

Software Licensing (/software-licensing/index.html)

Terminology and Background on Intellectual Property
Overview

Terminology: copyright, patents, trademarks, and licenses

Intellectual property (IP) is a general term referring to intangible creations of human intellect. There are multiple types of IP recognized in law
in most jurisdictions. The types that are most often associated with software include:

Copyright grants the creator of an original work (e.g., a software package) exclusive rights to its use and distribution, including limits on
derivative works.

A patent grants the inventor of something new, useful, and non-obvious (which may be embodied in software) the rights to its production,
use, and distribution.

A trademark is a sign, design, or expression which identi�es products or services from a particular source (e.g., your software), as
distinguished from other sources.

Licenses are a legal tool to transfer (selected) rights in a work, invention, or mark (forms of intellectual property) from one party to another.
When we talk about licenses for software, we’re primarily focused on copyright. But some software licenses include clauses pertaining to
patents and trademarks related to that software.

Your software starts out copyrighted

Under the law, the software you write is subject to copyright on creation. You don’t have to do anything special to claim copyright.

Normally, the creator of the work owns the copyright in the work. But it is “work for hire” (i.e., as part of your job), often the employer will own
the copyright. Employment contracts often make IP rights explicit. If your employer owns the copyright, you probably have to get formal
permission to license and distribute your software.

Unless you specify some license for your software, all rights in the software are reserved to the copyright owner.

Special case: U.S. government works

Works created by the US government (and its employees) cannot be copyrighted. They are considered to be in the public domain. The
motivation for this was to ensure public access to the U.S. legal code. This does not apply to works created by contractors for the U.S.
government (e.g., federally funded research).

Teaching: 5 min
Exercises: 5 min
Questions

What is the primary form of intellectual property typically associated with software?

What is the purpose of a license for software?

At what point can you assert copyright over your software?

Objectives

Be able to di�erentiate the terms copyright, patent, trademark, and license.

Understand that your creative works (including software) are copyright at creation.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 1/21

https://bssw-tutorial.github.io/software-licensing/index.html
https://bssw-tutorial.github.io/software-licensing/index.html

✏

Activity

Who owns the copyright in the software you create? You or your employer?

If you don’t know the answer, it might be useful to �nd out. If you don’t have a copy of your employment contract, consider asking your
Human Resources department for a copy. Your supervisor or your institutional Technology Transfer o�ce may also be able to help you
answer this question.

Key Points

Copyright is the primary form of intellectual property associated with software. Patents and trademarks may also be relevant.

A license is a legal tool to transfer selected intellectual property rights from one party to another.

Creative works, including software, are subject to copyright protections from the moment of creation.

Why You Should Choose a License
Overview

The spectrum of software licenses

As we’ve mentioned, licenses provide a means to convey selected rights from the owner of those rights to others. Di�erent licenses can be
de�ned that convey di�erent rights. You can think of software licenses as spanning a spectrum.

At one extreme, all rights are reserved to the owner of the copyright. This is the situation that applies when you do not specify a license, but it
is also common to see “All rights reserved” stated explicitly as a form of license.

Proprietary licenses, also referred to as closed-source licenses, typically convey rights to use the software but reserve rights to access or
distribute the source code. Software that is distributed under a proprietary license is most often provided in the form of an executable,
though in some cases, licensees may receive the source code (e.g., so that they can build it on platforms that the copyright owner may not have
access to), but be restricted from redistributing it.

Free or open licenses generally convey more rights to the licensee, typically including access to the source code and the right to redistribute it.
Within the range of open licenses, they can be broadly categorized as “copyleft” or “permissive”. We’ll take a deeper look at open licenses in
the next episode.

At the other extreme of the licensing spectrum is the public domain, which is not so much a license as a disclaimer of all rights in the work.
Works in the public domain do not have a copyright or a copyright holder. Anyone can do whatever they want with such works.

Teaching: 6 min
Exercises: 20 min
Questions

What are the two basic categories of software licenses?

What are the bene�ts of specifying a license for your software?

Objectives

Understand the reasons to specify a license for your software.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 2/21

✏

Activity

Identify one software package that’s important to your work that has a proprietary license.

Identify one software package that’s important to your work that has an open-source license.

Is there a software package that’s important to your work that doesn’t specify a license?

Why license your software

Licenses play an important role for both developers and users of software. The license provides guidance as to how developers can contribute
to the software and how users can approach using it.

Developers should expect that their contributions to the code base will be licensed on the same terms as the original work (unless other
arrangements are made). With closed-source licenses, the developer may lose subsequent access to their contributions once they are
subsumed into the proprietary code base. Open source licenses, on the other hand, provide for access to the source code and the ability to
redistribute the code. Developers contributing to open-source projects can therefore expect ongoing access to their contributions and the
ability to redistribute the code.

