|:||] better

scientific
|:| software

Software Testing and Verification

Presented by

COLABS: Collaboration ~ Anshu Dubey (she/her)
for Better Software for Argonne National Laboratory

Science
In collaboration with Software Productivity and Sustainability track @ Argonne Training
_ Program on Extreme-Scale Computing summer school
FASI‘MA%—I ~“RAPIDS

Contributors: Anshu Dubey (ANL), David E. Bernholdt (ORNL), Patricia
With prior support from Grubel (LANL), Rinku Gupta (ANL), Alicia Klinvex (SNL), Mark C. Miller

- (LLNL), Jared O’Neal (ANL), David M. Rogers (ORNL), Gregory R.
\(\C\ L%EC%,% Watson (ORNL)

See slide 2 for
Ev license details

c“"""“;,ﬁ U.S. DEPARTMENT OF OffICe Of

ENERGY Science

License, Citation and Acknowledgements

License and Citation
« This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
* The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, Todd Gamblin, and Jared O’Neal,

Software Productivity and Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles,
lllinois, 2024. DOI: 10.6084/m9.figshare.26384188.

 Individual modules may be cited as Speaker, Module Title, in Tutorial Title, ...
Acknowledgements

This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),
and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Next-
Generation Scientific Software Technologies (NGSST) program.

This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.26384188

What is Testing

Whenever you write a code you are doing it

When you compile it, you are testing for defects in syntax

When you run it for the first time you are testing for correctness

When you add any code and run it again, you are testing it again

When you break down your development into smaller chunks you test each
chunk, then you combine the chunks, and you test again.

What is Testing

Whenever you write a code you are doing it

When you compile it, you are testing for defects in syntax

When you run it for the first time you are testing for correctness

When you add any code and run it again, you are testing it again

When you break down your development into smaller chunks you test each
chunk, then you combine the chunks, and you test again.

Testing is an integral part of code development

What is Testing

Whenever you write a code you are doing it

When you compile it, you are testing for defects in syntax

When you run it for the first time you are testing for correctness

When you add any code and run it again, you are testing it again

When you break down your development into smaller chunks you test each
chunk, then you combine the chunks, and you test again.

Testing is an integral part of code development

So, what is the whole fuss about testing?

What is Testing

Whenever you write a code you are doing it

When you compile it, you are testing for defects in syntax

When you run it for the first time you are testing for correctness

When you add any code and run it again, you are testing it again

When you break down your development into smaller chunks you test each
chunk, then you combine the chunks, and you test again.

Testing is an integral part of code development

So, what is the whole fuss about testing?

Formalization of the process intimidates people
because they think of writing tests as an overhead

How to Think About Building Tests

You start by Next you think about
thinking about how you are going to

what is the be able to tell whether
correct the code is exhibiting
behavior correct behavior

How to Think About Building Tests

You start by
thinking about
what is the
correct
behavior

You also think
about what
would be
wrong
behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting
correct behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting
correct behavior

How to Think About Building Tests

You start by
thinking about
what is the
correct
behavior

You also think
about what
would be
wrong
behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting
correct behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting
correct behavior

Let us work through an example ...

* You want a large prime number for
encryption

* As a part of the development, you first
write a function that checks if a given
number is prime

Correct behavior: input 13 returns true,
input 15 returns false
Incorrect behavior: input 15 returns true

How to Think About Building Tests

You start by
thinking about
what is the
correct
behavior

You also think
about what
would be
wrong
behavior

10

Next you think about
how you are going to
be able to tell whether
the code is exhibiting
correct behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting
correct behavior

Let us work through an example ...

* You want a large prime number for
encryption

* As a part of the development, you first
write a function that checks if a given
number is prime

Correct behavior: input 13 returns true,
input 15 returns false
Incorrect behavior: input 15 returns true

Here are all the ingredients
for building a test !!

How to Think About Building Tests

You start by Next you think about
thinking about how you are going to
what is the be able to tell whether
correct the code is exhibiting
behavior correct behavior

You also think Next you think about
about what how you are going to
would be be able to tell whether
wrong the code is exhibiting
behavior correct behavior

Let us work through an example ...

* You want a large prime number for
encryption

* As a part of the development, you first
write a function that checks if a given
number is prime

Correct behavior: input 13 returns true,
input 15 returns false
Incorrect behavior: input 15 returns true

Here are all the ingredients
for building a test !!

