
www.anl.gov

Distributed Deep Learning
Huihuo Zheng

Data Science Team
Argonne Leadership Computing Facility

Aug 11, 2023

huihuo.zheng@anl.gov



Argonne Leadership Computing Facility2

Outline

• The need for distributed training

• State-of-the-art parallelization schemes

• Data parallel training in details

• I/O and data management in distributed training

• Hands on



Argonne Leadership Computing Facility3

The need for distributed training on HPC
“Since 2012, the amount of compute used in the largest AI training runs has been increasing 
exponentially with a 3.5 month doubling time (by comparison, Moore’s Law had an 18 month 
doubling period).”

https://openai.com/blog/ai-and-compute/ Large language model: # parameters grows by 
about 10x every year



Argonne Leadership Computing Facility4

Distributed deep learning for ResNet-50 

Quoted from Masafumi Yamazaki, arXiv:1903.12650 

Yamazaki et al

2016

2019



Argonne Leadership Computing Facility5

Training Large Natural Language Model is expensive

Narayanan, D et al. Efficient Large-Scale Language Model Training on GPU Clusters Using 
Megatron-LM. In Proceedings of the International Conference for High Performance Computing, 
Networking, Storage and Analysis; ACM: St. Louis Missouri, 2021; pp 1–15. 



Argonne Leadership Computing Facility6

The need for distributed training
• Increase of model complexity leads to dramatic increase of 

the amount of computation;
• Increase of the size of dataset makes sequentially scanning 

the whole dataset increasingly impossible;
• Coupling of deep learning to traditional HPC simulations 

might require distributed training and inference. 
Examples of scientific large scale deep learning 
• Thorsten Kurth, Exascale Deep Learning for Climate Analytics, arXiv:1810.01993 (Gordon Bell Prize)
• R. M. Patton, Exascale Deep Learning to Accelerate Cancer Research, arXiv:1909.1229
• N. Laanait, Exascale Deep Learning for Scientific Inverse Problems, arXiv:1909.11150 
• W. Dong et al, Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain 

Mapping, arXiv:1905.06236
• A Khan, et al, Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey 

Physics Letters B 795, 248-258
• Narayanan, D.; et al, Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-

LM. arXiv: 2104.04473

http://arxiv.org/abs/2104.04473


Argonne Leadership Computing Facility7

Parallelization schemes – Model Parallelism (MP)
Worker 4

Worker 3 Worker 2

Worker 1

Model parallelism

https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html

PyTorch multiple GPU 
model parallelism 
within a node



Argonne Leadership Computing Facility8

Parallelization schemes – Pipepline parallelism (PP)

• Partition model layers into multiple groups (stages) and place them on a 
set of inter-connected devices. 

• Each input batch is further divided into multiple micro-batches, which 
are scheduled to run over multiple devices in a pipelined manner. 

Pipeline libraries: 
• GPipe: arXiv:1811.06965
• Pipe-torch: 

DOI: 10.1109/CBD.2019.00020
• PipeDream: arXiv:1806.03377 
• HetPipe: arXiv:2005.14038 
• DAPPLE: arXiv:2007.01045
• PyTorch Distributed RPC Frameworks: 

https://pytorch.org/tutorials/intermediate/
dist_pipeline_parallel_tutorial.html

• DeepSpeed: 
https://github.com/microsoft/DeepSpeed

https://pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html
https://pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html
https://github.com/microsoft/DeepSpeed


Argonne Leadership Computing Facility9

Parallelization schemes – Data Parallelism (DP)

Worker 1 Worker 4 Worker N 

…

Data parallelism

• Model is replicated on each worker
• Each worker processes a subset of 

the minibatch
• Sync up the weights before updating 

the model

DDP
https://leimao.github.io/blog/PyTorch-Distributed-Training/
https://github.com/horovod/horovod
https://github.com/microsoft/DeepSpeed

Popular frameworks support DP

https://leimao.github.io/blog/PyTorch-Distributed-Training/
https://github.com/horovod/horovod
https://github.com/microsoft/DeepSpeed


Argonne Leadership Computing Facility10

Data parallel training in details



Argonne Leadership Computing Facility11

Linear rate scaling rule
When the minibatch size is multiplied by k, multiply the learning rate by k. 

S. McCandlish, J. Kaplan, D. Amodei, arXiv:1812.06162

lrscale = lr*nprocs
Typical practice / suggestion: 
• keep local batch size per worker, i.e., increase the global batch size linearly
• Increase the learning rate proportionally
Actuality: need to adjust the batch size and learning rate at different scale

Mini-batch stochastic Gradient Descent

Mini-batchLearning rate, lr



Argonne Leadership Computing Facility12

Potential issues for large batch size and learning rate

Validation error for different 
mini-batch size for Resnet50

P. Goyal et al,arXiv: 1706.02677 

Minibatch Size Effect on Accuracy and 
Performance 

Tal Ben-Nun and Torsten Hoefler, arXiv:1802.09941 

Generation gap: Keskar et al, arXiv:1609.04836 

• Stability of optimization – can be solved by learning rate warming up
• Generation gap – systematic issue; has to reduce the learning rate



Argonne Leadership Computing Facility13

Data parallel training with Horovod

https://eng.uber.com/horovod/



Argonne Leadership Computing Facility14

Data parallel training with Horovod

• Import Horovod modules and initialize horovod
• Scale the learning rate by number of workers
• Wrap optimizer in hvd.DistributedOptimizer
• Broadcast the weights from worker 0 to all the 

workers
• Worker 0 saves the check point files
• Dataset sharding: make sure different workers load 

different samples.

