
See slide 2 for
license details

Presented by

COLABS: Collaboration
for Better Software for
Science

In collaboration with

With prior support from

Scientific Software Design

Anshu Dubey (she/her)
Argonne National Laboratory

Software Productivity and Sustainability track @ Argonne Training
Program on Extreme-Scale Computing summer school

Contributors: Anshu Dubey (ANL), Mark C. Miller (LLNL), David E.
Bernholdt (ORNL)

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, Todd Gamblin, and Jared O’Neal,

Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles,
Illinois, 2024. DOI: 10.6084/m9.figshare.26384188.

• Individual modules may be cited as Speaker, Module Title, in Tutorial Title, …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Next-
Generation Scientific Software Technologies (NGSST) program.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.26384188

3

• Investing some thought in design of software makes it possible to maintain, reuse and
extend it

• Even if some research software begins its life as a one-off use case, it often gets reused
– Without proper design it is likely to accrete features haphazardly and become a monstrosity

• Acquires a lot of technical debt in the process

– Many projects have had this happen
– Most end up with a hard reset and start over again

• In this module we will cover general design principles and those that are tailored for
scientific software

• We will also work through two use cases

definition from https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english

Introduction

https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english

4

Designing Software – High Level Phases

 Features and
capabilities

 Constraints
 Limitations
 Target users
 Other …..

Requirements
gathering

 Understand design
space

 Decompose into
high level
components

 Bin components
into types

Decomposition

 Understand
component hierarchy

 Figure out
connectivity among
components

 Articulate
dependencies

Connectivity

5

Example 1 – Problem Description

We have a house with exterior walls made of single material of thickness Lx
The wall has some water pipes shown in the picture.

The inside temperature is kept at 70 degrees. But outside temperature is expected to be -40
degrees for 15.5 hours.

Will the pipes freeze before the storm is over

6

Requirements gathering

• To solve heat equation we need:
– a discretization scheme
– a driver for running and book-keeping
– an integration method to evolve solution
– Initial conditions
– Boundary conditions

• To make sure that we are doing it correctly we need:
– Ways to inspect the results
– Ways of verification

7

Decomposition

This is a small design space
Several requirements can

directly map to components
– in this instance functions
Driver
 Initialization – data containers
Mesh initialization – applying

initial conditions
 Integrator
 I/O
 Boundary conditions
Comparison utility

Binning components
Components that will work for any

application of heat equation
Driver
 Initialization – data containers
 I/O
Comparison utility

Components that are
Mesh initialization – applying initial conditions
 Integrator
 Boundary conditions

8

Connectivity

Initialize
Data

containers

Mesh
generation

Write
results

Compare
results

Initial
conditions

Boundary
conditions

Integrator

Driver

9

Connectivity – alternative possibility

Initialize
Data

containers

Mesh
generation

Write
results

Compare
results

Initial
conditions

Boundary
conditions

Integrator

Driver

10

Resources for Independent Exploration

• Code repository in python
https://github.com/abiswas-odu/heateq-design-intersect-2023

• A few possibilities of design exploration
– Did we need three different interfaces for update solution ?
– What would have been needed to make it into one interface

• Explore the whole exercise in C++ on your own checkout
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/hand_coded_heat/

https://github.com/abiswas-odu/heateq-design-intersect-2023
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/hand_coded_heat/

11

Research Software Challenges

• Many parts of the model and
software system can be under
research

• Requirements change throughout the
lifecycle as knowledge grows

• Verification complicated by floating
point representation

• Real world is messy

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

12

Additional Considerations for Research Software

Considerations

 Multidisciplinary
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others

Design Implications

 Separation of Concerns
 Shield developers from unnecessary

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities

13

More Complex Application Design – Sedov Blast Wave

Description

High pressure at the center cause a shock
to moves out in a circle. High resolution is
needed only at and near the shock

Requirements
• Adaptive mesh refinement

– Easiest with finite volume methods

• Driver
• I/O
• Initial condition
• Boundary condition
• Shock Hydrodynamics
• Ideal gas equation of state
• Method of verification

