Rapidly Evolving HPC, SuperComputer Ar
Nvidia Grace-Hopper:

Giri Chukkapalli
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EMERGING GRAND CHALLENGE APPLICATIONS

Full systems modeling
Earth systems: Complex Climate Models
Biological systems: Human Microbiome Modeling
Complex Engineering Systems: Aircraft, Power Plant etc.
Environmental modeling like distribution of Micro-Plastics

Novel Drug designs, Material designs (Inverse problems)
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EMERGING GRAND CHALLENGE APPLICATIONS

They span across several orders of magnitude space and time scales
Span across large number of physical, chemical, quantum phenomena

Example could be influence of Aerosols to Ocean Circulation



EMERGING GRAND CHALLENGE APPLICATIONS

At the same time silicon process technologies running out of steam
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EMERGING GRAND CHALLENGE APPLICATIONS

Classic brute force ModSim algorithms may not be sufficient or possible
Classic Fortran + MPI is not sufficient
Homogeneous CPU Nodes or GPU Nodes are not sufficient

Homogeneous ModSim clusters may not be sufficient



EMERGING GRAND CHALLENGE APPLICATIONS

Data and Algorithms (ML/DL) to the rescue

ModSim + ML/DL + Data
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ML/DL WILL CONTINUE MOORE’S OBSERVATION IN HPC

ML/DL is rapidly becoming the 4t pillar of Scientific Discovery

Approximations in Mod-Sim, Inverse problems, Insights from
experimental/empirical data etc.

Protein Structure Prediction became a solved problem
Sub-Seasonal Forecast Competition is won by MSFT ML/DL Team
Physics informed NNs in CFD
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Al INTRODUCES NEW USE CASES FOR SCIENCE AND ENGINEERING

Error

Al Bridges the Gap Between Simulation and Real-Time
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Chemical and Material Discovery is about to have its ChatGPT moment

The pace is changing from years to months on new datasets and models.

Last 6 months

Not Exhaustive

Age of accelerating Al/GenAl breakthroughs for chemicals and materials discovery

Yearly trend in publications

Graph Neural Network
ML model trained on DFT (GNN) using DFT «
for MOF sorbent discovery representations, scaled by 7’
in direct air capture active leamning

infrastructure for GNoME ¥
teractive Al / r
materials soence deta, e -7 GNoME/Deepmind MatterGen/MSFT

Spaces using iatent variables

ushg NOMAD mealorials to generalize contextual -
science database patterns x;g:ﬁ,léﬂ,fg;’:ﬁ;g?o’ , > N ov’ 202 %anm De C! 2023

Image-based generative model for E
Inverse design of solid state Conditional latent

materials space sampling

Database/wveb app designed to
automate CFT, DFT, ML, and

QC calculations

optimization of latent
space

MolMIM

| e

Uni-Mol+

230M compounds with
3D formats and
>750M total
compounds used for
virtual screening

MACE-MP-0
(Academia/SCC
) March 2024

Using higher body order
messaging (e.g., 4-body)
Advanced 3D equilibrium reduces number of
conformations optimized by iterations for identifying
electronic structure accurate force fields

MatterGen

Uni-Mol

Universe 3D Molecular
Representation Learning
Framework Uni-Mol

released
Open Catalyst 22 o
CrystalGAN 118M compounds, 315M IBM MoIGX P Y Diffusion-based
y generative mode!
substances, 294 bioactivities PR on generave ooty
Unsupervised learning curated by chemical name and Cloua-based inverse design DFT m"", Ieoxbs ed o skl
method to generate stable = molecular formula platform generating novel electravatalyst property constraints
crystal structures structures ’
-~
-

MatterSim/MSFT CatTSunami
May 2024 /Meta May 2024

Source: Press search

- - Leaderboard for Al models for Material
Discovery : https://matbench-
discovery.materialsproject.org/ SAnviDIA

Datasets/Tools Models


https://deepmind.google/discover/blog/millions-of-new-materials-discovered-with-deep-learning/
https://www.microsoft.com/en-us/research/blog/mattergen-property-guided-materials-design/
https://www.microsoft.com/en-us/research/blog/mattersim-a-deep-learning-model-for-materials-under-real-world-conditions/
https://arxiv.org/pdf/2405.02078v2
https://arxiv.org/abs/2401.00096
https://arxiv.org/abs/2401.00096
https://arxiv.org/abs/2401.00096
https://matbench-discovery.materialsproject.org/
https://matbench-discovery.materialsproject.org/

Al ALGORITHMS EVOLVING AT UNPRECEDENTED PACE
FourCastNet High Resolutlon for Data- Dnven Weather Models

> *‘:’-12;'!