* You write a “main” that reads in a number, calls the functions and prints true or false
* You can automate it by including a series of known primes and non-primes and their

corresponding true or false values
« This is your “unit test” for the function

11

12

How to Think About Building Tests

Next you write a Then you wish to
function to get to confirm that it is a

a large prime for large enough prime
encryption

So, you write another unit test that counts
the number of digits in the prime

How to Think About Building Tests

Next you write a

function to get to

a large prime for
encryption

Finally, you want
to verify that it
meets your
encryption needs

13

Then you wish to
confirm that it is a
large enough prime

You integrate your new
function with your
encryption software

So, you write another unit test that counts
the number of digits in the prime

The encryption software is likely to have a
way to verify that the cipher can only be
translated with the right key

14

How to Think About Building Tests

Next you write a Then you wish to . .
function to get to confirm that it is a So, you write another unit test that counts

the number of digits in the prime

a large prime for large enough prime
encryption

Finally, you want el ety The encryption software is likely to have a
to verify that it function with your way to verify that the cipher can only be

meets your encryption software translated with the right key
encryption needs

* Now you have a more complex test that involves several correctly working
components
« This is your “integration test”

15

Types of Tests

Well known tests for enterprise software

 Unit tests — verify a single function, extremely quick to run
* Integration tests — verify functions working together

« System tests — verify functionality of the entire software

» Acceptance tests — verify that the client needs are met

» Regression tests — verify that there is no degradation in code capabilities

Types of Tests

Additional types of tests needed for research software

« Composite unit tests — are tests for specific functionalities and/or
capabilities

» Granular tests — are integration tests at various granularities verifying
correct behavior of interoperating functional units

» Restart tests — verify that a run can restart transparently from a
checkpointed state

« Performance tests — apply to high-performance computing codes, verify
that there is no performance loss

16

17

Classes of Tests

* White box testing — when you know the internals and can modify the
code you are testing

— Likely to be the code you and your collaborators are developing
— You can insert assertions
— You can insert code snippets that make testing easier

 Black box testing — when you do not know the internals of the code
being tested, and cannot modify the code

— Third party software or legacy code

— The only means of verification available is reasoning about output to be obtained
from supplied input

18

Test Driven Development

Documented specifications and
requirements of the code

Ensures that thought is given to
what it means for the program to be
correct, rather than just what the
program should do

More efficient development cycle
Much less debugging

Requires:

— Care in writing tests

— Frequent running of tests

— Wide adoption by development team

19

What is Continuous Integration (Cl)

Push code changes

£ 2
Create
new branch

X3

’ Iy
-

Continuous Integration

Push code fixes Review and approve
Automated Automated :
build and test build and test
Q oo Q@ O
o L
V-0 ‘@ @-@-0»@
N\ :

Deploy Review App | = |

—

»

https://docs.qitlab.com/ee/ci/introduction/

Continuous Deployment

Automated
build, test, deploy

Merge

® ©

" o
T ra L
@-@-@» @)

Deploy to producticn '

I |m

»>

https://docs.gitlab.com/ee/ci/introduction/

20

Cl Components

» Testing

— Focused, critical functionality (infrastructure), fast, independent, orthogonal, complete, ...

— Existing test suites often require re-design/refactoring for CI

* |Integration

— Changes across key branches merged & tested to ensure the “whole” still works

* Integration can take place at multiple levels
— Individual project
— Spack
— E4S
— Develop, develop, develop, merge, merge, merge, test, test, test...NO!

— Develop, test, merge, develop, test, merge, develop, test, merge...YES!

« Continuous
— Changes tested every commit and/or pull-request (like auto-correct)

« Cl generally implies a lot of automation

21

Test Driven Development vs. Automated Testing vs. Cl

» Test Driven Development: A development methodology where functional test are written before
the code

— Works well with CI as tests are written and committed and are automatically run (failing)
— Code that implements the functionality being tested retriggers the tests automatically
« Automated Testing. Software that automatically performs tests on a regular basis and reliably
detects and reports anomalous behaviors/outcomes.
— Examples: Auto-test, CTest/CDash, nightly testing, etc.
— May live “next to” your development workflow
— Potential issues: change attribution, timeliness of results, multiple branches of development

« Continuous Integration (Cl). automated testing performed at high frequency and fine granularity
— Aimed at preventing code changes from breaking key branches of development (e.g. main)
— Lives “within” your development workflow
— Potential issues: extreme automation, test granularity, coverage, 3-party services/resources

22

Examples...

