AI Ethics & Responsible Data Science for Scientists

Savannah Thais, Columbia University

AI Has a Reliability Problem

AI and the Everything in the Whole Wide World Benchmark

Inioluwa Deborah Raji Mozilla Foundation, UC Berkeley rajiinio@berkeley.edu

Emily M. Bender Department of Linguistics University of Washington

Emily Denton Google Research uistics Department of Linguistics ington University of Washington Alex Hanna Google Research

Amandalynne Paullada

Focus on **constructed tasks** and **benchmark data sets** that may be **distant from real world** distributions or goals

The Fallacy of AI Functionality

INIOLUWA DEBORAH RAJI*, University of California, Berkeley, USA I. ELIZABETH KUMAR*, Brown University, USA AARON HOROWITZ, American Civil Liberties Union, USA ANDREW D. SELBST, University of California, Los Angeles, USA Application to **impossible tasks**, **robustness issues**, **misrepresented** capabilities, **engineering mistakes** or failures

Enchanted Determinism: Power without Responsibility in Artificial Intelligence

> ALEXANDER CAMPOLO UNIVERSITY OF CHICAGO

KATE CRAWFORD® NEW YORK UNIVERSITY, MICROSOFT RESEARCH Acceptance of inherent unknowability of AI systems, willingness to use imprecise or unscientific language

Leakage and the Reproducibility Crisis in ML-based Science

Sayash Kapoor¹ Arvind Narayanan¹

Data **leakage**, incorrect or neglected **testing**, poor **experimental design** practices

AI Has a Hype Problem

FORBES > INNOVATION

Will ChatGPT Solve All Our Problems?

Karthik Suresh Forbes Councils Member Forbes Technology Council COUNCIL POST | Membership (Fee-Based)

IDEAS . TECHNOLOGY

Why Uncontrollable AI Looks More Likely Than Ever

Technology And Analytics

Using AI to Eliminate Bias from Hiring

'The Godfather of A.I.' Leaves Google and Warns of Danger Ahead

For half a century, Geoffrey Hinton nurtured the technology at the heart of chatbots like ChatGPT. Now he worries it will cause serious harm.

BIZTECH NEWS

'I want to be alive': Has Microsoft's Al chatbot become sentient?

EDTECH

Al spots signs of mental health issues in text messages on par with human psychiatrists: UW study

Artificial Intelligence

mental health

By Andrea Park • Oct 12, 2022 11:48am

University of Washington

Danger of Treating AI as Magic vs Science

Present Society

- Allows us to subject people to inaccurate and under-evaluated sociotechnical systems
- Can rapidly entrench biases or inequalities
- Can push responsibility for harm onto users who inherently have less control

Future Society

- Limits the space of **possible solutions** we consider
- Risks of irrevocably altering information systems or resource infrastructure
- Risk of entrenching power in the hands of those who build and 'test' these systems

Research Systems

- Focuses effort on certain approaches (scale) to the detriment of others
- Believe we have solved certain problems we haven't
- Constrains how we think about explainability and contestability

Taxonomy of AI Ethics

Data Collection & Storage

How, from who, for what, for how long, with what consent?

Task Design & Learning Incentives

What do we ask our systems to do, how does this align?

Model Bias & Fairness

How does performance vary across groups?

In which circumstances can we trust our systems?

ດີດີດີດີ Deployment & Outcomes

Who is subjected to what, how do we understand impact?

Downstream & Diffuse Impacts

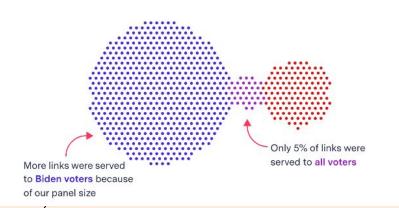
What is changed or lost by what we build?

Data Collection & Storage

- Data labeling companies exploit <u>workers</u> and <u>political</u> <u>strife</u> in the global south to maximize profits
- Non-profit Crisis Text Line <u>shared</u> user conversation data with for-profit spinoff designed to 'improve customer service'
- Data brokerage firms indiscriminately sell aggregated, 'anonymized' <u>location datasets</u>
- Amazon requires delivery drivers to submit to biometric data tracking
 - Develops technology to <u>surveil factories</u> for signs of unionization organizing

