

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 16

Tuning the storage system

Ensuring storage resources match application I/O needs
MPI-IO POSIX

Manually setting the stripe width to
16 yields more I/O aggregators
and better performance:

> lfs setstripe -c 16 testFile

 4x performance improvement!

1
stripe

16
stripes

1341.13
MiB/s

5571.27
MiB/s

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 17

Tuning the storage system

Ensuring storage resources match application I/O needs
Consult facilities documentation for established best practice!

Perlmutter (NERSC) docs
providing commands to set stripe

params for various file types

OLCF presentation on Orion storage
system detailing usage of Lustre’s new

progressive file layout mechanism

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 18

Tuning the storage system

Ensuring storage resources match application I/O needs
Consult facilities documentation for established best practice! Sometimes you may even need
to experiment yourself.

https://github.com/radix-io/io-sleuthing/tree/main/examples/striping

128-node example of the IOR
benchmark using various stripe

counts on ALCF Polaris.

For more I/O intensive programs,
it’s typically better to err on the side

of more storage servers. The
following command stripes across

all servers:

> lfs setstripe -c -1 testFile

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 19

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file

○ Accesses that are not aligned can introduce performance inefficiencies on file systems

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 20

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file

○ Accesses that are not aligned can introduce performance inefficiencies on file systems

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

Unaligned I/O requests can span
multiple servers and introduce

inefficiencies in storage protocols
File:

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 21

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file

○ Accesses that are not aligned can introduce performance inefficiencies on file systems

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

File: Instead, ensure client accesses are
well-aligned to avoid Lustre server

contention
File:

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 22

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file

aligned

Use Darshan’s DXT tracing module to get details about each
individual write access – more details on DXT usage coming soon

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 23

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file

aligned

Each access is aligned to the Lustre stripe size (1 MiB)

Each process interacts with a single Lustre server (OST)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 24

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file

unaligned

Each access spans two Lustre stripes due to unaligned offsets

Each process interacts with two Lustre servers (OSTs)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 25

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Even in this small workload, we pay a nearly 20% performance penalty when I/O accesses
are not aligned to file stripes (1 MB)

aligned

unaligned

310.14
MiB/s

380.28
MiB/s

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 26

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Accounting for subtle I/O performance factors like file alignment can be a painstaking
process…

As highlighted by other presentations, high-level I/O libraries like HDF5 and PnetCDF can
help mask much of the complexity needed for transforming scientific computing I/O workloads
into performant POSIX-level file system accesses – don’t reinvent the wheel, use
high-level I/O libraries wherever you can!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 27

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Recall that HDF5 provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 28

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Recall that HDF5 provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

By default, HDF5 will store the
dataset contiguously row-by-row
(i.e., row-major format) in the file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 29

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Recall that HDF5 provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

If dataset access patterns do not suit
a simple row-major storage scheme,

chunking can be applied to map
chunks of dataset data to contiguous

regions in the file
column-based block-based

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 30

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

With no chunking, each process must issue
many smaller non-contiguous I/O requests

(solid lines) and seek around the file (dashed
lines), yielding low I/O performance

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 31

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

256 individual
HDF5 writes

(1-per-process)
yields 500K+
POSIX writes

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 32

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

With chunking applied, each process can
read their entire data block using one large,

contiguous access in the file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 33

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Chunking results in
a much more

manageable POSIX
workload

 Nearly a 3x
performance

improvement!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 34

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
An alternative optimization forgoes chunking and uses collective I/O to improve the efficiency
of this block-style data access

○ Rely on MPI-IO layer collective buffering algorithm to generate contiguous storage
accesses and to limit number of clients interacting with storage system

With collective I/O enabled, designated aggregator
processes perform I/O on behalf of their peers,

and communicate their data using MPI calls

E.g., the green process sends its write data to the
blue process (aggregator), who then writes both of

their data in one big contiguous chunk

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 35

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Collective I/O
yields 26x

improvement
over no

chunking, and 9x
improvement

over chunking!!!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 36

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
MPI-IO POSIX

Darshan I/O activity
heatmaps illustrate how

different the I/O behavior is
for the unoptimized

independent configuration
(top) and the most

performant collective I/O
configuration (bottom)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 37

Summarizing I/O tuning options

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

As a user of I/O interface X, what tuning vectors do I have?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 38

Summarizing I/O tuning options

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

As a user of I/O interface X, what tuning vectors do I have?