Automated Nightly Testing Dashboard
Lives “next to” your development work

Cl Testing
Lives embedded in your development work

Results of Vislt Regression Test (pascal,trunk,serial)

Test suite run started at 2020:07:09:22:49:46.
Click on table header to sort)

Runtime (sec)
243 |rendering
273 |simulation ceptab
24 |databases Succeeded With Skips
32 |databases Succeeded With Skips|14.
66 |databases Succeeded With Skips|50.0
67 |databases Succeeded With Skips|87.0
75 |databases Succeeded With Skips|14.0
109 |hybrid merge_iree.py Succeeded With Skips|11.0
136 |meshtype |g_m|ltydomains.p_y Succeeded With Skips|7.0
256 |rendering view.py Succeeded With Skips|17.0
275 |simulation |curve.py Succeeded With Skips|8.0
281 |simulation _|iife.py Succeeded With Skips[8.0
206 |simulation [zerocopy.py Succeeded With Skips|
0 databases |ANALYZE.py
1 databases |ANSYS.py
2 databases |CGNS.py
3 databases |Cale.py
4 databases |Chombo.py
5 databases |EnSight.py
6 databases |FITS.py
7 databases |Fluent.py
8 databases |GDAL.py
[o] R e e MAQTOAM rma

AUU TIVIE CUNTITTIS Uy PUSHINY WU LIS ENLUC L=paLLii—L widalicil Ul Suiucijeinviiuin-uasiivuaiu.

° All checks have passed

2 successful checks

Hide all checks

v B Lighthouse — Passed. New Lighthouse score would be 100/100. Details

v @ continuous-integration/travis-ci/pr — The Travis Cl build passed Details

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request Al You can also open this in GitHub Desktop or view command line instructions.
E Write = Preview M~ B i

Ko EE" SR

What can make CI difficult

Common situations Advanced situations

» Just getting started Defining failure for many configurations /

— Many technologies/choices; often in the "cloud” inconsistent failures

— Solution: start small, simple, build up — Bit-for-bit (exact) match vs. fuzzy match

. . — Solution: absolute/relative tolerances - Al/ML
* Developing suitable tests

. g : :
— Many project’s existing tests not suitable for ClI Numerous 3™ party libraries (TPLs)

— Cl testing is a balance of thoroughness and — Compiling takes too long
responsiveness — Solution: cache pre-built TPLs, containers
— ?l(jiltlétlon: Simplify/refactor and/or sub-setting test + Performance testing
_ o — Avoid time-, space-, scaling-performance
« Ensuring sufficient coverage degradation
— Some changes to code never get tested — Cl can — Solution: Performance instrumentation and
provide a false sense of security scheduled testing

— Solution: tools to measure it, enforce always
increasing

23

24

Cl Resources (Where do jobs run?)

Marketplace = Search results

* Free Resources

— GitHub, BitBucket, GitLab, etc. provide shared runners _* A
An entirely new way to automate your development workflow.

Types Q. Search for apps and actions

— AWS, Azure Pipelines have free tiers that can be used ST
p)] . Categories " —— . .
— All launch a VM (Linux variants, Windows and OSX) s WS CodBuld run bl Acton
For GitHub Actions
« Constrained in time/size, hardware (e.g. GPU type/count) =
» Not a complete solution for many HPC/scientific codes, Code revien

ansible-lint

By ansible (2
Run Ansible Lint
82 stars

but a useful starting point.

 Site-local Resources
— Group, department, institution, computing facility
— Examples: CADES @ ORNL, Bamboo @ LLNL, Jenkins @ ANL, Travis+tCDash @ NERSC
— ECP Program: GitLab-Cl @ ANL, LANL, LLNL, NERSC, ORNL, SNL

« Create your own by setting up resources/services

Trigger |
By buildkite
A GitHub
Buildkite |
18 stars

Deploy t
Wrangle

By cloudfla

Examples...

codecov.io | |

Your code Your CI
repository Resources

26

Getting started with Cl

« What configuration is most important?
— Examples: gcc, icc, xlc? MPI-2 or MPI-3? Python 2, 3 or 2 & 37

« What functionality is most important?
— Examples: vanilla numerical kernels? OpenMP kernels? GPU kernels? All of these?

