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Overview and Goals for this Lecture

1. Introduce the various types of HPC storage systems and their 
intended use cases

2. Survey widely-used HPC storage systems and their 
architectures

3. Discuss how HPC storage is evolving and potential 
implications for users



Types of HPC Storage

• Data Lifecycle

• HPC Storage Use Cases

• Storage Classification Terminology
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DOE Computing Facilities Support the Full Data Lifecycle

Data 
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Data 
Destruction 
/ Transfer

• Creation and Access characteristics often dictate 
the type of Storage system on which the data is 
stored

• Important characteristics: (not exhaustive)
1. Total data size
2. Size of data in working set (% of total size)
3. Number of processes that write/update the data
4. Number of processes that read the data
5. I/O access patterns, concurrency and frequency

• producer/consumer: readers wait until writers are done
• bulk-synchronous I/O: distinct write phases, readers see 

data from last completed write phase
• free-for-all: no coordination between accesses from 

different processes (Advice: Don’t do this!)
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HPC Storage has many distinct use cases

• “Software”: Facility-managed system & user software (e.g., 
applications, libraries, system configuration)

• “Home”: Per-user or per-project storage for application code 
and data, job scripts, documents, etc.

• “Scratch”: High-performance storage for runtime use by jobs

• “Archive”: Long-term data storage for archival & sharing

• Each use case has different requirements, in terms of:
– storage space; data security and sharing; data lifetime; I/O access 

pattern, concurrency and performance
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HPC Storage Requirements by Use Case

Use Case Storage 
Space

Storage 
Lifetime

Data 
Sharing

I/O 
Throughput

I/O 
Latency Access Concurrency

Software Small/Medium 
(10s TB)

Long-term 
(System 
Lifetime)

Yes Low 
(MB/sec) Medium Yes (reads)

User 
Home

Medium
(100s TB)

Medium-term 
(Months) No Medium 

(GB/sec) Medium Possibly (reads)

Project 
Home

Medium
(100s TB)

Medium-term 
(Months) Yes Medium 

(GB/sec) Medium Likely (reads)

Scratch Large
(10s/100s PB)

Short-term 
(Days/Weeks) Yes High 

(TB/sec) Low Yes (writes and reads)

Archive Very Large 
(100s PB)

Long-term 
(Years) Yes Medium

(GB/sec) High Not Likely
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Storage System Classification: Terminology

• Private vs. Shared

• Local vs. Remote

• Centralized vs. Distributed

• Serial vs. Parallel

• Single-tier vs. Multi-tier
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Storage System Terminology: Private vs. Shared

• Private: storage is used by a single actor

• Shared: storage is used by many actors

• Point-of-View is important!
– Actors may be users, compute hosts, processes, jobs, etc.
– You can have a storage system that is private to a job, but shared 

amongst processes in the job
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Storage System Terminology : Local vs. Remote

• Local: access to storage uses only local data paths
– the definition of ”local data paths” can be a bit fuzzy in new HPC 

system architectures
– historically, it meant “local to the host where the process performing 

the access is located”

• Remote: access to storage is via the network
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Storage System Terminology : Centralized vs. Distributed

• Centralized: a client interacts with a single storage server

• Distributed: a client may interact with many storage servers
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Storage System Terminology : Serial vs. Parallel

• Serial: a single client accesses a particular data item (e.g., a 
file) on the storage at any given time
– serial accesses can be made by separate clients, they just don’t 

overlap in time

• Parallel: many clients access a particular data item at the 
same time
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Storage System Terminology : Single-Tier vs. Multi-Tier

• Single-Tier:
– Physical: a storage system includes one layer of storage devices
– Logical: clients interact with a single storage system

• Multi-Tier:
– Physical: a storage system includes multiple layers of storage devices
– Logical: clients have access to two or more storage systems
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Storage Terminology Example: Shared File Systems
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Survey of HPC Storage 
Systems by Use Case

• Scratch Storage

• Home Storage

• Software Storage

• Archive Storage
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Scratch Storage Systems

• Purpose: High-performance, short-term storage for runtime use 
by HPC jobs

• Common Solutions
– Parallel File Systems (PFS)
– Burst Buffers (BB)
– Node-local Storage (NLS)
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Scratch Storage - Parallel File Systems

• Goal: Enable high-performance I/O 
for a large number of concurrent 
clients

• Production Examples: Lustre, IBM 
Spectrum Scale (GPFS), Panasas 
PanFS

• Key Architectural Features
– separate FS metadata and I/O servers

• “do one thing well”
– spread file data across I/O servers

• helps to load balance I/O traffic
– clients directly access I/O servers in 

parallel
• helps to maximize I/O bandwidth
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Scratch Storage - Burst Buffers