Automatically align application
data and library metadata, if

user requests so

Collective I/O can
be automatically

aligned

POSIX I/O requires
manually aligning every

access

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 39

Summarizing I/O tuning options

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

Just another reminder that high-level I/O libraries are here to make your life easier

○ I/O optimization strategies like collective I/O & chunking can net large performance
gains, especially when combined with striping and alignment optimizations

As a user of I/O interface X, what tuning vectors do I have?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Adapting to a
changing HPC
landscape

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 41

Adapting to a changing HPC landscape

The various technologies covered today form much of
the foundation of the traditional HPC data
management stack

○ Variations on this stack have been deployed at HPC
facilities and leveraged by users for
high-performance parallel I/O for decades

But, the HPC computing landscape is changing, even
if slowly
Changes driven at both ends of the stack

○ Newly embraced compute paradigms
○ Emerging storage technologies I/O Hardware

Application

Storage System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 42

New computing paradigms

Large-scale MPI applications are still the norm at
most HPC centers, but other non-MPI compute
frameworks are gaining traction:

○ AI/ML (TensorFlow, Keras, PyTorch)
○ Data analytics frameworks (Spark, Dask)
○ Other non-MPI distributed computing frameworks

(Legion, UPC)

Many of these frameworks define their own data
models and have their own mechanisms for managing
distributed tasks

I/O Hardware

Application

Storage System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 43

Darshan instrumentation beyond MPI

○ Historically, Darshan has only worked with MPI applications
‒ MPI_Init/MPI_Finalize used to bootstrap/shutdown Darshan

○ Darshan has been modified to use a secondary bootstrapping
mechanism that enables its use outside of MPI
‒ Based on GCC-specific library constructor/destructor attributes
‒ Only works for dynamically-linked executables!

○ To enable non-MPI mode, users must explicitly opt-in by setting the
DARSHAN_ENABLE_NONMPI environment variable
‒ A unique log will be generated for every process that executes
‒ Often best to limit instrumentation scope to the target executable:

Darshan
instrumentation

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 44

Emerging storage technologies

HPC storage technology is changing to meet needs of
diverse application workloads

○ Users typically have more options than a traditional
parallel file system over HDDs

Hardware trends enabling low-latency, high-bandwidth
I/O to applications

○ E.g., SSDs, SCM
Novel storage services offer compelling alternatives to
traditional file systems

○ E.g., DAOS, Unify I/O Hardware

Application

Storage System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 45

Darshan instrumentation of DAOS

Various access methods for DAOS users.

Figure courtesy of Intel

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage system
for large-scale HPC platforms

○ Leverages both SCM and SSDs for storage

Development of Darshan instrumentation modules is
underway to provide valuable insights into the various
ways apps and I/O middleware utilize DAOS

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 46

Darshan instrumentation of DAOS

Various access methods for DAOS users.

Figure courtesy of Intel

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage system
for large-scale HPC platforms

○ Leverages both SCM and SSDs for storage

Development of Darshan instrumentation modules is
underway to provide valuable insights into the various
ways apps and I/O middleware utilize DAOS

○ Direct usage of POSIX-like DAOS file system
(libdfs) interface

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 47

Darshan instrumentation of DAOS

Various access methods for DAOS users.

Figure courtesy of Intel

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage system
for large-scale HPC platforms

○ Leverages both SCM and SSDs for storage

Development of Darshan instrumentation modules is
underway to provide valuable insights into the various
ways apps and I/O middleware utilize DAOS

○ Direct usage of POSIX-like DAOS file system
(libdfs) interface

○ Direct usage of native DAOS object (libdaos)
interface

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 48

Darshan instrumentation of DAOS

Various access methods for DAOS users.

Figure courtesy of Intel

ALCF Aurora will feature Intel’s DAOS storage
system, a first-of-a-kind object-based storage system
for large-scale HPC platforms

○ Leverages both SCM and SSDs for storage

Development of Darshan instrumentation modules is
underway to provide valuable insights into the various
ways apps and I/O middleware utilize DAOS

○ Direct usage of POSIX-like DAOS file system
(libdfs) interface

○ Direct usage of native DAOS object (libdaos)
interface

○ Legacy POSIX support using FUSE

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 49

Darshan instrumentation of DAOS

DAOS will provide new-to-HPC interfaces that can
yield attractive performance characteristics if used to
their full potential

○ Array objects
‒ Extent-based access, similar to files

○ Key-val objects
‒ Data accessed using arbitrary keys
‒ Keys are split into a dkey (distribution key)

and an akey (attribute key) to offer users
control over data locality

■ All keys with same dkey are co-located
on the same DAOS storage target

DAOS storage model. DAOS objects
can be accessed using either key-val or

array interfaces.