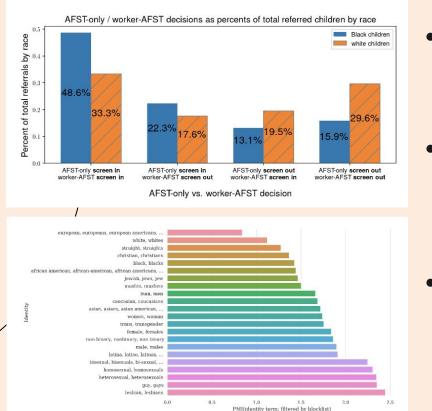
Task Design & Learning Incentives

Link served to Biden voter Link served to Trump voter



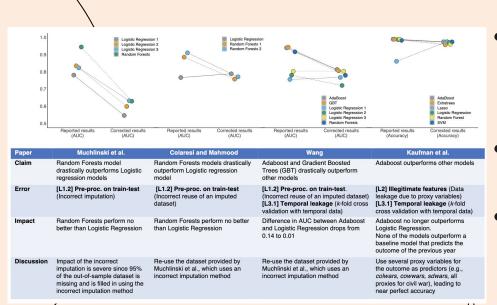
- Recommendation and curation algorithms are designed to maximize retention and click through
 - Information silos based on click-through rates & shares
 - <u>Radicalization pipelines</u> through progressive content serving
 - <u>Viral spread of misinformation</u> accelerated by algorithms
- Research on negative impacts of core/profitable technology often suppressed
 - See <u>Facebook Files</u>, <u>Timnit Gebru firing</u>, <u>prevention of</u> <u>external research</u>
- Researchers may pursue conceptually impossible tasks (like <u>trustworthiness detection</u>)

Model Bias & Fairness



- Unless explicitly corrected, historical or distribution biases in training datasets are reflected in model performance
 - E.g. gender bias in hiring for technical roles or <u>racial bias</u> in child <u>welfare screening tools</u>
- Particularly an issue for large language models trained on text corpuses collected from web sources
 - E.g. <u>text completions</u> about Muslims are disproportionately violent or translation tools that demonstrate <u>bias in gender</u> <u>neutral</u> translations
- These issues can be trick to resolve
 - Datasets curated to remove 'toxic' and 'offensive' content can <u>prevent representation</u> of marginalized groups
 - <u>Quantitative fairness</u> requirements may not reflect real life expectations or desires

Model Robustness & Reliability



- Scientific mistakes in model construction, training, or evaluation yield <u>unreliable or non-generalizable results</u>
 - E.g. test set not drawn from distribution of interest, illegitimate features, data leakage, sampling bias
- Example: a <u>sepsis prediction tool</u> takes antibiotic use as an input feature, inflating performance claims
- Models may struggle to generalize to new environments or account for shifts in underlying data distribution
 - <u>Adversarial examples</u> are poorly understood

Deployment & Outcomes

Rite Aid deployed facial recognition systems hundreds of U.S. stores

In the hearts of New York and metro Los Angeles, Rite Aid installed facial recognition technology in largely lower-inco non-white neighborhoods, Reuters found. Among the tech the U.S. retailer used: a state-of-the-art system from a con with links to China and its authoritarian government.

> The Landlord Wants Facial Recognition in Its Rent-Stabilized Buildings. Why?

•••□□

PERCENT OF HOUSEHOLDS BELOW POVERTY LINE BY CENSUS BLOCK GROUP

15 30 45 60%+

68.6%

DARKER

100% IIGHTER MALES

- Surveillance AI is often <u>disproportionately deployed</u> in low-income and minority neighborhoods
 - These groups typically have the least influence over AI development and fewest <u>opportunities to dissent</u>
- AI systems can be leveraged to support oppression and disenfranchisement
 - E.g. <u>tracking protestors</u>, <u>profiling religious minorities</u>, <u>deterring asylum seeking</u>
- Model predictions may not be the same as real world outcomes
 - If a societal system is already unfair, a 'fair' model may still perpetuate harm

Downstream & Diffuse Impacts

Situating Search

Chirag Shah	Emily M. Bender
chirags@uw.edu	ebender@uw.edu
University of Washington	University of Washington
Seattle, Washington, USA	Seattle, Washington, USA

Dimension	Aspect	Description	System support	
Method of	Searching	g User knows what they want (known Retrieval set with high re		
interaction		item finding)	narrow focus	
	Scanning	Looking through a list of items	Set of items with relevance and	
			diversity	
Goal of	Selecting	Picking relevant items based on a	Set of relevant items with disclosure	
interaction		criteria	about their characteristics	
	Learning	Discovering aspects of an item or	Set of relevant and diverse items with	
		resource	disclosure about their characteristics	
Mode of	Specification	Recalling items already known or	Retrieval set with high relevance,	
retrieval		identified	with one or a few select items	
	Recognition	Identifying items through simulated	Set of items with relevance and	
		association	possible personalization	
Resource	Information	Actual item to retrieve	Relevant information objects	
considered	Meta-information	Description of information objects	Relevant characteristics of	
			information objects	

- "Technology is neither good nor bad, nor is it neutral"
- Technosolutionism defines problems based on the 'solutions' offered
 - E.g. self-driving cars as a solution to the '<u>driver problem</u>'
- The technology we do or don't build and the questions we do or don't ask shape society
 - E.g. the environmental impact of <u>scale approaches</u> to AI research
 - It is <u>impossible to separate</u> technology from the financial and political systems that fund and support it

What can scientists do to help address these issues?

