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The need for distributed training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month 
doubling period).”

https://openai.com/blog/ai-and-compute/ Large language model: # parameters grows by 
about 10x every year
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Distributed deep learning for ResNet-50 

Quoted from Masafumi Yamazaki, arXiv:1903.12650 

Yamazaki et al

2016

2019



Argonne Leadership Computing Facility5

Training Large Natural Language Model is expensive

Narayanan, D et al. Efficient Large-Scale Language Model Training on GPU Clusters Using 
Megatron-LM. In Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis; ACM: St. Louis Missouri, 2021; pp 1–15. 
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The need for distributed training
• Increase of model complexity leads to dramatic increase of 

the amount of computation;
• Increase of the size of dataset makes sequentially scanning 

the whole dataset increasingly impossible;
• Coupling of deep learning to traditional HPC simulations 

might require distributed training and inference. 
Examples of scientific large scale deep learning 
• Thorsten Kurth, Exascale Deep Learning for Climate Analytics, arXiv:1810.01993 (Gordon Bell Prize)
• R. M. Patton, Exascale Deep Learning to Accelerate Cancer Research, arXiv:1909.1229
• N. Laanait, Exascale Deep Learning for Scientific Inverse Problems, arXiv:1909.11150 
• W. Dong et al, Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain 

Mapping, arXiv:1905.06236
• A Khan, et al, Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey 

Physics Letters B 795, 248-258
• Narayanan, D.; et al, Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-

LM. arXiv: 2104.04473

http://arxiv.org/abs/2104.04473
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Parallelization schemes – Model Parallelism (MP)
Worker 4

Worker 3 Worker 2

Worker 1

Model parallelism

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html

PyTorch multiple GPU 
model parallelism 
within a node
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Parallelization schemes – Pipepline parallelism (PP)

• Partition model layers into multiple groups (stages) and place them on a 
set of inter-connected devices. 

• Each input batch is further divided into multiple micro-batches, which 
are scheduled to run over multiple devices in a pipelined manner. 

Pipeline libraries: 
• GPipe: arXiv:1811.06965
• Pipe-torch: 

DOI: 10.1109/CBD.2019.00020
• PipeDream: arXiv:1806.03377 
• HetPipe: arXiv:2005.14038 
• DAPPLE: arXiv:2007.01045
• PyTorch Distributed RPC Frameworks: 

https://pytorch.org/tutorials/intermediate/
dist_pipeline_parallel_tutorial.html

• DeepSpeed: 
https://github.com/microsoft/DeepSpeed

https://pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html
https://pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html
https://github.com/microsoft/DeepSpeed
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Parallelization schemes – Data Parallelism (DP)

Worker 1 Worker 4 Worker N 

…

Data parallelism

• Model is replicated on each worker
• Each worker processes a subset of 

the minibatch
• Sync up the weights before updating 

the model

DDP
https://leimao.github.io/blog/PyTorch-Distributed-Training/
https://github.com/horovod/horovod
https://github.com/microsoft/DeepSpeed

Popular frameworks support DP

https://leimao.github.io/blog/PyTorch-Distributed-Training/
https://github.com/horovod/horovod
https://github.com/microsoft/DeepSpeed
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Data parallel training in details
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Linear rate scaling rule
When the minibatch size is multiplied by k, multiply the learning rate by k. 

S. McCandlish, J. Kaplan, D. Amodei, arXiv:1812.06162

lrscale = lr*nprocs
Typical practice / suggestion: 
• keep local batch size per worker, i.e., increase the global batch size linearly
• Increase the learning rate proportionally
Actuality: need to adjust the batch size and learning rate at different scale

Mini-batch stochastic Gradient Descent

Mini-batchLearning rate, lr
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Potential issues for large batch size and learning rate

Validation error for different 
mini-batch size for Resnet50

P. Goyal et al,arXiv: 1706.02677 

Minibatch Size Effect on Accuracy and 
Performance 

Tal Ben-Nun and Torsten Hoefler, arXiv:1802.09941 

Generation gap: Keskar et al, arXiv:1609.04836 

• Stability of optimization – can be solved by learning rate warming up
• Generation gap – systematic issue; has to reduce the learning rate
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Data parallel training with Horovod

https://eng.uber.com/horovod/
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Data parallel training with Horovod

• Import Horovod modules and initialize horovod
• Scale the learning rate by number of workers
• Wrap optimizer in hvd.DistributedOptimizer
• Broadcast the weights from worker 0 to all the 

workers
• Worker 0 saves the check point files
• Dataset sharding: make sure different workers load 

different samples.