• Goal: Reduce load on a parallel file 
system to enable faster application I/O
– by buffering bursty writes (e.g., simulation 

outputs or checkpoints)
– by caching data from “hot” reads

• Production Examples: Cray DataWarp
• Key Architectural Features

– ”Faster” storage (e.g., Flash SSD) closer to 
Compute

– Automatic data staging to/from PFS
– Reservation-oriented (e.g., resources 

dedicated to specific jobs)
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Scratch Storage - Node-local Storage
• Goal: Reduce load on a parallel file 

system to enable faster application I/O
– by buffering bursty writes (e.g., simulation 

outputs or checkpoints)
– by pre-staging data for “hot” reads

• Production Examples: NVMe SSDs in 
compute nodes

• Key Architectural Features
– ”Fastest” storage co-located with Compute
– Storage capability scales linearly with 

allocated job nodes
– However, software solutions required for:

• runtime sharing of data in NLS across nodes (e.g., 
UnifyFS)

• moving data to/from PFS
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Home Storage Systems

• Purpose: User or Project storage

• Common Solutions
– Network File Systems

• Production Examples: NFSv4
– Distributed File Systems

• Production Examples: HPE/Cray Data 
Virtualization Service (DVS)

– Parallel File Systems
• Production Examples: Lustre, GPFS
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Software Storage Systems

• Purpose: Facility-managed system & user software 

• Common Solutions
– Local File System

• Production Examples: sys/app software cache on NLS
– Network File Systems

• Production Examples: NFSv4
– Distributed File Systems

• Production Examples: HPE/Cray DVS
– Parallel File Systems

• Production Examples: Lustre, GPFS
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Archive Storage Systems

• Purpose: Long-term data storage for archival & sharing 

• Common Solutions
– Tape Libraries
– High Performance Storage System (HPSS)

• software optimized for efficient and performant use of tape libraries
• also supports classes of different storage media and hierarchical tiering
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Survey Summary: Storage @ DOE Computing Facilities

Center Home Software Scratch Archive

ALCF Lustre Lustre Lustre, NLS HPSS

NERSC GPFS1 GPFS1 Lustre HPSS

OLCF NFS NFS, DVS2, NLS GPFS1, Lustre, NLS HPSS

1NOTE: IBM Spectrum Scale is the product name for GPFS.
2NOTE: DVS is the Cray Data Virtualization Service.



HPC Storage is Evolving

• HPC Storage Challenges

• Requirements Driving Evolution

• HPC Storage Architecture Trends
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Challenge: Exascale Systems have Arrived

• For 30+ years, DOE HPC meant scalable modeling and 
simulation
– bulk-synchronous checkpoint/restart (C/R) was the primary I/O 

requirement (write-dominated, mostly sequential accesses)
• PFS are designed to do C/R well, while still providing POSIX I/O semantics

• C/R for full-scale applications on exascale systems is 
problematic
– expected system component failure rates require more frequent 

checkpoints for application progress
– number of potential I/O clients exceeds the capabilities of most PFS
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Challenge: Data-intensive Science is Widespread

• Data-intensive Science is pushing the current limits of HPC 
Storage

• Large-scale data analysis (e.g., ML model training) is read-
dominated, and often uses repeated random accesses from 
varying processes

• Experimental data from instruments with very large data 
generation rates (e.g., LHC, SKA) is currently difficult/impossible 
to store in lossless form
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HPC Storage Evolution - New Requirements

• Interfaces and Access Patterns
– Reads are as important as writes (maybe more important)
– POSIX file read/write is rarely the right I/O semantic for scalable HPC 

workloads
• many workloads may benefit from alternatives such as:
– simple put/get of data objects, possibly with object versioning
–publish/subscribe
– streaming data
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HPC Storage Evolution - New Requirements

• Storage advances from the cloud may be beneficial to HPC
– and are frequently integral to deployment of popular data analysis 

frameworks on HPC systems

• Cloud Data Abstractions and Interfaces
– Key-value and columnar data stores are better suited for many data 

analysis workloads involving queries
– Graph analysis benefits from custom storage
– Analysis of real-time streaming data from many sources

• Cloud Storage Technologies
– Elastic provisioning of storage resources
– Quality-of-service (QoS) or service-level agreements (SLA)
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Storage Architecture Trends - Tiering for Performance

• More use of “fast” non-volatile 
memory-based storage devices
– including hardware optimized for 

key-value or put/get semantics

• More storage tiers
– within HPC PFS and Archive 

(mostly transparent to users)
– between HPC Compute and PFS 

(multi-tier burst buffers)
– within HPC Compute (node-local 

storage, near-node-local storage)
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Storage Architecture Trends - Storage Disaggregation

• Storage disaggregation

• Allocate network-attached 
storage resources dynamically 
to pools
– pools provide raw I/O on blocks 

or objects, not POSIX

• Assign pools to jobs

• Pools may also provide 
storage QoS guarantees
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HPC Storage User Advice

“This all sounds very confusing. How do you expect users to deal 
with such complexity?”

• HPC I/O libraries provide higher-level abstractions for managing 
and accessing scientific data (e.g., hierarchical groups of 
datasets)
– HPC storage experts are busily trying to hide all this complexity under 

the covers of the existing I/O libraries

• Vendors are also developing new storage abstractions and 
interfaces that help manage the complexity (e.g., DAOS)
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D̀iscussion/Questions
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