

Distributed Deep Learning

Huihuo Zheng

Data Science Team Argonne Leadership Computing Facility Aug 11, 2023

huihuo.zheng@anl.gov

www.anl.gov

Outline

- The need for distributed training
- State-of-the-art parallelization schemes
- Data parallel training in details
- I/O and data management in distributed training
- Hands on

The need for distributed training on HPC

"Since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month doubling time (by comparison, Moore's Law had an 18 month doubling period)."

https://openai.com/blog/ai-and-compute/

Large language model: # parameters grows by about 10x every year

Distributed deep learning for ResNet-50

$TRAINING \ \text{TIME AND } TOP-1 \ \text{VALIDATION ACCURACY WITH } ResNet-50 \ \text{on } ImageNet$

	Batch	Processor	DL	Time	Accuracy
	Size		Library		
He et al. [1]	2016 256	Tesla P100 \times 8	Caffe	29 hours	75.3 %
Goyal et al. [2]	8,192	Tesla P100 \times 256	Caffe2	1 hour	76.3 %
Smith et al. [3]	$8,\!192\rightarrow16,\!384$	full TPU Pod	TensorFlow	30 mins	76.1 %
Akiba et al. [4]	32,768	Tesla P100 \times 1,024	Chainer	15 mins	74.9 %
Jia et al. [5]	65,536	Tesla P40 \times 2,048	TensorFlow	6.6 mins	75.8 %
Ying et al. [6]	65,536	TPU v3 \times 1,024	TensorFlow	1.8 mins	75.2 %
Mikami et al. [7]	55,296	Tesla V100 \times 3,456	NNL	2.0 mins	75.29 %
Yamazaki et al	2019 81,920	Tesla V100 $ imes$ 2,048	MXNet	1.2 mins	75.08%

Quoted from Masafumi Yamazaki, arXiv:1903.12650

Training Large Natural Language Model is expensive

Scheme	Number of parameters (billion)	Model- parallel size	Batch size	Number of GPUs	Microbatch size	Achieved teraFIOP/s per GPU	Training time for 300B tokens (days)
ZeRO-3 without Model Parallelism	174.6	1	1536	384	4	144	90
				768	2	88	74
				1536	1	44	74
	529.6	1	2560*	640	4	138	169
			2240	1120	2	98	137
				2240	1	48	140
PTD Parallelism	174.6	96	1536	384	1	153	84
				768	1	149	43
				1536	1	141	23
	529.6	280	2240	560	1	171	156
				1120	1	167	80
				2240	1	159	42

Narayanan, D et al. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. In *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*; ACM: St. Louis Missouri, 2021; pp 1–15.

The need for distributed training

- Increase of model complexity leads to dramatic increase of the amount of computation;
- Increase of the size of dataset makes sequentially scanning the whole dataset increasingly impossible;
- Coupling of deep learning to traditional HPC simulations might require distributed training and inference.

Examples of scientific large scale deep learning

- Thorsten Kurth, Exascale Deep Learning for Climate Analytics, arXiv:1810.01993 (Gordon Bell Prize)
- R. M. Patton, Exascale Deep Learning to Accelerate Cancer Research, arXiv:1909.1229
- N. Laanait, Exascale Deep Learning for Scientific Inverse Problems, arXiv:1909.11150
- W. Dong et al, Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain Mapping, arXiv:1905.06236
- A Khan, et al, Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey Physics Letters B 795, 248-258
- Narayanan, D.; et al, Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. arXiv: <u>2104.04473</u>

6 Argonne Leadership Computing Facility

Parallelization schemes – Model Parallelism (MP)

import torch
import torch.nn as nn
import torch.optim as optim

```
class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')
```

```
def forward(self, x):
    x = self.relu(self.net1(x.to('cuda:0')))
    return self.net2(x.to('cuda:1'))
```

```
model = ToyModel()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)
```

```
optimizer.zero_grad()
outputs = model(torch.randn(20, 10))
labels = torch.randn(20, 5).to('cuda:1')
loss_fn(outputs, labels).backward()
optimizer.step()
```

PyTorch multiple GPU model parallelism within a node

7 Argonne Leadership Computing Facility

Parallelization schemes – Pipepline parallelism (PP)

Pipeline libraries:

- GPipe: arXiv:1811.06965
- Pipe-torch: DOI: 10.1109/CBD.2019.00020
- PipeDream: arXiv:1806.03377
- HetPipe: arXiv:2005.14038
- DAPPLE: arXiv:2007.01045
- PyTorch Distributed RPC Frameworks: <u>https://pytorch.org/tutorials/intermediate/</u> <u>dist_pipeline_parallel_tutorial.html</u>
- DeepSpeed: https://github.com/microsoft/DeepSpeed
- Partition model layers into multiple groups (stages) and place them on a set of inter-connected devices.
- Each input batch is further divided into multiple micro-batches, which are scheduled to run over multiple devices in a pipelined manner.

Parallelization schemes – Data Parallelism (DP)

Data parallelism

- Model is replicated on each worker
- Each worker processes a subset of the minibatch
- Sync up the weights before updating the model

Popular frameworks support DP

https://leimao.github.io/blog/PyTorch-Distributed-Training/ https://github.com/horovod/horovod https://github.com/microsoft/DeepSpeed

Data parallel training in details

Linear rate scaling rule

When the minibatch size is multiplied by k, multiply the learning rate by k.