Comparison of resolutions for
data-driven weather models

since 2018 (Dueben & Bauer)

SOTA evolving rapidly

Recent Pre-print Kang Chen et al
(2023) extend forecast to 10
days with 0.25° resolution using
“cross modal Transformer”

FourCastNet, Pathak et al. (2022), 0.25°, ~1,000,000 Pixels, ViT+AFNO
GNN Keisler et al. (2022), 1°, 64,000 Pixels, Graph Neural Networks

w" DLWP, Weyn et al. (2020). 2°, 16K pixels, Deep CNN on Cubesphere/(2021) ResNet

B Weynetal. (2019), 2.5° N.H only, 72x36, 2.6k pixels, ConvLSTM

—_— WeatherBench, Rasp et al. (2020). 5.625°, 64x32, 2K pixels, CNN

-] Deuben & Bauer (2018), 6° , 60x30, 1.8K pixels, MLP
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Digital Twin For Science

Physical System Digital Twin




EMERGING GRAND CHALLENGE APPLICATIONS

Supercomputers may need to integrate with sensor networks
High throughput scientific instruments
Most importantly, capable of solving HPC + ML in a tightly coupled loop



Workloads of the Modern Supercomputer

SIM + Al SIMULATION DIGITAL TWIN QUANTUM
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MOORE’S OBSERVATION

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 bv K. Ruoo

Compute energy

On die IC energy

St}
Source: Intel 65 45 32 22 14 10

Technology (nm)

Original:

Transistor density doubles

Power stays same and Cost stays same
Last two are gone

Due to loss of Dennard scaling and Litho and other process complexities
Different features scale differently with process

Logic, SRAM, Wires, and 10s

Distorting over time

WHILE COSTS CONTINUE TO INCREASE

Cost Per Yielded mm?2 for a 250mm?2 Die
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ENERGY DOMINATED BY MEMORY AND DATA

1300

datapath
adder

wgt buf.

ia buf.

accum. buf. SRAM

70 fJ/MAC
35 fJ/OP
29 TOPS/W

accum. buf. others

psum collector

PPU

output related control

fa/MAC

top-level control
wgt buf. control

ia buf. control

Maximum Operation Freq. (MHz)

psum related control

—e— Freq. (MHz)

0.72 0.7 0.65 0.6 0.55 0.5 0.45 0.4

Voltage (V)



MORE THAN MOORE

> Nvidia maintains “More than Moore” by optimizing

> End-to-End mapping of Applications to Supercomputing System

v

Algorithmic, SW, architectural, Packaging, Process Technology

v

Try to maintain 2X to 6X Gen-to-Gen perf improvement

v

Requires close collaboration with HPC/ML/DL Community

v

Transformer Acceleration in Hopper is the best recent example

A\

FLOPs not executed, Bytes that are not moved are the best FLOPs and Bytes

18 <ANVIDIA,
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NV ARM OVERVIEW

Server Class ARM CPU

» 64bit Server Class Core and SoC

> Arm V9.0 ISA Compliant aarché4 core

> Full SVE-2 Vector Extensions support, inclusive of NEON
instructions

> Supports 48-bit Virtual and 48-bit Physical address space

> Balanced architecture between Single Core Perf, Core count,
Memory and 10 subsystems

> Supports Arm Server ready (SBSA), Boot compliant (SBBR) and
manageability (SBMG) open standards

> Linux, system management, HPC stacks will run out of the box

20 <4 NVIDIA,



NVIDIA ARM CORE

Optimized for Single Thread Performance

Wide Super Scalar 000 single-threaded high
performance Core Pipeline

» Supporting Multi-stage branch prediction and
advanced prefetching algorithms

» 1LD + 4LD/ST pipes, 6 ALU pipes
64B Cacheline
64KB L11Cache, 64KB L1DCache

1MB Private L2Cache

Four 128-bit SVE2 Execution pipes capable of
16 DP FLOPS per Cycle

Support 64bit, 32bit, 16bit and bfloat16 FP
and int8

Complex datatypes and math

Enables easier vectorization through
Predicate and mask instructions

Lane widening and narrowing instructions

Classic and non-temporal Gather Load and
Scatter Store instructions

Crypto extensions

21 <4 NVIDIA,



PROCESSOR SOC

Augmented custom logic to support memory movement

NVLINK to GPU (or other proc)