Steps to parallelize a series code: 

https://eng.uber.com/horovod/

Instruction on how to change the code is here
Tensorflow: 04_keras_cnn_verbose_hvd.py
Pytorch: 04_pytorch_cnn_hvd.py

https://github.com/argonne-lcf/ATPESC_MachineLearning/tree/master/04_distributedLearning
https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/04_distributedLearning/Horovod/04_keras_cnn_verbose_hvd.py
https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/04_distributedLearning/Horovod/04_pytorch_cnn_hvd.py
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Scaling TensorFlow using Data parallelism on Theta @ 
ALCF: fixing local batch size = 512 

AlexNet ResNet-50 Inception V3
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Different frameworks show similar scaling efficiency
16

https://github.com/argonne-lcf/dl_scaling.git

ResNet-50 Cosmic Tagger VLTG

Horovod, DDP, and DeepSpeed show similar 
performance for three PyTorch models. Evaluation 
were done on Polaris @ ALCF Zhenhao Z. 

@IIT
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17

Data Management and I/O for AI

Devarajan, H.; Zheng, H.; Kougkas, A.; Sun, X.-H.; Vishwanath, V. DLIO: A Data-Centric Benchmark for 
Scientific Deep Learning Applications. In 2021 IEEE/ACM 21st International Symposium on Cluster, 
Cloud and Internet Computing (CCGrid); 2021; pp 81–91. 

DLIO Benchmark: https://github.com/argonne-lcf/dlio_benchmark.git

MLPerf Storage: https://mlcommons.org/en/news/mlperf-storage/

https://github.com/argonne-lcf/dlio_benchmark.git
https://mlcommons.org/en/news/mlperf-storage/
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Deep Learning I/O characteristics
18

Typical process of AI training. The 
dataset is loaded from the storage 
to the host RAM and then feed into 
the accelerators for training.

Characteristics of I/O for AI applications
• Read intensive
• Metadata intensive
• Small and sparse I/O operations
• Random access
• Complex data format (json, text, key-

value store)
• Utilizing storage hierarchy
• Multithreading background I/O

Huihuo Zheng and Venkatram Vishwanath, Data Management for Scientific 
Artificial Intelligence Workloads, ASCR Data workshop, 2022



Argonne Leadership Computing Facility19

I/O bottleneck for UNet3D workload on fast accelerator
19

Training on GPULoading Data preprocessing Waiting for data

Timeline tracing for training the UNet3D workload on a single GPU on JLSE with GPFS 
file system. This shows that I/O become a bottleneck for faster accelerator

https://github.com/argonne-lcf/dlio_benchmark.git

UNet3D Model: https://github.com/mlcommons/training/tree/master/image_segmentation/pytorch

https://github.com/argonne-lcf/dlio_benchmark.git
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Scaling bottleneck from IO for UNet3D workload 
(simulated using DLIO Benchmark)

20

https://github.com/argonne-lcf/dlio_benchmark.git

UNet3D weak scaling I/O throughput

AU = compute_time/total_time Throughput = data_size/time

Accelerator utilization (AU) and I/O throughput at different scale on Polaris 
for UNet3D model, with Lustre file system and NVMe -> staging helps
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Ideal scaling for less I/O intensive workload – Bert
(simulated using DLIO Benchmark)

21

Bert weak scaling Bert I/O 
throughput

https://github.com/argonne-lcf/dlio_benchmark.git

Accelerator utilization (AU) and I/O throughput at different scale on Polaris 
for Bert model, with the Lustre file system

AU = compute_time/total_time Throughput = data_size/time
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Tips for I/O and data management
22

• Preprocess the raw data (resize, interpolation, 
etc) into binary format before the training; 

• Store the dataset in a reasonable way (file per 
sample, single shared file, or multiple samples 
per file)

• Optimal setting (Lustre stripe count, size)
• Remember to shard the dataset;
• Prefetch and caching the data (from disk; from 

host to device; staging to NVMe, SSDs); 
• Use more I/O workers to load data 

concurrently (e.g., adjust num_workers in 
TorchDataLoader)

I/O and data 
management

Streaming I/O using Data Loader
• TensorFlow Data Pipeline
• PyTorch Data Loader
• Nvidia Dali Data Loader
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Main take aways
23

• Distributed training can be done through model parallelism and Data 
parallelism. 

• Data parallelism frameworks: Horovod, DDP (PyTorch only), DeepSpeed 
(Pytorch only) à similar performance. 

• Efficient data management and I/O is crucial for data intensive training
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Hands on
24

$ git clone git@github.com:argonne-lcf/ATPESC_MachineLearning.git
$ cd ATPESC_MachineLearning/04_distributedLearning
$ qsub submissions/qsub_thetagpu.sc or qsub submissions/qsub_polaris.sc

mailto:git@github.com:argonne-lcf/ATPESC_MachineLearning.git
mailto:git@github.com:argonne-lcf/ATPESC_MachineLearning.git
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Thank you!

huihuo.zheng@anl.gov