» Good candidates...
— A "hello world” example for your project
— At a minimum, even just building the code can be a place to start!
— Once you’ve got the basics working, its easy to build up from there

27

Getting started with CI:

Service |Interface |

GitHub
Actions

GitLab

Bamboo

Travis

Setting up CI

Repo YAML file

Web page configurator +
repo YAML file [& repo
scripts]

Web page configurator +
repo scripts

repo YAML file [& repo
scripts]

.github/workflows/
<test_name>.yml
/.gitlab-ci.yml in
root of repo

[.travis.yml in
root of repo

(® Actions

Get started with GitHub Actions

C/C++ with Make

Set up this workflow

28

Getting started with GitHub Actions:

19 lines (15 sloc) 359 Bytes

name: Check Results

on:
push:
branches: [main]
pull_request:
branches: [main]

jobs:
build:

runs—on: ubuntu-latest

steps:
- uses: actions/checkout@v2
- name: make coverage
run: make CXXFLAGS=--coverage LDFLAGS="--coverage -lm" check_all
- name: upload coverage
run: bash <(curl -s https://codecov.io/bash)

Added workflows.

v @ make coverage

github.com

Actions

codecov.io

gh markcmiller86 hello-numerical-world

fix error threshold
II markcmiller86 3 hours ago v
< 26d69cd ¥ main P d24c2f3

Files

Double.H

args.C

crankn.C

exact.C

ftes.C

heat.C

upwind15.C

utils.C

Project Totals (2 files)

Docs Support

51.60%

Blog

Coverage

65.63%

82.05%

0.00%

0.00%

100.00%

73.81%

0.00%

49.35%

51.60%

30

GitHub Actions —

Workflows

All workflows

6% &% &% &2 &7 & & 5 &£ &£ &

]

(TEST) Pyomo Windows Tests ...
(WIP) Pyomo Windows Test (P...
(WIP) Pyomo Windows Test (P...
(WIP) Pyomo Windows Tests |...

(WIP) Windows Pip Cmd Pyom...

GitHub Branch CI

GitHub CI

Pyomo Release Distribution Cr...

Python package

Ubuntu Pyomo Single Python ...

Ubuntu Pyomo Workflow (Slim, ...

results of workflow test runs

GitHub CI

Showing runs from all workflows named GitHub ClI

1 event:push workflow:"GitHub CI"

461 workflow run results

@ Merge pull request #1902 from jsiirola/fix-unittest-rc
GitHub CI #121: Commit 901b487 pushed by binicho

@ Merge pull request #1901 from mrmundt/remove-six
GitHub CI #117: Commit a101b6d pushed by mrmundt

@ Merge pull request #1896 from jsiirola/abstract-disa...

GitHub CI #112: Commit 1f2dd19 pushed by jsiirola

© Merge pull request #1898 from mrmundt/py-unittest
GitHub CI #109: Commit 1beb848 pushed by michaslbynum

© Merge pull request #1893 from jsiirola/config-enum
GitHub CI #105: Commit 9aa1186 pushed by jsiirola

main

main

main

main

main

Event -

Status -

Branch -

E] 20 hours ago
) 1h 3m 55s

E] 2 days ago
(%} 1h 3m 12s

5 2 days ago
(%} 1h 5m 39s

E] 3 days ago
() 1h 3m 33s

5 3 days ago
(%) 1h11m 3s

Actor ~

GitHub Pull Request Status Indicators

Filters ~ O is:pris:open > Labels 26 e Milestones 3 New pull request

i1 177 Open .~ 1,018 Closed Author ~ Label ~ Projects - Milestones ~ Reviews ~ Assignee - Sort ~

i1 Allow string args to external fuctions % O (A1
#1904 opened 19 hours ago by eslick] = Review required

Il Port Cloning v O A3
#1899 opened 3 days ago by michaelbynum - Approved

i1 Remove pyomo.solvers.tests.core v Jz2
#1897 opened 3 days ago by mrmundt - Approved

i1 [WIP] Model partition package (A1
#1895 opened 4 days ago by rahuljoglekard? - Review required

32

What is Cl Good For

» The purpose of Cl is to identify problems early
— Prevent code that would “break the build” or adversely impact other developers being introduced
— Need to provide sufficient confidence, but run quickly — balance varies by project

Cl should complement (not replace) more extensive automated testing

— Use scheduled testing for more and more detailed tests, more configurations and platforms,
performance testing, etc.