» Up to 117MB shared L3 cache B e

Monolithic SoC

Lo

»  >3TB/s on-die mesh bisection BW

— e - - - - - - -

Extensive set of Core and un-Core perf counters HE N B BN =N =N

ceaed I N BN R BN N BN OH BN N BN RN BN O
o

— = - - - - s - - -

Thermal monitoring and power management - O EE N EE O =EE =

DVFS support with multiple voltage domain

Individual core power and clock gating support

< S0 30X
1E}
{

Tx and Rx paths optimized for 400Gbps fabric
— -- --_--_--_--_--_.
ARM V9 ISA virtualization and security support '

Custom SoC level logic support for GPUDirect, CPU-GPU m¢
movement and synchronization

& =
rﬁmﬁ [

120GB, 240GB, 480GB LPDDR5 CapaATPESC24es supported

g
t
< S0 300X

PCle and Grace NVLINKs

Ll
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NVIDIA Grace and Grace Hopper

144 CPU Cores Best HPC CPU & GPU In One
1 TB/s LPDDR5X with ECC 900 GB/s coherent interface
3.2 TB/sec of cross-sectional bandwidth 70TF FP64 | 2PF Al | 600 GB Memory

Grace CPU Superchip Grace Hopper Superchip
High-performance CPU for HPC and cloud computing CPU+GPU designed for giant-scale Al and HPC

NVIDIA,




NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NVIDIA ARM HPC SW ECOSYSTEM

HPC Applications

Simulation

COMPILERS

CORE C++ LIBRARIES

PROFILING AND DIAGNOSTICS

COMMUNICATION LIBRARIES

Data Analytics

MATH LIBRARIES

[_openstivem | [ wva  J| [ cmas ] [ csover | [ cusparse |
- HPCX _ T,

[Share ] [ | 7 ssey /)| | e [ waTHART ] [ (openslas) |
] | e oo ] [ome ] [

| (Third party)

Work in Progress
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NEW HOPPER SM DOES MORE THAN IMPROVE RAW SPEEDS AND FEEDS
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Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory
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New Thread Block Clusters

Turn locality into efficiency

Support Distributed Shared Memory between SMs

New Asynchronous Transaction Barriers

L Increased support for asynchronous
programming

New Tensor Memory Accelerator

Fully asynchronous data movement

New DPX instruction set

- Special Purpose Acceleration

New Transformer Engine for Al Model Acceleration

26 <4 NVIDIA,



THREAD BLOCK CLUSTERS

* New feature introduces programming
locality within clusters of SMs

» About 7X higher throughput vs. using
global memory N

» Shared memory blocks of SMs within a GPU 2.7x
Processing Cluster (GPC) can communicate

. . Z2X 1.7
directly (w/o going to HBM) /X
» Leveraged with CUDA cooperative groups ‘

AP|
A100 H100 Ox
) = - GAK FFT Longstaff Schwartz Histogram
(" Thread Block ‘ [ Thread Block Thread Block Thread Block Pricing Collection
k%J [ ﬂ:tt:jftﬂ } u Without Clusters = With Clusters

For details, see “NVIDIA H100 Tensor Core GPU Architecture” white
paper available for download

Cluster Performance

[
=

Relative Perf
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ASYNCHRONOUS ENHANCEMENTS

Hopper enables end-to-end fully asynchronous pipelines

= Async Transaction Barriers - Atomic data movement with synchronization
= More efficient Waiting on Barriers

= Async Mem_copy via Tensor Memory Accelerator (TMA)

Async
Mem Copy
Pipelined Process Process [
Processing g |
i
Independent |nd<;[\)/err1£ent /
Threads -

28 <A NVIDIA,



NVIDIA Blackwell

An Engine for High-Fidelity Simulation and Trillion Parameter Al

Blackwell GPU

3

3
S FP64 FMA 40 TFLOPS
z _ FP64 TC 40 TFLOPS
E FP32 FMA 80 TFLOPS
& HBM Bandwidth Up to 8 TB/s
L HBM Capacity Upto 192 TB
< 3

A |

Simulation capabilities 1.3x — 2x higher than H100

<ANVIDIA. I






GRACE-HOPPER

A revolutionary Architecture

= Nvidia GPUs

= Latency hiding Throughput Machines => Async Computational Graph solvers
= Can effectively map Dataflow-Complex portions of the Algorithm
= Custom (compute and memory) IP Blocks for energy efficiency
= Nvidia CPUs

