
extremecomputingtraining.anl.gov

Introduction to Darshan
How to learn more about the I/O behavior of your application

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National Laboratory

August 10, 2023

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 2

Understanding I/O problems in your
application

Example questions:
❏ How much of your run time is spent reading and writing files?

❏ Does it get better, worse, or is it the same as you scale up?

❏ Does it get better, worse, or is it the same across platforms?

❏ How should you prioritize I/O tuning to get the most bang for
your buck?

We recommend using a tool called Darshan as a starting point.

This presentation is an introduction; we’ll see more detailed
Darshan examples later today.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 3

What is Darshan?

Darshan is a scalable HPC I/O characterization tool. It captures a concise
picture of application I/O behavior with minimal overhead.

★ Widely available
‒ Deployed at most large supercomputing sites
‒ Including ALCF, OLCF, and NERSC systems used for ATPESC training

★ Easy to use
‒ No changes to code or development process
‒ Negligible performance impact: just “leave it on”

★ Produces a summary of I/O activity for every job
‒ This is a great starting point for understanding your application’s data usage
‒ Includes counters, timers, histograms, etc.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 4

How does Darshan work?

Two primary components:
1. Darshan runtime library

○ Instrumentation modules: lightweight
wrappers (interposed at link or run time)
intercept application I/O calls and record
statistics about file accesses
‒ File records are stored in bounded, compact

memory on each process

○ Core library: aggregate statistics when the
application exits and generate a log file
‒ Collect, filter, compress records and write a

single summary file for the job

Figure courtesy Jakob Luettgau (UTK)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 5

How does Darshan work?

Two primary components:
1. Darshan runtime library

Figure courtesy Jakob Luettgau (UTK)

NOTE: Though traditionally
restricted to MPI apps, recent
Darshan versions can often be
made to work in non-MPI
contexts. More on this later in
the afternoon…

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 6

How does Darshan work?

Two primary components:
2. Darshan log analysis tools

○ Tools and interfaces to inspect and interpret
log data
‒ PyDarshan command line utilities like the

new job summary tool
‒ Python APIs for usage in custom tools,

Jupyter notebooks, etc.
‒ Legacy C-based tools/library

Figure courtesy Jakob Luettgau (UTK)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 7

Using Darshan

○ We’ll use ALCF Polaris as an example in the following slides.

○ The hands on exercises also include examples that are set up for use on Polaris.

‒ https://github.com/radix-io/hands-on

○ Other systems are very similar, though. The most likely differences are:

‒ Location of log files (where to find data after your job completes)
‒ Analysis utility availability (usually easiest to just copy logs to your workstation to analyze)
‒ Loading the Darshan module (if it’s not already there by default)

○ We’ll briefly cover differences on other DOE systems after the Polaris example.

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 8

Using Darshan on Polaris:
make sure the software is loaded

The atpesc-io hands-on
exercise repository includes a

script to configure your
environment with the tools

needed for Darshan analysis.

NOTE: This additional setup
script is manually loading the
Darshan module, which is not
yet enabled by default on
Polaris – we are working on
making this automatic!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 9

Using Darshan on Polaris:
make sure the software is loaded

The atpesc-io hands-on
exercise repository includes a

script to configure your
environment with the tools

needed for Darshan analysis.

Use “module list” to see
a list of software loaded in

your environment.

Darshan 3.4.3 should
now be loaded.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 10

Using Darshan on Polaris:
make sure the software is loaded

These steps are similar, and
often cases easier, on other

DOE platforms:

● Theta/Summit: Darshan
module loaded by default

● Perlmutter: Darshan can be
manually loaded with
‘module load darshan’

Check your site documentation!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 11

Using Darshan on Polaris:
instrument your code

* Well, almost. There is one caveat: in the default Darshan configuration, your application
must call MPI_Init() and MPI_Finalize() to generate a log.

Compile and run
your application!

That’s all there is to it; Darshan does the rest.*

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 12

Using Darshan on Polaris:
find your log file

All Darshan logs are placed in a central location. The ‘darshan-config --log-path’
command will provide the log directory location.

Go to subdirectory for the year / month / day your job executed.

Be aware of time zone (or just check adjacent days)!
Polaris, for example, uses the GMT time zone and will roll over

to the next day at 7pm local time.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 13

Using Darshan on Polaris:
find your log file

File name includes your username,
app name, and job ID.

For convenience, users often
copy logs somewhere else to

save/analyze.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 14

Using Darshan on Polaris:
analyze log

After locating your log, users can utilize Darshan log analysis tools for gaining
insights into application I/O behavior. PyDarshan tools likely aren’t available

everywhere, but traditional tools like darshan-parser should be.

If you know what you’re looking for, darshan-parser can be a quick way to extract important
I/O details from a log, e.g., the 10 most heavily written files, but it is not super user friendly…

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 15

Using Darshan on Polaris:
generate summary report

The Polaris environment setup script in the
atpesc-io hands-on repository also enables

support for PyDarshan analysis tools.