Steps to parallelize a series code: 

https://eng.uber.com/horovod/

Instruction on how to change the code is here
Tensorflow: 04_keras_cnn_verbose_hvd.py
Pytorch: 04_pytorch_cnn_hvd.py

https://github.com/argonne-lcf/ATPESC_MachineLearning/tree/master/04_distributedLearning
https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/04_distributedLearning/Horovod/04_keras_cnn_verbose_hvd.py
https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/04_distributedLearning/Horovod/04_pytorch_cnn_hvd.py


Argonne Leadership Computing Facility15

Scaling TensorFlow using Data parallelism on Theta @ 
ALCF: fixing local batch size = 512 

AlexNet ResNet-50 Inception V3



Argonne Leadership Computing Facility16

Different frameworks show similar scaling efficiency
16

https://github.com/argonne-lcf/dl_scaling.git

ResNet-50 Cosmic Tagger VLTG

Horovod, DDP, and DeepSpeed show similar 
performance for three PyTorch models. Evaluation 
were done on Polaris @ ALCF Zhenhao Z. 

@IIT



Argonne Leadership Computing Facility17

17

Data Management and I/O for AI

Devarajan, H.; Zheng, H.; Kougkas, A.; Sun, X.-H.; Vishwanath, V. DLIO: A Data-Centric Benchmark for 
Scientific Deep Learning Applications. In 2021 IEEE/ACM 21st International Symposium on Cluster, 
Cloud and Internet Computing (CCGrid); 2021; pp 81–91. 

DLIO Benchmark: https://github.com/argonne-lcf/dlio_benchmark.git

MLPerf Storage: https://mlcommons.org/en/news/mlperf-storage/

https://github.com/argonne-lcf/dlio_benchmark.git
https://mlcommons.org/en/news/mlperf-storage/


Argonne Leadership Computing Facility18

Deep Learning I/O characteristics
18

Typical process of AI training. The 
dataset is loaded from the storage 
to the host RAM and then feed into 
the accelerators for training.

Characteristics of I/O for AI applications
• Read intensive
• Metadata intensive
• Small and sparse I/O operations
• Random access
• Complex data format (json, text, key-

value store)
• Utilizing storage hierarchy
• Multithreading background I/O

Huihuo Zheng and Venkatram Vishwanath, Data Management for Scientific 
Artificial Intelligence Workloads, ASCR Data workshop, 2022



Argonne Leadership Computing Facility19

I/O bottleneck for UNet3D workload on fast accelerator
19

Training on GPULoading Data preprocessing Waiting for data

Timeline tracing for training the UNet3D workload on a single GPU on JLSE with GPFS 
file system. This shows that I/O become a bottleneck for faster accelerator

https://github.com/argonne-lcf/dlio_benchmark.git

UNet3D Model: https://github.com/mlcommons/training/tree/master/image_segmentation/pytorch

https://github.com/argonne-lcf/dlio_benchmark.git


Argonne Leadership Computing Facility20

Scaling bottleneck from IO for UNet3D workload 
(simulated using DLIO Benchmark)

20

https://github.com/argonne-lcf/dlio_benchmark.git

UNet3D weak scaling I/O throughput

AU = compute_time/total_time Throughput = data_size/time

Accelerator utilization (AU) and I/O throughput at different scale on Polaris 
for UNet3D model, with Lustre file system and NVMe -> staging helps



Argonne Leadership Computing Facility21

Ideal scaling for less I/O intensive workload – Bert
(simulated using DLIO Benchmark)

21

Bert weak scaling Bert I/O 
throughput

https://github.com/argonne-lcf/dlio_benchmark.git

Accelerator utilization (AU) and I/O throughput at different scale on Polaris 
for Bert model, with the Lustre file system

AU = compute_time/total_time Throughput = data_size/time



Argonne Leadership Computing Facility22

Tips for I/O and data management
22

• Preprocess the raw data (resize, interpolation, 
etc) into binary format before the training; 

• Store the dataset in a reasonable way (file per 
sample, single shared file, or multiple samples 
per file)

• Optimal setting (Lustre stripe count, size)
• Remember to shard the dataset;
• Prefetch and caching the data (from disk; from 

host to device; staging to NVMe, SSDs); 
• Use more I/O workers to load data 

concurrently (e.g., adjust num_workers in 
TorchDataLoader)

I/O and data 
management

Streaming I/O using Data Loader
• TensorFlow Data Pipeline
• PyTorch Data Loader
• Nvidia Dali Data Loader



Argonne Leadership Computing Facility23

Main take aways
23

• Distributed training can be done through model parallelism and Data 
parallelism. 

• Data parallelism frameworks: Horovod, DDP (PyTorch only), DeepSpeed 
(Pytorch only) à similar performance. 

• Efficient data management and I/O is crucial for data intensive training



Argonne Leadership Computing Facility24

Hands on
24

$ git clone git@github.com:argonne-lcf/ATPESC_MachineLearning.git
$ cd ATPESC_MachineLearning/04_distributedLearning
$ qsub submissions/qsub_thetagpu.sc or qsub submissions/qsub_polaris.sc

mailto:git@github.com:argonne-lcf/ATPESC_MachineLearning.git
mailto:git@github.com:argonne-lcf/ATPESC_MachineLearning.git


Argonne Leadership Computing Facility25

Thank you!

huihuo.zheng@anl.gov