The user’s perspective is somewhat similar. With a proprietary license, they are likely to be limited to using executables that the copyright
holder chooses to make available. If the source code is not available, the user has no way of understanding what the code is actually doing.
Open-source licenses, on the other hand, ensure the availability of the source code, and so the user’s ability to (try to) build the software on
di�erent computer platforms. The user can review the code to see what it is doing when it is run. While there may well be helpful user
communities in either case, the fact that everyone in the community has access to the source code of an open-source package may make it
more likely that the user can obtain assistance from people besides the copyright holder.

Discussion

Suppose you hear someone at a conference talk about a software package that might be very useful in your work with a few modi�cations.
You chat with them about the possibility of collaborating around their software.

If they mention that the software is proprietary, would that in�uence your decision about pursuing a collaboration?

If they mention that the software is open source, would that in�uence your decision about pursuing a collaboration?

Ultimately, the choice of how to license your software should be thought of as a tool in pursuing the greater goals of your software and your
project.

Key Points

The two basic categories of software licenses are proprietary and open-source.

Specifying a software licenses provides guidance for would-be contributors and users about how they can engage with the software.

What is Open Source?

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 3/21

 Overview

Open source is a popular choice in scienti�c research, for reasons we’ll explore in the next episode. But before that, let’s take a deeper look at
what we mean by “open source” and some nuances in the spectrum of open-source software licenses.

The major names in open source

When it comes to de�ning open-source or free software, there are two major organizations to be aware of. The Free Software Foundation
(https://fsf.org) (FSF) was founded in 1985 by Richard Stallman. In addition to advocacy for free software licensing (http://fsf.org/licensing),
the FSF also maintains a sizable number of software products, including GNU Emacs and many of the packages at the core of the GNU/Linux
operating system.

The Open Source Initiative (http://opensource.org/) (OSI) was founded in 1998 by Eric Raymond and Bruce Perens. The primary mission of the
OSI is to assess licenses and maintain a list of those which they judge to qualify as “open source.” They also engage in advocacy related to
open-source software.

“Free” vs “open source”

It may not be surprising, given their names, that the Free Software Foundation tends to use the term “free software”, whereas the Open
Source Initiative prefers “open source.” Although the FSF uses the term “free” in licensing discussions to refer to the freedom to do certain
things with the software, the term often gets con�ated with “free” as in no cost, which quickly muddles the discussion. Hence, some prefer to
use the term “open source” for clarity. You may also see the term “libre” (Spanish for “free”) used in place of or together with “free” (i.e.,
“free/libre”) in the context of software.

This lesson generally uses the term “open source.”

De�ning free software: The four freedoms

The FSF has a concise de�nition of free software (https://www.gnu.org/philosophy/free-sw.en.html#four-freedoms) that revolves around the
freedom to do certain things with the software:

0. The freedom to run the program for any purpose.
1. The freedom to study how the program works, and change it so it does your computing as you wish.
2. The freedom to redistribute copies so you can help your neighbor.
3. The freedom to distribute copies of your modi�ed versions to others. By doing this you can give the whole community a chance to bene�t

from your changes.

Note that access to the source code is a precondition for freedoms 1-3.

The OSI has a de�nition of open source (https://opensource.org/osd/) software which is longer but amounts to the same thing for most
purposes. The OSI de�nition includes two requirements that are implicit in the FSF freedom 0, but which are worth noting:

No discrimination against persons or groups, and
No discrimination against �elds of endeavor.

Teaching: 17 min
Exercises: 15 min
Questions

What organization is considered to be the arbiter of whether or not a license is open source?

What are the ‘four freedoms’ by which the Free Software Foundation de�nes free (aka open-source) software?

What is the di�erence between a permissive and a copyleft license?

Is there a licensing scheme comparable to open-source for non-software works?

Objectives

Know where to check whether a license is open-source.

Understand how open-source software is de�ned.

Understand the di�erence between copyleft and permissive open-source licenses.

Be aware of the Creative Commons licenses for non-software artifacts.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 4/21

https://fsf.org/
https://fsf.org/
http://fsf.org/licensing
http://fsf.org/licensing
http://opensource.org/
http://opensource.org/
https://www.gnu.org/philosophy/free-sw.en.html#four-freedoms
https://www.gnu.org/philosophy/free-sw.en.html#four-freedoms
https://opensource.org/osd/
https://opensource.org/osd/

Permissive vs copyleft open-source licenses

One of the most important distinctions in the spectrum of open-source software licenses is whether they are considered “copyleft” (also called
“restrictive”) or “permissive.” These terms have to do with how the license treats derivative works (which we’ll de�ne more thoroughly in a few
moments).

A permissive license allows the licensee to distribute derivative works as they see �t. This includes the possibility of relicensing the derivative
work under another license, possibly even a proprietary license. Examples of permissive licenses include the Apache License
(https://opensource.org/license/apache-2-0/), the BSD License (https://opensource.org/license/bsd-3-clause/), and the MIT License
(https://opensource.org/license/mit/).

