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• Investing some thought in design of software makes it possible to maintain, reuse and 
extend it

• Even if some research software begins its life as a one-off use case, it often gets reused
– Without proper design it is likely to accrete features haphazardly and become a monstrosity

• Acquires a lot of technical debt in the process

– Many projects have had this happen 
– Most end up with a hard reset and start over again

• In this module we will cover general design principles and those that are tailored for 
scientific software

• We will also work through two use cases

definition from https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english

Introduction

https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english


4

Designing Software – High Level Phases

 Features and 
capabilities

 Constraints
 Limitations
 Target users
 Other …..

Requirements 
gathering

 Understand design 
space

 Decompose into 
high level 
components

 Bin components 
into types

Decomposition 

 Understand 
component hierarchy

 Figure out 
connectivity among 
components 

 Articulate 
dependencies

Connectivity
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Example 1 – Problem Description 

We have a house with exterior walls made of single material of thickness Lx
The wall has some water pipes shown in the picture. 

The inside temperature is kept at 70 degrees. But outside temperature is expected to be -40 
degrees for 15.5 hours.  

Will the pipes freeze before the storm is over
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Requirements gathering 

• To solve heat equation we need:
– a discretization scheme
– a driver for running and book-keeping 
– an integration method to evolve solution
– Initial conditions
– Boundary conditions

• To make sure that we are doing it correctly we need:
– Ways to inspect the results
– Ways of verification
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Decomposition

This is a small design space
Several requirements can 

directly map to components 
– in this instance functions
Driver
 Initialization – data containers
Mesh initialization – applying 

initial conditions
 Integrator
 I/O
 Boundary conditions
Comparison utility

Binning components
Components that will work for any 

application of heat equation
Driver
 Initialization – data containers
 I/O 
Comparison utility

Components that are 
Mesh initialization – applying initial conditions
 Integrator
 Boundary conditions
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Connectivity

Initialize
Data 

containers 

Mesh 
generation 

Write 
results

Compare 
results

Initial 
conditions

Boundary 
conditions

Integrator

Driver
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Connectivity – alternative possibility

Initialize
Data 

containers 

Mesh 
generation 

Write 
results

Compare 
results

Initial 
conditions

Boundary 
conditions

Integrator

Driver
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Resources for Independent Exploration

• Code repository in python 
https://github.com/abiswas-odu/heateq-design-intersect-2023

•  A few possibilities of design exploration
– Did we need three different interfaces for update solution ?
– What would have been needed to make it into one interface

• Explore the whole exercise in C++ on your own checkout
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/hand_coded_heat/

https://github.com/abiswas-odu/heateq-design-intersect-2023
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/hand_coded_heat/
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Research Software Challenges

• Many parts of the model and 
software system can be under 
research

• Requirements change throughout the 
lifecycle as knowledge grows

• Verification complicated by floating 
point representation

• Real world is messy

More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More 
Hardware 
Resources
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Additional Considerations for Research Software

Considerations

 Multidisciplinary 
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others 

Design Implications

 Separation of Concerns
 Shield developers from unnecessary 

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities
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More Complex Application Design – Sedov Blast Wave

Description

High pressure at the center cause a shock 
to moves out in a circle. High resolution is 
needed only at and near the shock

Requirements 
• Adaptive mesh refinement

– Easiest with finite volume methods

• Driver
• I/O
• Initial condition
• Boundary condition
• Shock Hydrodynamics
• Ideal gas equation of state
• Method of verification
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Deeper Dive into Requirements

• Adaptive mesh refinement  divide domain into blocks
– Blocks need halos to be filled with values from neighbors or boundary conditions

• At fine-coarse boundaries there is interpolation and restriction
– Blocks are dynamic, go in and out of existence
– Conservation needs reconciliation at fine-coarse boundaries

• Shock hydrodynamics
– Solver for Euler’s equations at discontinuities
– EOS provides closure
– Riemann solver
– Halo cells are fine-coarse boundaries need EOS after interpolation

• Method of verification
– An indirect way of checking – shock distance traveled can be computed analytically
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Components Deeper Dive into some Components
• Driver

– Iterate over blocks
– Implement connectivity

• Mesh 
– Data containers
– Halo cell fill, including application of 

boundary conditions
– Reconciliation of quantities at fine-coarse 

block boundaries
– Remesh when refinement patterns change

• I/O
– Getting runtime parameters and possibly 

initial conditions
– Writing checkpoint and analysis data

Binned Components
Unchanging or slow changing 

infrastructure
Mesh
 I/O
Driver
Comparison utility

Components evolving with 
research – physics solvers
 Initial and boundary conditions
Hydrodynamics
 EOS
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics

EOS
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics

EOS
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Connectivity
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Connectivity
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Compare 
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Connectivity

Mesh I/O

Compare 
results

Initial 
conditions

Boundary 
conditions

Driver

Hydrodyn-
amics

EOS
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Requirements

Software Architecture API  Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns
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Real view : A 
whole domain 
with many 
operators

Functional 
decomposition

domain sections 
as stand-alone 
computation unit 

collection of
components 

Spatial
decomposition

Exploring design space – Abstractions

base
abstraction

Constraints
• Only infrastructure components 

have global view
• All physics solvers have block view 

only 
Other Design Considerations
• Data scoping
• Interfaces in the API

Minimal Mesh API
• Initialize_mesh
• Halo_fill
• Access_to_data_containers
• Reconcile_fluxes
• Regrid
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Separation of Concerns Applied

Real view : A 
whole domain 
with many 
operators

Functional 
decomposition

domain sections 
as stand-alone 
computation unit 

collection of
components 

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and 
compute
optimization

Implemented by 
domain experts 
and applied 
mathematicians

Implemented by
software and 
performance
engineers
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Takeaways so far

• Differentiate between slow changing and fast changing 
components of your code

• Understand the requirements of your infrastructure
• Implement separation of concerns
• Design with portability, extensibility, reproducibility and 

maintainability in mind
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More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More 
Hardware 
Resources

Platform complexity

So
ftw

ar
e 

co
m

pl
ex

ity

Distributed 
memory
model

Heterogeneous
models

New Paradigm Because of Platform Heterogeneity



26

Mechanisms Needed by the Code 

Mechanisms to map work to 
computational targets
• Figuring out the map

• Expression of dependencies 
• Cost models

• Expressing the map

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures

So, what do we need?