14

Deeper Dive into Requirements

• Adaptive mesh refinement divide domain into blocks
– Blocks need halos to be filled with values from neighbors or boundary conditions

• At fine-coarse boundaries there is interpolation and restriction
– Blocks are dynamic, go in and out of existence
– Conservation needs reconciliation at fine-coarse boundaries

• Shock hydrodynamics
– Solver for Euler’s equations at discontinuities
– EOS provides closure
– Riemann solver
– Halo cells are fine-coarse boundaries need EOS after interpolation

• Method of verification
– An indirect way of checking – shock distance traveled can be computed analytically

15

Components Deeper Dive into some Components
• Driver

– Iterate over blocks
– Implement connectivity

• Mesh
– Data containers
– Halo cell fill, including application of

boundary conditions
– Reconciliation of quantities at fine-coarse

block boundaries
– Remesh when refinement patterns change

• I/O
– Getting runtime parameters and possibly

initial conditions
– Writing checkpoint and analysis data

Binned Components
Unchanging or slow changing

infrastructure
Mesh
 I/O
Driver
Comparison utility

Components evolving with
research – physics solvers
 Initial and boundary conditions
Hydrodynamics
 EOS

16

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

17

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

18

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

19

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

20

Connectivity

Mesh I/O

Compare
results

Initial
conditions

Boundary
conditions

Driver

Hydrodyn-
amics

EOS

21

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

22

Real view : A
whole domain
with many
operators

Functional
decomposition

domain sections
as stand-alone
computation unit

collection of
components

Spatial
decomposition

Exploring design space – Abstractions

base
abstraction

Constraints
• Only infrastructure components

have global view
• All physics solvers have block view

only
Other Design Considerations
• Data scoping
• Interfaces in the API

Minimal Mesh API
• Initialize_mesh
• Halo_fill
• Access_to_data_containers
• Reconcile_fluxes
• Regrid

23

Separation of Concerns Applied

Real view : A
whole domain
with many
operators

Functional
decomposition

domain sections
as stand-alone
computation unit

collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

Implemented by
domain experts
and applied
mathematicians

Implemented by
software and
performance
engineers

24

Takeaways so far

• Differentiate between slow changing and fast changing
components of your code

• Understand the requirements of your infrastructure
• Implement separation of concerns
• Design with portability, extensibility, reproducibility and

maintainability in mind

25

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

New Paradigm Because of Platform Heterogeneity

26

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So, what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

27

Mechanisms Needed by the Code: Example of Flash-X

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

 Domain specific runtime

Mechanisms to unify expression of
computation

 Macros with inheritance

Composability in the source
A toolset of each mechanism

Independent tool sets

28

State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

29

State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

The holy grail for scientists – write equation and generate code

Is there another way?

Very limited success in some domains

30

State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

The holy grail for scientists – write equation and generate code

Is there another way?

Very limited success in some domains

We have been developing one
for Flash-X – started under ECP

and TEAMS, continuing with
RAPIDS and ENAF

31

Alternative Definitions

For all spatial points at once For one spatial point at a
time. indices]
[indices]
definition = definition =
 ,i,j,k

[loop_begin] [loop_begin]
args = limits args = limits
definition= definition=
 do k = limits(LOW,KAXIS),limits(LOW,KAXIS)
 do j = limits(LOW,JAXIS),limits(LOW,JAXIS)
 do I = limits(LOW,IAXIS),limits(LOW,IAXIS)

[loop_end] [loop_end]
definition = definition =
 enddo
 enddo
 enddo

Orthogonal Axes of Challenges and Optimization
– Separate out arithmetic and control flow

• Make arithmetic invariant
• Turn separate pieces into building blocks using macros

[hy_fluxesSec1]
args= XL, XR,limits
definition =
@M loop_begin(limits)
 if (flux(1@M indices) > 0.) then
 call doSection1(XL(:@M indices), ……)
 else
 call doSection1(XR(:@M indices), …….)
 end if
 @M loop_end