Figure courtesy of IntelDarshan can play an important role in understanding
application and I/O library usage of DAOS objects

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Additional Darshan
tips and tricks

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 51

Finer-grained details with Darshan:
DXT tracing

○ By default, Darshan captures a fixed set of counters for each file

○ With DXT, Darshan additionally traces every read/write operation (for POSIX and MPI-IO
interfaces)

○ Enable by setting DXT_ENABLE_IO_TRACE env variable

○ Finer grained instrumentation data comes at a cost of additional overhead and larger logs

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 52

Finer-grained details with Darshan:
DXT tracing

○ By default, Darshan captures a fixed set of counters for each file

○ With DXT, Darshan additionally traces every read/write operation (for POSIX and MPI-IO
interfaces)

○ Enable by setting DXT_ENABLE_IO_TRACE env variable

○ Finer grained instrumentation data comes at a cost of additional overhead and larger logs

Trace includes the timestamp,
file offset, and size of every
I/O operation on every rank.
darshan-dxt-parser utility
can provide a raw text dump

of the trace

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 53

Finer-grained details with Darshan:
DXT tracing

○ By default, Darshan captures a fixed set of counters for each file

○ With DXT, Darshan additionally traces every read/write operation (for POSIX and MPI-IO
interfaces)

○ Enable by setting DXT_ENABLE_IO_TRACE env variable

○ Finer grained instrumentation data comes at a cost of additional overhead and larger logs

Traces can be visualized using summary report
heatmaps or custom tools (more on this shortly)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 54

Finer-grained details with Darshan:
disabling shared file reductions

○ To reduce log file size, globally shared file records are reduced into a single
instrumentation record by default
‒ However, this slightly masks per-rank contributions to I/O

○ This behavior can be disabled by setting DARSHAN_DISABLE_SHARED_REDUCTION
environment variable

○ Allows for full accounting of per-rank contributions to shared files, if these details are
important (e.g., for understanding collective I/O algorithms)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 55

Finer-grained details with Darshan:
disabling shared file reductions

○ To reduce log file size, globally shared file records are reduced into a single
instrumentation record by default
‒ However, this slightly masks per-rank contributions to I/O

○ This behavior can be disabled by setting DARSHAN_DISABLE_SHARED_REDUCTION
environment variable

○ Allows for full accounting of per-rank contributions to shared files, if these details are
important (e.g., for understanding collective I/O algorithms)

Rank -1 indicates a shared file record, with counters containing a reduced
value access all ranks (e.g., ~24.5 GiB total bytes written across all ranks)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 56

Finer-grained details with Darshan:
disabling shared file reductions

○ To reduce log file size, globally shared file records are reduced into a single
instrumentation record by default
‒ However, this slightly masks per-rank contributions to I/O

○ This behavior can be disabled by setting DARSHAN_DISABLE_SHARED_REDUCTION
environment variable

○ Allows for full accounting of per-rank contributions to shared files, if these details are
important (e.g., for understanding collective I/O algorithms)

With shared reductions disabled, each rank retains their own record giving full insight
into per-rank contributions (rank 0 writes 157 MiB and rank 255 writes nothing)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 57

Darshan runtime library configuration

○ To bound memory overheads, Darshan
imposes several internal memory limits
(total memory usage, per-module record
limits, etc.)

○ For some workloads, default limits may
be exceeded resulting in partial
instrumentation data

○ To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system
‒ Environment variables or config files

Regular expressions can be specified to
control whether matching record name

patterns are included/excluded in
Darshan instrumentation

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 58

Darshan runtime library configuration

○ To bound memory overheads, Darshan
imposes several internal memory limits
(total memory usage, per-module record
limits, etc.)

○ For some workloads, default limits may
be exceeded resulting in partial
instrumentation data

○ To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system
‒ Environment variables or config files

Settings are also offered to control total
per-process memory usage (8 MiB) and

per-module maximum record counts
(4000 POSIX records)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 59

Darshan runtime library configuration

○ To bound memory overheads, Darshan
imposes several internal memory limits
(total memory usage, per-module record
limits, etc.)