Cl for TDD is a natural fit
— Writing tests before the code works well with CI

Many options for where to execute Cl tests
— Free services are a good (easy) place to start
— But may not be sufficient in the long run (especially large HPC/scientific codes)

Start simple to get automation working, then build out what you need
— Focus initially on key software configurations and aspects of the code to be tested
— Make sure your testing expands to cover new code, use TDD

33

Building a Test-suite

Elements of test development

« For some tests assertions will suffice
* For others you will need to compare the output against baselines
« Building a comparison utility is extremely useful

« Also useful to develop diagnostics — indirect ways of verifying behavior
« Conservation of physical quantities
* No non-physical values

34

Building a Test-suite

Elements of test development

« For some tests assertions will suffice
* For others you will need to compare the output against baselines
« Building a comparison utility is extremely useful

« Also useful to develop diagnostics — indirect ways of verifying behavior
« Conservation of physical quantities
* No non-physical values

Building baselines for comparison

 From a known analytical solution

» Manufacture a solution

* Visualize and inspect output and anoint as
baseline

 Run a test case up to point A and drop a
checkpoint. Run another test case up to a later
point B.

« Use point A to restart and B as the anointed
baseline

35

Building a Test-suite

Elements of test development

« For some tests assertions will suffice
* For others you will need to compare the output against baselines
« Building a comparison utility is extremely useful

» Also useful to develop diagnostics — indirect ways of verifying behavior

« Conservation of physical quantities
* No non-physical values

Building baselines for comparison

 From a known analytical solution

» Manufacture a solution

* Visualize and inspect output and anoint as
baseline

 Run a test case up to point A and drop a
checkpoint. Run another test case up to a later
point B.

« Use point A to restart and B as the anointed
baseline

Apply scaffolding
for selection of

tests ...
explained next

36

Example — Shock Hydrodynamics with Adaptive Mesh Refinement

Components needed

* Mesh

» Hydrodynamics solver
« Equation of state

* Parallelization

Strategy for development

Think of an application with
analytical solution

37

Example — Shock Hydrodynamics with Adaptive Mesh Refinement

Components needed

* Mesh

» Hydrodynamics solver
« Equation of state

* Parallelization

Strategy for development

Think of an application with
analytical solution

¥ (em}

0.8

DB

4=

0.2

Sedov blast wave
High pressure at the
center

Shock moves out in a
circle

Analytical solution for
how far the shock has
travelled

38

Step 1 — Equation of State

* Initialize density and internal energy with known values
« Compute pressure and temperature using EOS

* Next use density and computed pressure as input and compute internal
energy and temperature using EOS

« Compare computed values against initialized values

39

Step 1 — Equation of State

* Initialize density and internal energy with known values
« Compute pressure and temperature using EOS

* Next use density and computed pressure as input and compute internal
energy and temperature using EOS

« Compare computed values against initialized values

We have a unit test

Step 2 — Mesh

o Start with uniform grid

 Domain decomposition for
parallelization

— Halo fill operation

* |nitialize the interior (red) with a known
function

* Apply halo fill

« Compute values for the halo using the
known function

« Compare against filled values

40

halo cells

Step 2 — Mesh

o Start with uniform grid

 Domain decomposition for
parallelization

— Halo fill operation

* |nitialize the interior (red) with a known
function

* Apply halo fill

« Compute values for the halo using the
known function

« Compare against filled values

41

halo cells

We have another unit test

42

Step 3 — Hydrodynamics

* Apply initial conditions to the mesh
— zeroes everywhere except at the center

« Write code for the analytical expression of the distance traveled by the shock
* Do time integration

« At time T compare evolved solution against analytical solution

If both mesh and EOS unit test pass, then any failure is in Hydrodynamics
This is a composite unit test

This is also the idea behind scaffolding

43

Step 4: AMR

 The same halo fill unit test for mesh also works for AMR

 Additional functionalities to test are:
— Fine-coarse boundary resolution
— Regridding

« Steps in testing
— Run Sedov with UG

— Run Sedov with AMR, but no dynamic refinement
« If failed fault is in flux correction

— Run Sedov with AMR and dynamic refinement
« If failed fault is in regridding

Step 4: AMR

 The same halo fill unit test for mesh also works for AMR

« Additional functionalities to test are:
— Fine-coarse boundary resolution

— Regridding We have continued to build
scaffolding and are using
. Steps Ta testing granular testing to pinpoint the

cause of error

— Run Sedov with UG
— Run Sedov with AMR, but no dynamic refinement
« |If failed fault is in flux correction

— Run Sedov with AMR and dynamic refinement
« If failed fault is in regridding

44

45

Step 4: AMR

 The same halo fill unit test for mesh also works for AMR

* Additional functionalities to test are:
— Fine-coarse boundary resolution

— Regridding We have continued to build
scaffolding and are using
. Steps Ta testing granular testing to pinpoint the

cause of error

— Run Sedov with UG

— Run Sedov with AMR, but no dynamic refinement
 |f failed fault is in flux correction

— Run Sedov with AMR and dynamic refinement All of these are examples of

white box testing

« If failed fault is in regridding

46

Mixed White/Black Box Testing For a Legacy Code

There may not be existing tests

* |solate a small area of the code
 Dump a useful state snapshot

 Build a test driver
— Start with only the files in the area

— Link in dependencies
— Copy if any customizations needed

* Read in the state snapshot
» Restart from the saved state

 Verify correctness
— Always inject errors to verify that the test is working

47

How to build your test suite?