Permit alternative definitions for all the
macros as needed
Build in arbitration mechanism for

picking the right definition
This code section can be invoked as

@M hy_fluxesSec1(uLeft,uRight,blkLimits)

32

Alternatively

With macros it is possible to use any arbitrary code section as a building block

[hy_fluxesSec1]
args= XL, XR,limits
definition =
@M loop_begin(limits)
 if (flux(1@M indices) > 0.) then
 @M doSection1(XL)
 else
 @M doSection1(XR)
 end if
 @M loop_end

[doSection1]
args=uDir
definition =
 … some computation
uDir(:@M indices) = res

Alternative Definitions

For all spatial points at once For one spatial point at a time
[indices] [indices]
definition = definition =
 ,i,j,k

[loop_begin] [loop_begin]
args = limits args = limits
definition= definition=
 do k = limits(LOW,KAXIS),limits(LOW,KAXIS)
 do j = limits(LOW,JAXIS),limits(LOW,JAXIS)
 do I = limits(LOW,IAXIS),limits(LOW,IAXIS)

[loop_end] [loop_end]
definition = definition =
 enddo
 enddo
 enddo

33

Orthogonal Axes of Challenges and Optimization
Have a method for expressing algorithmic variants

Without delving into the details of the arithmetic
Example -- Flash-X supports two block-structured AMR grid backends

 Paramesh: Octree-based, AMReX: Level-based
Each has different preferences for flux correction at fine-coarse boundaries
For higher order RK integration Communication avoidance – telescoping mode

34

Orthogonal Axes of Challenges and Optimization
Have a way of rearranging data locality and moving data and computation

Let the human-in-the-loop dictate this

CG-Kit – recipes in python
 -- templates for different variants
 -- express where to compute what
 -- emit code in Fortran/C/C++

Milhoja – flatten/decompose data and
move it to the target
 -- combine data into one data packet
 -- decompose into smaller
computational sections if needed

• If tools only execute what they are
told to, they are simpler

• Code generation is our friend –
especially when it is simple forward
map
– And is not entangled with the details

of the arithmetic

If N blocks are sent to the
device we need N copies of all
block-wise scratch
For all data items we need

device pointers
Code internally decorated with

directives

35

Code Generators

• Two Classes
– Data packet generators

• Parse the interface files
• Collect all data to be put into a data packet
• Generate code that will flatten all data into data packets

– Task function generators
• Consolidate functions to be invoked
• Bookended by internode communication
• Unpack data packets

• Decorate interface definitions with needed metadata
Example -- this link will work only if you have access to the Flash-X code repository.
Please email flash-x@lists.cels.anl.gov with your github username to get access

https://github.com/Flash-X/Flash-X/blob/ylee/try_pushTile_spark/source/physics/Hydro/HydroMain/Spark/Hydro_interface.ini

36

Final takeaways

• Requirements gathering and intentional design are indispensable for sustainable
software development

• Many books and online resources available for good design principles
• Research software poses additional constraints on design because of its

exploratory nature
– Scientific research software has further challenges
– High performance computing research software has even more challenges
– That are further exacerbated by the ubiquity of accelerators in platforms

• Separation of concerns at various granularities, and abstractions enable
sustainable software design

	Scientific Software Design
	License, Citation and Acknowledgements
	Introduction
	Designing Software – High Level Phases
	Example 1 – Problem Description
	Requirements gathering
	Decomposition
	Connectivity
	Connectivity – alternative possibility
	Resources for Independent Exploration
	Research Software Challenges
	Additional Considerations for Research Software
	More Complex Application Design – Sedov Blast Wave�
	Deeper Dive into Requirements
	Components
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	A Design Model for Separation of Concerns
	Exploring design space – Abstractions
	Separation of Concerns Applied
	Takeaways so far
	Slide Number 25
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code: Example of Flash-X
	State of Practice – Abstractions and Runtimes
	State of Practice – Abstractions and Runtimes
	State of Practice – Abstractions and Runtimes
	Orthogonal Axes of Challenges and Optimization
	Alternatively
	Slide Number 33
	Slide Number 34
	Code Generators
	Final takeaways