• Abstractions layers 
• Code transformation tools
• Data movement orchestrators
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Mechanisms Needed by the Code: Example of Flash-X

Mechanisms to map work to 
computational targets

DSL for recipes with code 
generator

Mechanisms to move work and 
data to computational targets

    Domain specific runtime

Mechanisms to unify expression of 
computation

   Macros with inheritance 

Composability in the source
A toolset of each mechanism

Independent tool sets
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State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops 
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption
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State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops 
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

The holy grail for scientists – write equation and generate code

Is there another way?

Very limited success in some domains

We have been developing one 
for Flash-X – started under ECP 

and TEAMS, continuing with 
RAPIDS and ENAF
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Alternative Definitions

For all spatial points at once                 For one spatial point at a 
time.                                                   indices]                                                                            
[indices]            
definition =                                                                          definition =                           
   ,i,j,k 

[loop_begin]                                                                       [loop_begin]
args = limits                                                                          args = limits
definition=                                                                            definition=
   do k = limits(LOW,KAXIS),limits(LOW,KAXIS)
        do j = limits(LOW,JAXIS),limits(LOW,JAXIS)
            do I = limits(LOW,IAXIS),limits(LOW,IAXIS)  

[loop_end]                                                                           [loop_end]
definition =                                                                           definition =
          enddo
       enddo
    enddo

Orthogonal Axes of Challenges and Optimization
– Separate out arithmetic and control flow

• Make arithmetic invariant
• Turn separate pieces into building blocks using macros

[hy_fluxesSec1]
args= XL, XR,limits
definition =
@M loop_begin(limits)
    if (flux(1@M indices) > 0.) then
         call doSection1(XL(:@M indices), ……)
    else
        call doSection1(XR(:@M indices), …….)
    end if
 @M loop_end

Permit alternative definitions for all the 
macros as needed
Build in arbitration mechanism for 

picking the right definition
This code section can be invoked as 

@M hy_fluxesSec1(uLeft,uRight,blkLimits)
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Alternatively

With macros it is possible to use any arbitrary code section as a building block 

[hy_fluxesSec1]
args= XL, XR,limits
definition =
@M loop_begin(limits)
    if (flux(1@M indices) > 0.) then
         @M doSection1(XL)
    else
        @M doSection1(XR)
    end if
 @M loop_end

[doSection1]
args=uDir
definition =
   … some computation 
uDir(:@M indices) =  res

Alternative Definitions

For all spatial points at once                 For one spatial point at a time 
[indices]                                                                               [indices]            
definition =                                                                          definition =                           
   ,i,j,k 

[loop_begin]                                                                       [loop_begin]
args = limits                                                                          args = limits
definition=                                                                            definition=
   do k = limits(LOW,KAXIS),limits(LOW,KAXIS)
        do j = limits(LOW,JAXIS),limits(LOW,JAXIS)
            do I = limits(LOW,IAXIS),limits(LOW,IAXIS)  

[loop_end]                                                                           [loop_end]
definition =                                                                           definition =
          enddo
       enddo
    enddo
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Orthogonal Axes of Challenges and Optimization
Have a method for expressing algorithmic variants

Without delving into the details of the arithmetic
Example -- Flash-X supports two block-structured AMR grid backends

 Paramesh: Octree-based, AMReX: Level-based
Each has different preferences for flux correction at fine-coarse boundaries
For higher order RK integration Communication avoidance – telescoping mode
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Orthogonal Axes of Challenges and Optimization
Have a way of rearranging data locality and moving data and computation

Let the human-in-the-loop dictate this

CG-Kit – recipes in python
 -- templates for different variants
 -- express where to compute what
 --  emit code in Fortran/C/C++

Milhoja – flatten/decompose data and 
move it to the target
  -- combine data into one data packet
  -- decompose into smaller 
computational sections if needed

• If tools only execute what they are 
told to, they are simpler

• Code generation is our friend – 
especially when it is simple forward 
map
– And is not entangled with the details 

of the arithmetic

If N blocks are sent to the 
device we need N copies of all 
block-wise scratch
For all data items we need 

device pointers
Code internally decorated with 

directives
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Code Generators

• Two Classes
– Data packet generators

• Parse the interface files 
• Collect all data to be put into a data packet
• Generate code that will flatten all data into data packets

– Task function generators
• Consolidate functions to be invoked 
• Bookended by internode communication
• Unpack data packets

• Decorate interface definitions with needed metadata
Example  -- this link will work only if you have access to the Flash-X code repository. 
Please email flash-x@lists.cels.anl.gov with your github username to get access

https://github.com/Flash-X/Flash-X/blob/ylee/try_pushTile_spark/source/physics/Hydro/HydroMain/Spark/Hydro_interface.ini
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Final takeaways

• Requirements gathering and intentional design are indispensable for sustainable 
software development

• Many books and online resources available for good design principles
• Research software poses additional constraints on design because of its 

exploratory nature
– Scientific research software has further challenges
– High performance computing research software has even more challenges
– That are further exacerbated by the ubiquity of accelerators in platforms

• Separation of concerns at various granularities, and abstractions enable 
sustainable software design 
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