« A mix of different granularities works well
— Unit tests for isolating component or sub-component level faults
— Integration tests with simple to complex configuration and system level
— Restart tests

* Rules of thumb
— Simple
— Enable quick pin-pointing

Useful resources https://bssw.io/items?topic=testing

https://bssw.io/items?topic=testing

How do we determine what tests are needed?

« Expose parts of the code that aren’t being tested < Lcov
— gcov - standard utility with the GNU compiler — a graphical front-end for gcov
collection suite (we will use it in the next few slides) — available at
— Compile/link with —coverage & turn off optimization https://github.com/linux-test-

project/Icov
— Codecov.io in Cl module

— Counts the number of times each statement is
executed

— Necessary for testing, but not sufficient

Hosted servers (e.g., coveralls,
codecov)
 gcov also works for C and Fortran

— Other tools exist for other languages
— JCov for Java

graphical visualization of results

push results to server through

continuous integration server
— Coverage.py for python

— Devel::.Cover for perl
— profile for MATLAB

https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov

49

Good Rules of Thumb

Test your tests!
— Make sure tests fail when they’'re supposed to!

Add “regression tests”
— Ensure that bugs aren’t creeping in

Test regularly

— Critical when teams are adding code regularly

— To identify and document where changes to the underlying platform change code
behavior/results

Automate regular testing
— Inculcate the discipline of monitoring the outcome of regular testing

Exercise third-party dependencies

Physics/math-based strategies
— Conserved quantities, symmetries, synthetic operators
— Eliminate complete dependence on bitwise reproducibility

Summary

A testing strategy is essential for producing reliable trustworthy
software

— Invest the time needed to thoroughly test your software at all levels
— Use automation whenever possible

* Different challenges are associated with exploratory, legacy, and
composable codes
— Adapt your strategy to fit your situation.

— Eventually you will want to be able to verify all components in a code release.

* Don’t get distracted by all the technologies out there — focus on
exercising your code.

— Scaffolding projects can help with mechanics.

50

51

Resources

« Oberkampf, W., & Roy, C. (2010). Verification and Validation in Scientific

Computing. Cambridge: Cambridge University Press.
doi:10.1017/CB0O9780511760396

* Michael Feathers. 2004. Working Effectively with Legacy Code. Prentice Hall
PTR, USA. ISBN: 9780131177055

 ADubey, K Weide, D Lee, J Bachan, C Daley, S Olofin... - Ongoing Verification
of a Multiphysics Community Code. Software: Practice and Experience, 2015
https://doi.org/10.1002/spe.2220

https://doi.org/10.1017/CBO9780511760396
https://isbndb.com/book/9780131177055
https://doi.org/10.1002/spe.2220

	Software Testing and Verification
	License, Citation and Acknowledgements
	What is Testing
	What is Testing
	What is Testing
	What is Testing
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	Types of Tests
	Types of Tests
	Classes of Tests
	Test Driven Development
	What is Continuous Integration (CI)
	CI Components
	Test Driven Development vs. Automated Testing vs. CI
	Examples…
	What can make CI difficult
	CI Resources (Where do jobs run?)
	Examples…
	Getting started with CI
	Getting started with CI:�
	Getting started with GitHub Actions:�
	github.com
	GitHub Actions – results of workflow test runs
	GitHub Pull Request Status Indicators
	What is CI Good For
	Building a Test-suite
	Building a Test-suite
	Building a Test-suite
	Example – Shock Hydrodynamics with Adaptive Mesh Refinement
	Example – Shock Hydrodynamics with Adaptive Mesh Refinement
	Step 1 – Equation of State
	Step 1 – Equation of State
	Step 2 – Mesh
	Step 2 – Mesh
	Step 3 – Hydrodynamics
	Step 4: AMR
	Step 4: AMR
	Step 4: AMR
	Slide Number 46
	How to build your test suite?
	How do we determine what tests are needed?
	Good Rules of Thumb
	Summary
	Resources