= SuperScalar, OO0 Core based tightly coupled SoC with balanced Bytes/s/FLOPS

= Can effectively map ControlFlow-Complex portions of the Algorithm
= Strong Vector and Tensor performance in future

= Unified Compute Substrate

31 <A NVIDIA,






Grace Blackwell SuperChip

FP8

NEW FP6

NEW FP4

HBM Model Size

HBM Bandwidth

NVLINK All-Reduce with SHARP

20 PFLOPS

20 PFLOPS

40 PFLOPS
740B param
34T param/sec
7.2 TB/s

2.5X Hopper
2.5X

5X

6X

5X

4X

<ANVIDIA. I



GB200 With NVL72 Enabling Trillion Parameter Al

NVL72: One Big GPU

GB200 NVL72

36 GRACE CPUs
72 BLACKWELL GPUs
One NVLink Domain

130 TB/sec All-to-All
Bandwidth

18x vs HDR
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NVIDIA Al Accelerated Computing Platform
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PROCESSING DRUG DESIGN SIMULATION DIGITAL Al
TWINS

CUDA-X LIBRARIES

ACCELERATED COMPUTING

<ANVIDIA. I



Application Complexity & Architectural Flexibility

Hyperscale

Web Servers, Search

and Data Analytics

HPC

Dense Matrix &

Machine Learning

Data Flow

Xeon
Grace
8 instructions fetch

Multi-history

Branch 8::“2;(?1'

predictor Y
Decode

180 Entry Eoop)

ROB ZiEe Rename

Predictor 043
entry

L2

60 entry unified scheduler B

Al ALU/ ST
u BR Data

e/ [ FPI
NEON i NEON

=

1byles [1Gbyles |16 bytes

32KB8way L1D

Xeon Phi

8-64 KB
4 way L11

8-32 KB
2 way L11

___________________________>

Complexity

Control Flow

Hyperscale & HPC

Hybrid Data and Control Flow Architecture

Highly irregular unstructured algorit

Complexity

Embedded Computation

Networking Algorithms

DataFlow Engine
TPU, Graphcore
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COMPUTATIONAL GRAPH + GRACE HOPPER

Same programming model for CPU and GPU, plus existing
applications ready-to-run Day 1.

True Unified Memory + High Bandwidth Link make data
movement less of a bottleneck

Existing CPU programming models continue to work on
Grace CPU with high performance

Senders/Receivers enable defining hybrid execution graphs
to take advantage of the strengths of each processor.

—2000

1500

1000

Wall Clock Time (seco
(%4
o
o

o

One A100 GPU

T o(over4runs)

1644.5 1634.3

1486.2

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

nnnnnnnnnnn
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UNIFIED COMPUTE SUBSTRATE

Grace + Hopper Enables broader set (all!) of codes to be accelerated

Grace + Hopper enables architectural mapping of both control and data flow complex portions
of the algorithm efficiently

Enables mapping of Multi-Scale, Multi-Physics Apps, post-Foundation Al and Complex workflows

Standards-based parallelism enables productive portability

Non-accelerated, fully-accelerated and mixed controlflow-dataflow complex applications can be
run on Grace-Hopper

Mapping these complex workflows to Distributed Heterogeneous Compute platforms require
Omniverse like Digital Twin Frameworks

39 NVIDIA,



Energy Efficient Design

System Memory

(DDR5)

35 PJ/Bit A
I

I I
. x86 . Gen 5
. CPU _‘
65PJ/BltA

|

99 PJ/Flop DP 4A

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

=%  NVIDIA SUPERCHIPS SAVE ENERGY

Low Power Data Motion and Computation

HOPPER
GPU

12 PJ/Flop DP A

5 PJ/Bit A

1.3 PJ/Bit 4

62 PJ/Flop DP 4\

12 PJ/Flop DP 4A
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CO-SCHEDULING

Alternative to CPU-only partition

LPDDR5x

One Job exclusive to the node

Core 64

Job A - 8 Grace Cores MPAM + Hopper MIG

Job A - 64 Grace CPU MPAM Job B - 8 Grace Cores MPAM + Hopper MIG
Job B - 8 Grace Cores MPAM + Hopper GPU Ftc. 41 SANVIDIA,



GRACE+HOPPER MAKES ACCELERATION MORE ACCESSIBLE

Normalized Execution Time

0.8

0.6

0.4

0.2

Delivers Superior Performance and Efficiency for HPC

ABINIT
1.16 CPU bound
X
& / W GPU-CPU
Speedu transfers
P
GPU-CPU NVLink
Data C2C
Transfer Speedu
Overhea P
d Grace 4.25
Speedu .
P —
x86 x86+Hopper HGX Grace Hopper