○ For some workloads, default limits may
be exceeded resulting in partial
instrumentation data

○ To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system
‒ Environment variables or config files

Additional settings allow control over
enabled/disabled modules, as well as

application names that should be
included/excluded from instrumentation

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Other I/O
analysis tools

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 61

Darshan-based analysis tools

Using Darshan as a starting point for developing new I/O analysis tools is attractive for
a couple of reasons:

1. Darshan is commonly deployed in production at many HPC sites, making its I/O
characterization data generally accessible to custom tools

2. Recent PyDarshan work has enabled much more agile development of Darshan-based
I/O analysis tools in Python

We will start by considering a couple of Darshan-based
I/O analysis tools: DXT Explorer and Drishti

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 62

DXT Explorer

○ Darshan does not offer much in terms of DXT trace
analysis tools beyond general I/O activity heatmaps

○ DXT Explorer★ is an interactive web-based trace
analysis tool for DXT data that was developed to provide:
‒ Combined views of MPI-IO and POSIX activity
‒ Zoom in/out capabilities to focus on subsets of ranks

or specific time slices
‒ Contextual information about I/O calls
‒ Views based on operation type, size, and spatiality

○ Interactive trace analysis with DXT Explorer can enable
interesting new insights into app I/O behavior

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

★ DXT Explorer was developed
by Jean Luca Bez (LBL). Slide
content also provided courtesy
of Jean Luca.

Bez, Jean Luca, et al. "I/O bottleneck detection and tuning: connecting the dots using interactive log
analysis." 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW). IEEE, 2021.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 63

DXT Explorer

Explore the timeline
by zooming in and
out and observing

how the MPI-IO calls
are translated to the

POSIX layer. For
instance, you can use
this feature to detect

stragglers.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 64

DXT Explorer

Explore the spatiality
of accesses in file by

each rank with
contextual

information.
Understand how each

rank is accessing
each file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 65

Drishti

github.com/hpc-io/drishti-io

docker pull hpcio/drishti

★ Drishti was developed by
Jean Luca Bez (LBL). Slide
content also provided courtesy
of Jean Luca.

○ Darshan can capture detailed I/O characterization
data for an app, but translating this raw data to
actionable tuning feedback is a significant challenge

○ Drishti★ is a command-line tool to guide end-users
in optimizing I/O in their applications by detecting
typical I/O performance pitfalls and providing a set of
recommendations

○ Drishti checks each given Darshan log against 30+
heuristic triggers for various I/O issues and suggests
actions to take to resolve them
‒ 4 levels of triggers: high, warning, ok, info

Bez, Jean Luca, Hammad Ather, and Suren Byna. "Drishti: guiding end-users in the I/O optimization
journey." 2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW). IEEE, 2022.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 66

Drishti

Overall information about the
Darshan log and execution

Number of critical issues,
warning, and recommendations

Details on metadata and
data operations

Critical issue and corresponding
recommendation for

benchmark.h5

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 67

Other I/O analysis tools

○ There are some other notable tools that may be of use for gaining more insights into the
I/O behavior of an application:

‒ TAU: http://www.cs.uoregon.edu/research/tau/
■ General call profiling/tracing toolkit for HPC applications, including I/O routines
■ Tools for visualizing profiles/traces and detecting bottlenecks, etc.
■ See: https://hps.vi4io.org/_media/events/2019/sc19-analyzing-tau.pdf

‒ Recorder: https://github.com/uiuc-hpc/Recorder
■ Multi-level detailed traces and corresponding trace viz tools
■ More detail than DXT but not as production hardened

‒ LDMS: https://hmdsa.github.io/hmdsa/pages/tools/ldms
■ Beyond the application, includes detailed system metrics collection
■ Not typically available to users in general, but maybe another resource at some facilities

https://github.com/radix-io/hands-on
http://www.cs.uoregon.edu/research/tau/
https://hps.vi4io.org/_media/events/2019/sc19-analyzing-tau.pdf
https://github.com/uiuc-hpc/Recorder
https://hmdsa.github.io/hmdsa/pages/tools/ldms

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 68

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Wrapping up

○ Hopefully this material proves useful in providing a
deeper understanding of the different layers of the HPC
I/O stack covered today, as well as potential tuning
vectors available to you as user

○ Some key takeaways:
‒ Optimizing your I/O workload can be challenging, but can

potentially offer large performance gains
‒ Use high-level I/O libraries where you can
‒ Don’t always count on I/O libraries or file systems to

automatically provide you the best performance
out-of-the-box

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 69

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Wrapping up

○ Darshan is an invaluable tool for providing understanding
of application I/O behavior and informing potential tuning
decisions – use it to experiment with different tuning
options and measure resulting I/O performance!

○ Please reach out with questions, feedback, etc.

https://www.mcs.anl.gov/research/projects/darshan/

github.com/darshan-hpc/darshan

darshan-io.slack.com

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Thank you!

