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Turbulent fluid flow is ubiquitous across a broad range of applications




Turbulent fluid flow is ubiquitous across a broad range of applications

Turbulence is important:
50% of drag on a commercial aircraft is due to turbulence in the boundary layer on its surface
[Marusic et al,, 201 0]
About 0% of all the electricity generated every year is currently consumed in the process of
overcoming the effects of turbulence.



Turbulent fluid flow is ubiquitous across a broad range of applications

Turbulence is conceptually hard:
* “When | meet God, | am going to ask him two questions:Why relativity? And why turbulence?
| really believe he will have an answer for the first” - Werner Heisenberg
+ “Turbulence is the last great unsolved problem of classical physics” - (likely at least) one of
Albert Einstein, Richard Feynman, or Arnold Sommerfeld



Turbulent fluid flow is ubiquitous across a broad range of applications

Turbulence is computationally hard:
We are still very far from being able to numerically solve the PDEs (Navier-Stokes equations) for
most of these examples



Turbulent fluid flow is ubiquitous across a broad range of applications

Turbulence is computationally hard:
We are still very far from being able to numerically solve the PDEs (Navier-Stokes equations) for
most of these examples

Fluid flows that are fast and/or large can have a very large range of length and time
scales that must be resolved (quantified by the Reynolds number)

Reynolds number



Turbulence is computationally expensive to simulate accurately

Reynolds number

Range where turbulence is
present

Range feasible for direct Channel flow simulation of Lee & Moser
numerical simulation (2015): 242 billion degrees of freedom,

524 288 cores, 6 million core hours




Turbulence has structure

Streamwise distance (m)

3.3

Re,= 844
Plate velocity = 0.22m/s

[Lee et al. 2012]

 How can such structure be understood? Predicted? Controlled?



How can we decompose turbulence to isolate coherent structures!?

Streamwise distance (m)
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Re-= 844
Plate velocity = 0.22m/s

Structures at various
length- and time-scales



How can we decompose turbulence to isolate coherent structures!?

- We look to decompose a spatio-temporal field

iInto a sum of spatial modes with time-varying
coefficients:

u(z,t) =) j(x)a;(t)
j=1
For discrete coordinates in space and time:

a(t)

X
S

U(x,t)

«—— Space——

+«— Time —



Data and/ »
or physics

Most of my research

Reduced-complexity
modeling methods

—>

Understanding of the main
features exhibited by the system
Understanding the physical
origins of such features

Generate additional approximate
data to further understand the
features of the system

Ways to control the system to
achieve a desired goal




Extending space-time decompositions to non-stationary flows

There are many methods of analysis that are designed for fluid flows that are statistically stationary

Deep dynamic stall Non-equilibrium boundary layer
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Ramos et al., PRF 2019 (video: https://youtu.be/2KcK 1 rBOQbOY) Lozano-Duran et al.,,JFM 2019

We look to extend such methods to a broader class of flows
(though | won't discuss this project tonight)


https://youtu.be/2KcK1rBQb0Y

How can we control unsteady and turbulent flows?

Reducing, eliminating, or otherwise manipulating turbulence and unsteadiness in
fluid flows can lead to improvements in efficiency and performance across a
broad range of applications

Riblets Reduce Drag,

Passive control: modify surface
geometry or properties (e.g. grooves,

riblets) to manipulate the near-wall
turbulence

(Re)active control: Add energy/
momentum into the flow in a targeted
manner, possibly informed by real-time
measurements

[Endrikat et al., 2022]



How can we control unsteady and turbulent flows?

Reducing, eliminating, or otherwise manipulating turbulence and unsteadiness in
fluid flows can lead to improvements in efficiency and performance across a
broad range of applications

. Ductroutes hot APU air via AFC control
valve to external Heat Exchanger
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(Re)active control: Add energy/
momentum into the flow in a targeted

manner, possibly informed by real-time
measurements

Installation

[Vijgen et al,, 201 6]



How can we control unsteady and turbulent flows?

- (Re)active control: Add energy/momentum into the flow in a
targeted manner, possibly informed by real-time measurements

Disturbance

Reference \Error Ceedback Control signal Output
Signal Q Controller

How should we design the controller?

- |If we can model the plant as a linear dynamical system, then then
we have many tools and theory at our disposal



How can we control unsteady and turbulent flows?

If we can model the plant as a linear dynamical system, then then
we have many tools and theory at our disposal

Disturbance
Lift tracking control for a 2D flat plate, Re = 100
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How can we control unsteady and turbulent flows?

- If we can model the plant as a linear dynamical system, then then
we have many tools and theory at our disposal

Reference

Signal

Disturbance

’ QError »

Feedback
Controller

Control signal

Plant

Output

- Issue: Most interesting fluid flows are highly nonlinear, and evolve

very far away from (sometimes unknown) equilibrium points



How can we control unsteady and turbulent flows?