Mini-batch stochastic Gradient Descent

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$

Learning rate, Ir Mini-batch

Typical practice / suggestion:

- keep local batch size per worker, i.e., increase the global batch size linearly
- Increase the learning rate proportionally

Actuality: need to adjust the batch size and learning rate at different scale

Potential issues for large batch size and learning rate

Tal Ben-Nun and Torsten Hoefler, arXiv:1802.09941

P. Goyal et al,arXiv: 1706.02677

- Stability of optimization can be solved by learning rate warming up
- Generation gap systematic issue; has to reduce the learning rate

Generation gap: Keskar et al, arXiv:1609.04836

Data parallel training with Horovod

https://eng.uber.com/horovod/

Argonne

Data parallel training with Horovod

Steps to parallelize a series code:

- Import Horovod modules and initialize horovod
- Scale the learning rate by number of workers
- Wrap optimizer in hvd.DistributedOptimizer
- Broadcast the weights from worker 0 to all the workers
- Worker 0 saves the check point files
- Dataset sharding: make sure different workers load different samples.

Instruction on how to change the code is <u>here</u> Tensorflow: <u>04_keras_cnn_verbose_hvd.py</u> Pytorch: <u>04_pytorch_cnn_hvd.py</u>

https://eng.uber.com/horovod/

Scaling TensorFlow using Data parallelism on Theta @ ALCF: fixing local batch size = 512

Argonne

Different frameworks show similar scaling efficiency

Horovod, DDP, and DeepSpeed show similar performance for three PyTorch models. Evaluation were done on Polaris @ ALCF

16

https://github.com/argonne-lcf/dl_scaling.git

Data Management and I/O for AI

Devarajan, H.; Zheng, H.; Kougkas, A.; Sun, X.-H.; Vishwanath, V. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications. In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid); 2021; pp 81–91.

DLIO Benchmark: https://github.com/argonne-lcf/dlio_benchmark.git

MLPerf Storage: https://mlcommons.org/en/news/mlperf-storage/

Deep Learning I/O characteristics

Typical process of AI training. The dataset is loaded from the storage to the host RAM and then feed into the accelerators for training.

Characteristics of I/O for AI applications

- Read intensive
- Metadata intensive
- Small and sparse I/O operations
- Random access
- Complex data format (json, text, keyvalue store)
- Utilizing storage hierarchy
- Multithreading background I/O

18

Huihuo Zheng and Venkatram Vishwanath, Data Management for Scientific Artificial Intelligence Workloads, ASCR Data workshop, 2022

I/O bottleneck for UNet3D workload on fast accelerator

Timeline tracing for training the UNet3D workload on a single GPU on JLSE with GPFS file system. This shows that I/O become a bottleneck for faster accelerator

UNet3D Model: https://github.com/mlcommons/training/tree/master/image_segmentation/pytorch

19

https://github.com/argonne-lcf/dlio_benchmark.git

Scaling bottleneck from IO for UNet3D workload (simulated using DLIO Benchmark)

Accelerator utilization (AU) and I/O throughput at different scale on Polaris for UNet3D model, with Lustre file system and NVMe -> staging helps

20

https://github.com/argonne-lcf/dlio_benchmark.git

Ideal scaling for less I/O intensive workload – Bert (simulated using DLIO Benchmark)

2

Accelerator utilization (AU) and I/O throughput at different scale on Polaris for Bert model, with the Lustre file system

21 Argonne Leadership Computing Facility https://github.com/argonne-lcf/dlio_benchmark.git

Tips for I/O and data management

I/O and data management

Preprocess the raw data (resize, interpolation, etc) into binary format before the training;

- Store the dataset in a reasonable way (file per sample, single shared file, or multiple samples per file)
- Optimal setting (Lustre stripe count, size)
- Remember to shard the dataset;
- Prefetch and caching the data (from disk; from host to device; staging to NVMe, SSDs);
- Use more I/O workers to load data concurrently (e.g., adjust num_workers in TorchDataLoader)

Streaming I/O using Data Loader

- TensorFlow Data Pipeline
- PyTorch Data Loader
- Nvidia Dali Data Loader

22

Main take aways

23

- Distributed training can be done through model parallelism and Data parallelism.
- Data parallelism frameworks: Horovod, DDP (PyTorch only), DeepSpeed (Pytorch only) → similar performance.
- Efficient data management and I/O is crucial for data intensive training

Hands on

\$ git clone git@github.com:argonne-lcf/ATPESC_MachineLearning.git \$ cd ATPESC_MachineLearning/04_distributedLearning \$ qsub submissions/qsub_thetagpu.sc or qsub submissions/qsub_polaris.sc

argonne-lcf / ATPESC_MachineLearning	Q. Type 🛛 to search >_ >_ + •) 💿 🕅 🛆 🏟						
<> Code 🕢 Issues 🖧 Pull requests 🕞 Actions 🖽 Projects	s 🖽 Wiki 😲 Security 🖂 Insights 🕸 Settings						
Image: Second strip ATPESC_MachineLearning / 04_distributedLearning / [] Image: Second strip Add file Image: Second strip Add file							
zhenghh04 fixed learning rate issue	76faf8b · 6 minutes ago 🕤 History	ory					
Name	Last commit message Last commit date	late					
•							
DDP	commit updating dist dl 1 hour ago	ago					
DeepSpeed	commit updating dist dl 1 hour ago	ago					
Horovod	fixed learning rate issue 6 minutes ago	ago					
figures	rearrange directories for 2023 3 weeks ago	ago					
results	rearrange directories for 2023 3 weeks ago	ago					
submissions	fixed learning rate issue 6 minutes ago	ago					
C README.md	fixed learning rate issue 6 minutes ago	ago					
README.md		:=					
Data Parallel Deep Learning							
Author: Huihuo Zheng (huihuo.zheng@anl.gov).							

Thank you! huihuo.zheng@anl.gov

Argonne