White Paper - Grace
Hopper Superchip
Architecture
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PARALLEL EXPRESSION

Moving from Prescriptive to descriptive parallel expression
ISO-Language Parallelism
Parallel Expression as a Computational Graph
Decouple Scheduling from the expression of algorithm (aka Halide/XLA)
OS/Runtime provide HW capabilities as hints to the scheduler
> Lowering through MLIR

» Scheduler/Runtime tools like XLA

43 <4 NVIDIA,



CONCLUSIONS

Grand Challenge applications are becoming complex, Heterogeneous, data driven and ML/DL aided

Silicon Process Technology alone loosing steam

Architectural innovations, co-Design, ML/DL aiding the continuation of “Moore’s Observation”
Grace-Hopper architecture is a step in that direction

Accurate definition of performance is critical

Efficiently mapping Heterogeneous applications to heterogeneous HW is becoming complex
STD PAR, MLIR, XLA

Power and Energy are becoming the hard barriers to performance

44 < NVIDIA,



GRACE, HOPPER WHITE PAPERS

Hopper:
https://resources.nvidia.com/en-us-tensor-core

Grace:
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-cpu-superchip#page=1

Grace-Hopper:
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

DGH-GH200 White paper:
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper

45 <A NVIDIA,
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https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-cpu-superchip
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper

GTC 2023 Sessions to Watch

For more information on these topics

GTC23 Spring

« Asynchronous Acceleration in Standard C++ [S51755]

* A Deep Dive into the Latest HPC Software [S51074]

« Accelerating HPC applications with ISO C++ on Grace Hopper [S51054]

« How to Write a CUDA Program [S51210]

« cuNumeric and Legate: How to Create a Distributed GPU Accelerated Library [S51789]

 Connect with the Experts: C++ Standard Parallelism and C++ Core Compute Libraries
[CWES52064]

46 <INVIDIA,


https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666644507044001AzeW
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1664735593950001mpBj
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1664475336900001luGe
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666205357204001Efly
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666647014889001OnJK
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1668560305333001cnVU
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1668560305333001cnVU

NVIDIA Developer Blogs
 Developing Accelerated Code with Standard Language Parallelism
* Accelerating Standard C++ with GPUs
* Accelerating Fortran DO CONCURRENT Legate and cuNumeric Resources
* Bringing Tensor Cores to Standard Fortran .
e Accelerating Python on GPUs with NVC++ and Cython

https://github.com/nv-legate
 Accelerating Python Applications with
cuNumeric and Legate

Open-source codes

* LULESH - https://github.com/LLNL/LULESH

e STLBM - https://gitlab.com/unigehpfs/stlbm
* MiniWeather - https://github.com/mrnorman/miniWeather/
* POT3D - https://github.com/predsci/POT3D

* StdExec - https://github.com/nvidia/stdexec

C++ algorithms and execution policy reference
* https://en.cppreference.com/w/cpp/algorithm

NVIDIA HPC Compilers Forum
* https://forums.developer.nvidia.com/c/accelerated-computing/hpc-compilers
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https://developer.nvidia.com/blog/developing-accelerated-code-with-standard-language-parallelism/
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/blog/bringing-tensor-cores-to-standard-fortran/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://github.com/LLNL/LULESH
https://gitlab.com/unigehpfs/stlbm
https://github.com/mrnorman/miniWeather/
https://github.com/predsci/POT3D
https://github.com/nvidia/stdexec
https://en.cppreference.com/w/cpp/algorithm
https://forums.developer.nvidia.com/c/accelerated-computing/hpc-compilers
https://github.com/nv-legate
https://developer.nvidia.com/blog/accelerating-python-applications-with-cunumeric-and-legate/
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= Future HPC and Al Applications
= Post-Moore HW Landscape
= Nvidia Grace-Hopper

= Future SW stack

= Conclusions

= White Papers & References
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NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

*GCC

GRACE CPU SUPERCHIP

The Full Power of the Grace

Architecture
Cores / Speed

Memory

Cache

Power
Interfaces
Specrate2017_int_base*

Process Node

Availability

Armv9, SVE2 with 4x 128b pipeline/core

144 cores up to 3.2GHz

LPDDR5x soldered down, 1TB/s BW
Up to 1TB per superchip

L1: 64KB i-cache + 64KB d-cache per core
L2: 1MB per core

L3: 234MB per superchip

500W including LPDDR5x memory

Up to 8x PCle Gen5 x16 HS interface

740

TSMC 4N

Q4 2023
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»