Issue: Most interesting fluid flows are highly nonlinear, and evolve
very far away from (sometimes unknown) equilibrium points

Disturbance

Reference /x\Error Feedback Control signal Qutput
Signal ) *  Plant =
— Controller

- To control a nonlinear system, we wish to model the plant and
controller using nonlinear functions

Neural networks provide a convenient means of modeling such
functions



Neural networks

- Neural networks give a means of representing arbitrary, complex
functions through the composition and addition of many simple functions

- Subject to certain conditions, it can be shown that ANY function can be
approximated by neural networks, to arbitrary accuracy

< o)

8 e

o ’/f\' o\ 7 '0’4 ‘1;:
AT

Input Layer x
Output Layer y

AN
7 -7 o/ T®
e

[Brunton & Kutz, 2020]



Neural networks for flow control

Xk+1

Timestep k Timestep k+1

+ The neural network model predicts future states based on the current
ones and on the control input

- The neural network controller provides a control input based on real-
time measurements



-+ The coupled neural networks have a

Neural networks for flow control

- We develop a methodology to simultaneously
train:

- A surrogate neural network model for the
fluid flow (NNM)

A neural network for the controller ( )

- The controller attempts to suppress all
unsteadiness in the flow

recurrent structure



Stabilization of flow over a circular cylinder

Flow over a circular cylinder exhibits periodic vortex shedding in its wake

- We will attempt to suppress this vortex shedding

Confined cylinder flow at a Reynolds number of 150

Control input is localized blowing/suction at
the top and bottom of the cylinder

Configuration matches that used in previous control studies [Rabault et al., 2019]



Stabilization of flow over a circular cylinder

Lift coefficient across training process

Feedback
— control
//
Random Random
+ +
Random feedback feedback
control input control /ﬂ‘d
No control

Iterative training process generates increasingly more data near the desired equilibrium fixed point



Stabilization of flow over a circular cylinder

The identified control strategy achieves complete stabilization
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Stabilization of channel flow

We consider two-dimensional flow through a periodic channel (Re = 8000)

L ocalized actuators

Complete stabilization is achieved



Neural networks for flow analysis: choosing sensor locations

- Sensor selection from a candidate set can be achieved by the addition of a
sparsity-promoting layer to the neural network, which used an L1 norm (rather than
standard L2 norm)

Provides insight into the most important locations to collect data

Reduces the overall size of the neural network



Neural networks for flow analysis: choosing sensor locations

- Sensor selection from a candidate set can be achieved by the addition of a
sparsity-promoting layer to the neural network, which used an L1 norm (rather than
standard L2 norm)

Selected sensors for cylinder flow

Horizontal velocity sensors Vertical velocity sensors
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Neural networks for flow analysis: choosing sensor locations

- Sensor selection from a candidate set can be achieved by the addition of a
sparsity-promoting layer to the neural network, which used an L1 norm (rather than

standard L2 norm)

1.5

0.5 r

Selected sensors for channel flow

Horizontal velocity sensors

o
0000000

o
000

00 ® o
000000006 °00060

®
0000

20006000

®
000

000

°

0

3

6

9 12 15 18 21 24 27 30 33 36

X

1.5

0.5 r

Vertical velocity sensors

§eccse0000ccgeecsc@efocegeccccccscccy oo

3 6 9 12 15 18 21 24 27 30 33 36

i



Neural networks for flow analysis: linear stability analysis

- To understand the mechanisms by which a fluid flow becomes unstable (and
eventually transitions to turbulence), we can study the properties of the
linearized system near a (stable or unstable) equilibrium

- This is typically done by explicitly forming, discretizing, and decomposing the
linearized governing equations

+ We can instead use our identified neural network models to perform this
analysis in two ways:

- Use the fact that neural networks are easily differentiable to linearize the
global neural network model

- By applying control, we can generate a rich set of near-equilibrium data,
which can be used to identify a separate linear model



Neural networks for flow analysis: linear stability analysis

Neural network stability analysis of 2D channel flow

Unstable mode 1 Unstable mode 2

x-velocity = x-velocity

Eigenvalues: Eigenvalues:
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Other methods for flow control

l1]I2 [10°]

Linear control theory
[Bagheri et al. 2009, Semeraro

et al. 2013, Belson et al. 2013,
Leclercq et al. 2019]
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FIG. 14. Input and output signals of PI feedback controlled full system with the new actuator, Eq. (16), and a stream-wise
velocity point sensor centered at xy = 405 (feedback). The control is on from ¢ = 4000 to 12000, the grey region. The
disturbance signal, w, is the same as in Figure 9.

Reinforcement learning
[Rabault et al. 2019, Fan et al.
2020, Ren et al. 2021,

Guastoni et al, 2023] 151 02 T

Genetic algorithms 05- U -
[RabaUdO et al 2020’ ZlgunOV o Time (rzwgn—dim::rcm)sional)60
et al. 2022] -
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Conclusions

» Simple neural networks (dense networks, ReLU activation functions, |-2
hidden layers) can be effective for both surrogate models for nonlinear

fluid flows, and for nonlinear controllers

* The effectiveness of this method relies on an iterative training strategy
that generates large quantities of data in regions of state space that are
most important for successful control (near desired equilibria)

* These neural network models/controllers can be further utilized to
perform common flow analysis tasks

Future work

» Control more complex flows
- Apply in experimental setting

Deda, Wolf, & Dawson, “Backpropagation of neural network dynamical models applied to flow control,”
Theoretical and Computational Fluid Dynamics, 2023.