Contextualize your science + ML work...

- Is my work well documented and reproducible?
- Can this help us understand anything about the foundational principles of ML?
- What technology transfer could happen?

And any side projects...

- Where is my data coming from? How is it collected and stored?
- Is there a more transparent or 'safe' way to do this?
- Where could bias enter the dataset or model performance?
- What guarantees can I provide on model performance?
- How will the systems I'm developing be deployed? Will the benefits and harms be equitably distributed?

Treat Data Science Scientifically

Research Goal

I want to identify Higgs bosons at the ATLAS detector

Hypothesis

I think the angle between the decay products is an informative signal

Collect Data

Find a labeled data set with the necessary information (ideally one used before)

Test the Hypothesis

Train one model (that you've identified beforehand) using the data

Analyze Results

Is this model better than existing systems (including uncertainty!)

Reach a Conclusion

I should or should not use this model because of X, Y, and Z

Refine + Repeat

Momentum of decay products may be informative OR another architecture may work better

Be Mindful About Your Data

- How much data is available and does each entry have the same information?
- Do you have examples of all data classes/ranges?
- Are the available labels related to the decision you want to make?
- Are classes and inputs balanced and normalized?
- Are there patterns in your data you don't want the model to exploit?
- Is there noise in your label creation or distribution?
- Are there patterns in your data you don't want the model to exploit?

Consider All Steps of the Pipeline

Data Collection

What population is sampled? How? What format is the data

collected in?

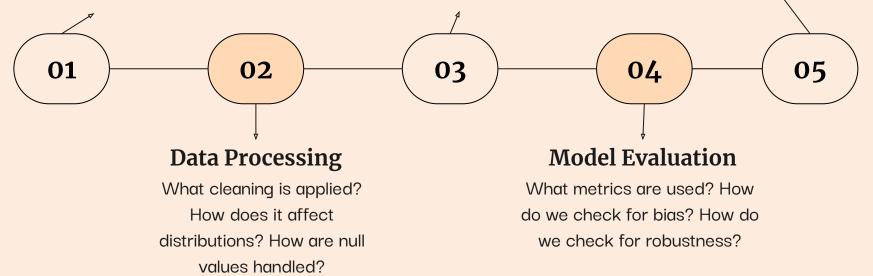
Model Building

What variables are used? How do they related to the outcome? What statistical assumptions underlie the model? What

incentive are we considering?

Testing

What theory or model of the world are we comparing to?



Science to Inform ML

Unlike many ML application domains, with physical sciences we have an (approximately) robust underlying mathematical model

Explainability

We know some information a model should learn and have interpretable bases for some problem classes

Physics of ML

By studying learning as a stochastic process we can optimize models and training

De-biasing

We often know true confounding variables and correlations so can meaningfully evaluate debiasing techniques

Scientific Principles

Core experiment design techniques like uncertainty quantification and blinding can lend robustness

Outreach

Advocacy

Use your voice, institutional power, and collective action to work against unjust or unsafe uses of AI

Legislation

Share your scientific expertise with policy makers and champion meaningful regulations

Technical Literacy

Work with your communities to help them develop the knowledge necessary meaningfully consent to sociotechnical systems and understand possible recourse.

Data analysis and model building are big responsibilities!

savannah.thais@gmail.com

@basicsciencesav

Resources (Science Related)

<u>"Physicists Must Engage with AI Ethics, Now</u>", APS.org

 \checkmark

- "Fighting Algorithmic Bias in Artificial Intelligence", Physics World
- <u>"Artificial Intelligence: The Only Way Forward is Ethics</u>", CERN News
- "<u>To Make AI Fairer, Physicists Peer Inside Its Black Box</u>", Wired
- "<u>The bots are not as fair minded as the seem</u>", Physics World Podcast
- "<u>Developing Algorithms That Might One Day Be Used Against You</u>", Gizmodo
- "AI in the Sky: Implications and Challenges for Artificial Intelligence in Astrophysics and Society", Brian Nord for NOAO/Steward Observatory Joint Colloquium Series
- <u>Ethical implications for computational research and the roles of scientists</u>, Snowmass LOI
- LSSTC Data Science Fellowship Session on AI Ethics
- Panel on Data Science Education, Physics, and Ethics, APS GDS

Resources (General)

- AI Now
- <u>Alan Turing Institute</u>
- <u>Algorithmic Justice League</u>
- Berkman Klein Center
- <u>Center for Democracy and Technology</u>
- <u>Center for Internet and Technology Policy</u>
- Data & Society
- Data for Black Lives
- Montreal AI Ethics Institute
- Stanford Center for Human-Centered AI
- <u>The Surveillance Technology Oversight Project</u>
- Radical AI Network
- <u>Resistance AI</u>

Thank you and looking forward to an interesting discussion!

savannah.thais@gmail.com

@basicsciencesav