Copyleft licenses, on the other hand, require that the licensee distribute derivative works under the same license as the original work. The FSF
is one of the main proponents of copyleft licenses, and they created two of the most widely used examples: the GNU General Public License
(https://opensource.org/license/gpl-3-0/) (GPL) and the GNU Lesser General Public License (https://opensource.org/license/lgpl-3-0/) (LGPL).

What is a derivative work?

Wikipedia tells us that a derivative work (https://en.wikipedia.org/wiki/Derivative_work) is an expressive creation that includes major
copyright-protected elements of a previously created �rst work. For software, this amounts to modi�cations to someone else’s software. So
derivative works are extremely common, especially in collaborative software development.

But what about linking to a library? (And does it matter whether the linkage is static or dynamic?) Or software that interacts via pipes? Or
software that is used as a component in a coupled multiphyscs application? Are these also modi�cations to someone else’s software? Opinions
di�er on such questions. The Free Software Foundation’s GPL license considers everything in a single executable to be a derived work. (The
GPL is sometimes referred to as a “viral” license because it “infects” everything that “touches” it.) The key di�erence between the GPL and the
LGPL is that the latter says that linking is not considered a derivative work. The FSF refers to the GPL as “strong copyleft” or “strongly
protective” (of software freedom) and the LGPL as a weakened version. The de�nition of derivative work matters less for permissive licenses
because they are not so rigidly tied to the license of the original work.

But because of these di�erent approaches to dealing with derivative works, concerns about the “compatibility” of licenses may arise when you
are combining software under di�erent licenses. A later episode will explore this in greater detail, but for now, the easiest way to avoid
problems with license compatibility is to avoid distributing other works with yours. In other words, don’t ship someone else’s software package
as part of yours. (Some may consider it a convenience to bundle together all of the dependencies required to build a software package.) Let
the end user put them together (i.e., build the executable that combines them).

This is because of an important fact about open source licenses, even strong copyleft licenses: you’re not required to distribute a derived
work! The requirement is that if you do distribute it, you do so in conformance with the terms of the license of the original work. So you can
make changes to a piece of software and you’re not required to share the derived work with anyone else. And you can �nesse license
compatibility issues by letting the end user put everything together rather than you shipping the combined work.

If you are concerned about the licensing of your dependencies, there are numerous paid and free automated tools to check for license
compatibility. However, you are ultimately responsible for ensuring license compatibility and passing a tool check does necessarily mean you
have no con�icts (though a failing check should be addressed!).

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 5/21

https://opensource.org/license/apache-2-0/
https://opensource.org/license/apache-2-0/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/mit/
https://opensource.org/license/mit/
https://opensource.org/license/gpl-3-0/
https://opensource.org/license/gpl-3-0/
https://opensource.org/license/lgpl-3-0/
https://opensource.org/license/lgpl-3-0/
https://en.wikipedia.org/wiki/Derivative_work
https://en.wikipedia.org/wiki/Derivative_work

✏

Activity: Is this an open source license?

The following is a real-world example of a software license (lightly obfuscated to protect the identity of the software). Read it and decide
whether it quali�es as “open source.”

In order to acquire access to the code sources, the recipient agrees:

1. to compile/use the XYZZY source code AS IS without modi�cation; users however are welcome to request changes, or to contribute
modi�cations subject to approval of the authors;

2. if the copy of the XYZZY downloaded by the authorized user is made available to third parties, to ensure that the user agreement is
followed by the third parties;

3. to send a one-time email to xyzzy@example.com describing planned research using that module;

4. prior to publication, to email a draft of the article/letter/note to xyzzy@example.com; and

5. to include in published results or presentations the proper code name(s) and appropriate references.

Hint: focus on the �rst two clauses.

Solution No. Clauses 1 (especially) violate the freedom of being able to modify the code and the freedom to distribute copies
of your modi�ed version of the code to others. And clause 2 requires that if you distribute copies of the unmodi�ed original, it is under the
same license terms. Why might someone have felt clauses like these were necessary to include in their software license? Perhaps they’ve
had problems in the past with users distributing modi�ed code with errors that they felt re�ected poorly on the original code. Or perhaps
they want to impose some measure of quality control over modi�cations. A possible alternative solution would be to include a
requirement that derivatives must be clearly distinguished from the original (e.g., di�erent name). Some open source licenses include such
clauses.

Discussion

Now take a close look at clauses 3-5 in the license above. What do you think the copyright owner intended to achieve with those clauses?

Would you be inclined to comply with these license terms? Do you think others comply?

Do you think the copyright holder tries to enforce these terms? (If you have to sign the agreement, they know who has the software.) If you
were the copyright holder, do you think it would be worth the e�ort to try to enforce these terms?