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 16

Using Darshan on Polaris:
generate summary report

If successful, the tool should generate an HTML report matching the input log file name.

To analyze, it’s likely easiest to copy the report to your own workstation to view in a browser.

The Polaris environment setup script in the
atpesc-io hands-on repository also enables

support for PyDarshan analysis tools.

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 17

Using Darshan on Polaris:
generate summary report

NOTE: Ignore these Python warnings about version requirements –
they should not cause any issues with report generation

The Polaris environment setup script in the
atpesc-io hands-on repository also enables

support for PyDarshan analysis tools.

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 18

What about other systems?

○ Perlmutter (NERSC):
‒ How to enable: ‘module load darshan’

‒ Log directory: /pscratch/darshanlogs/

○ Summit (OLCF):
‒ How to enable: automatic

‒ Log directory: /gpfs/alpine/darshan/summit

If Darshan is not available on a given system, it can
either be installed via Spack or directly from source.

Darshan is provided as 2 separate packages in Spack:
● darshan-runtime - library for instrumenting apps
● darshan-util - tools for analyzing Darshan log files

PyDarshan is available on PyPI (e.g., ‘pip install
darshan’) and also in Spack

See our website for more details:
https://www.mcs.anl.gov/research/projects/darshan/

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 19

The PyDarshan job summary
tool generates an HTML report
containing graphs, tables, and

performance estimates
characterizing the I/O workload

of the application

We will summarize some of the
highlights in the following slides

Job analysis example

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 20

Job analysis: high-level job info

Executable name
and job date

Detailed job
metadata

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 21

Job analysis: I/O heatmaps

Heatmaps showcase application I/O intensity (r+w volume)
across time, ranks, and interfaces – helpful for identifying

hot spots, I/O and compute phases, etc.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 22

Job analysis: I/O heatmaps

Heatmaps showcase application I/O intensity (r+w volume)
across time, ranks, and interfaces – helpful for identifying

hot spots, I/O and compute phases, etc.

Sum time slice
over ranks

Sum rank over
time slices

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 23

Job analysis: I/O heatmaps

This application demonstrates a couple of notable I/O characteristics:
● I/O imbalance across MPI processes
● Collective MPI-IO accesses transformed to subset of

“aggregator” ranks at POSIX level

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 24

Job analysis: I/O cost

I/O cost indicates how much time on
average was spent reading, writing,
and doing metadata across different

I/O interfaces

If I/O cost is a small portion of
application runtime, tuning efforts are
likely to have a relatively small impact

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 25

Job analysis: Per-interface statistics

Stats available for various
I/O APIs: POSIX, MPI-IO,
STDIO, HDF5, PnetCDF

Aggregate stats for
interface, as well as a

performance estimate

Number of files of different
types (total, read-only,

read/write, etc.) recorded
by Darshan

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 26

Job analysis: Per-interface statistics

Operation counts provide the relative totals of
different types of I/O operations

Lots of metadata operations (open, stat, seek,
etc.) could be a sign of poorly performing I/O

Access pattern indicates whether read/write
operations progress sequentially or consecutively★

through the file

More random access patterns can be expensive for
some types of storage

★
sequential: greater than
previous offset
consecutive: immediately
following previous offset

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 27

Job analysis: Per-interface statistics

Details on access sizes are provided to better understand
granularity of application read/write accesses

In general, larger access sizes (e.g., O(MiBs)) perform better
with most storage systems

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 28

Job analysis: Data access by category

Data accesses, in terms of total files
read/written and total bytes read/written,

binned by different categories:
● FS mount points (e.g., /home,

/scratch)
● standard streams (e.g., STDOUT)
● object storage pools
● etc.

Inform on job’s general usage of different
storage resources

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 29

Job analysis: additional help

Remember to contact your site’s
support team for help! The Darshan
job summary can be a good discussion
starter if you aren’t sure how to proceed
with performance tuning or problem
solving.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 30

Darshan: a recap

○ These slides covered some basic usage and tips.

○ Refer to facility documentation, support channels, or these slides when you need to.

○ Key takeaways:

‒ Tools are available to help you understand how your application accesses data.
‒ The simplest starting point is Darshan.
‒ It’s likely already instrumenting your application, or can quickly be made to do so.
‒ You will probably start with an HTML report generated using PyDarshan.

○ We’ll see additional Darshan use cases and features this afternoon.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises: https://github.com/radix-io/hands-on 31

Darshan hands on exercises

○ The hands on exercises include 3 Darshan examples that you can try
tonight or as time permits during the day:
‒ helloworld: a simple application that you can run to test out the Darshan

toolchain.

‒ warpdrive and fidgetspinner: applications with A and B versions that you
can compare to spot the performance differences (and their cause).

The warpdrive and fidgetspinner examples will be easier to understand
after seeing the MPI-IO presentation later this morning.

Check with the instructors to share what you find!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Thank you!