»

»

GH NODE ARCH COMPARISON

Summit vs DGX-A100 vs GH : ratio of CPU perf to GPU perf in a Node

GH is the first Heterogeneous Compute Substrate

> Reticle size CPU + Reticle Size GPU tightly coupled in a unified, coherent address space

CPU-only codes, fully GPU acceleratable codes, Mixed controlflow complex/dataflow complex codes

>  With MPAM on CPU and MIG on GPU all codes can run on GH, GH-Next effficiently

»  Optimization of Applications, Runtime, Scheduler/resource manager are necessary

CPU Cores

CPU FLOPS (TFLOPS)
GPU FLOPS (TFLOPS)
CPU Mem BW (GB/s)
GPU Mem BW (GB/s)
CPU <=>GPU BW (GB/s)

GPU/CPU FLOPS
GPU/CPU Mem BW
C<=>G link BW to FLOPS ratio

Summit
P9+V100
22
1.08
21.00
170.00
2700.00
150.00

19.43
15.88
7.14

Node Arch
DGX Grace-Hopper
Rome+4*A100 G+H
64 72
2.30 3.46
78.00 51.00
190.00 500.00
8156.00 3686.40
256.00 900.00
33.85 14.76
42.93 7.37
3.28 17.65
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GRACE HOPPER

Unified Programming Model

GPU mem CPU mem

» Address Translation Service (ATS) enables
A all CPUs and GPUs in the node to share a

\ single page table

\ » System-allocated memory is accessible by

Hopper Grace all CPU and GPU threads

* Runtime system backs system-allocated
memory with physical memory on first

touch, either on LPDDR5 X or HBM3,
depending on whether a CPU or a GPU

\ ATS page table thread accesses it first .
K 1
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Explicit Copy

Application explicitly moves data between
CPU & GPU as needed

PCIE: ~60 GB/s PCIE transfers (H2D/D2H)
Grace: Faster transfers; up to 450 GB/s C2C

transfers
CPU Memory GPU Memory
cudaMemcpyH2D ()
— _— W — ‘
App Data App Data
is______,

cudaMemcpyD2H ()

Grace-Hopper Memory Model

Managed Memory

CPU and GPU can access memory on-
demand and data migrated locally for higher
BW access

PCIE: Requires migration to GPU
Grace: Migrations not required and faster
migrations when they happen

CPU Memory GPU Memory
Migration GPU
- T T -~ page
A fault
Page 2 Page 2
7’
= o =
C2C Path
(Grace)

System Allocated

GPU can access memory allocated from
malloc (), mmap(), etc.

PCIE: Access possible with explicit call to
cudaHostRegister() at PCle speeds
Grace: cudaHostRegister () not needed;
access at NVLink C2C speeds

CPU Memory GPU Memory
App Data = = == == =4 App Data

GPU access to malloc(
memory

nvibDiA



TRANSITION TO POST EXASCALE ERA

EXPERIMENTS  SIMULATION Viz

SIMULATION DIGITAL TWIN QUANTUM

COMPUTING

FEATURE TERA THROUGH EXASCALE POST EXASCALE
USAGE BATCH & MOSTLY LOCALTO ASITE INTERACTIVE & DISTRIBUTED WITH MULTIPLE SITES
WORKLOAD SINGLE SIMULATION/ENSEMBLE WORKFLOW COMPRISED OF SIMULATION ENSEMBLES, Al TRAINING AND INFERENCE, LIVE DATA
ANALYTICS
EXPERIMENTS OFFLINE DATA ANALYSIS FOR EXPERIMENTS MIX OF REAL-TIME ANALYSIS TIGHTLY COUPLED WITH OFFLINE

DIGITAL TWINS

IN-SITU VISUALIZATION OFFLNE

INTERACTIVE_VISUAL MODEL COUPLED WITH PHYSICAL ASSET

ROBOTICS

OFFLINE

INTEGRATED WITH VIRTUAL MODELS

PROGRAMMING

FORTRAN, C++, MPI, OPENMP

STANDARD PARALLELISM SUPPORT IN FORTRAN, C++, MPI, OPENMP, OPENACC,

MODELS PYTHON, JULIA, PYTORCH, TENSORFLOW
SYSTEM
MONOLITHIC
CONFIGURATION VIODULAR
DISTRIUBTED SITES GRID CLOUD




Generative Al - The Revolutionary New Tool for Scientific Discovery

NnVIDIA
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