Can you think of better ways to achieve the same things?

Comments It seems like clauses 3 and 4, charitably interpreted, are intended to give the copyright owner awareness of how
people are using the software. Going back to our speculation about why they might not want anyone to modify the code, perhaps they’re
implicitly seeking to exert some quality control over work done using the code. If you send them a draft paper, do you think they would let
you know if they found a problem with how you had used the code or interpreted the results? Clause 5 is a requirement that the code be
cited in work where it is used. This probably seems quite reasonable, on its face – appropriate citation of software should be encouraged.
There are other ways to make this request, though they lack the legal force of putting it in the license. The primary alternative is to make
the request in a prominent �le in the repository. CITATION is the conventional name for this �le, though some people put it in the README

�le. The Citation File Format (https://citation-�le-format.github.io/) (CFF) is a lightly structured YAML schema, designed to be both human-
and machine-readable, to indicate your preferred citation for the work. These �les are conventionally named CITATION.cff and in addition
to be being readily visible in your repository can be interpreted by tools like GitHub, Zenodo, and Zotero to automatically display the
preferred citation.

Open licensing of non-software artifacts

OSI approves open-source licenses for software. But there are many other creative works related to software (or not) that we might want to
treat similarly (like documentation for your software, or this lesson). The Creative Commons (https://creativecommons.org/) (CC) is a family of
licenses analogous to open-source but for things other than software. Another class of work that can fall under Creative Commons licenses is
data. Be aware that if you utilize data with a CC BY-SA license, you may be limited in your in your licensing options as CC BY-SA is similar to a
copyleft, requiring derivative works to use the same license. Variants of the Creative Commons license allow you to impose various
restrictions, similar to choosing di�erent licenses for software:

CC BY (Attribution)

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 6/21

https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://creativecommons.org/
https://creativecommons.org/

CC BY-SA (Attribution-ShareAlike)
CC BY-ND (Attribution-NoDerivs)
CC BY-NC (Attribution-NonCommercial)
CC BY-NC-SA (Attribution-NonCommercial-ShareAlike)
CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)

The Attribution clause, which is part of all CC licenses, requires that the user include the appropriate attribution (title, author, source, license)
when the work is used. The ShareAlike clause requires that adaptations (derivatives) be shared under the same terms as the original
(analogous to copyleft). The NoDerivs clause says that no derivatives of the work are permitted. The NonCommercial clause says that only non-
commercial uses of the work are permitted. Without this clause, commercial uses are allowed.

The Creative Commons has developed a set of badges (https://creativecommons.org/about/downloads#badges) and icons
(https://creativecommons.org/about/downloads#icons) that provide quick visual indicators of the chosen license. For example, this lesson is
licensed under CC BY 4.0:

There is also a “CC0 Public Domain Dedication” which can be used to indicate intent to place the artifact in the public domain. However this
does not satisfy the legal requirements in all jurisdictions, so if you’re serious about placing a work in the public domain, you might want to
investigate further.

Key Points

The Open Source Initiative (OSI) is considered the arbiter of open-source licenses.

The four freedoms include: running the software for any purpose, studying and changing the source code, and distributing copies of
the original or modi�ed source.

A permissive license allows derivative works to be licensed di�erently than the original; a copyleft license requires that the derivative
use the same license as the original.

Creative Commons is a licensing scheme for non-software works that is similar to the open-source spectrum for software.

Why Choose Open Source Licensing?
Overview

The philosophical reasons

One of the most common reasons that developers of scienti�c software choose open-source over proprietary licensing is because they
consider it to be consistent with the scienti�c method. The scienti�c method requires transparency and reproducibility, and in
computationally-based science, this implies that the “apparatus” (i.e., the software) be available for others to inspect and understand and that
others should be able to use it to reproduce the relevant (computational) experiments.

Teaching: 18 min
Exercises: 20 min
Questions

What are some of the reasons for preferring open-source licensing over proprietary?

Does open-source licensing prevent you from making money o� of your software?

Does open-source licensing guarantee the sustainability of your software?
Objectives

Understand some of the reasons for preferring open-source licensing over proprietary.

Understand that the choice of license is a tool for your software and your project goals.

This lesson is being piloted (Beta version)

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 7/21

https://creativecommons.org/about/downloads#badges
https://creativecommons.org/about/downloads#badges
https://creativecommons.org/about/downloads#icons
https://creativecommons.org/about/downloads#icons

Another philosophical reason that many cite is that the results of publicly-funded research (e.g., software produced with research funding)
should be publicly available.

And, �nally, there’s the altruistic reason that releasing the software as open source may help others.

Other considerations favoring open source

Even if you’re not completely swayed by the philosophical arguments above, there may be other, more practical reasons to lean towards open-
source licensing.

One very simple, but often compelling, reason is that the sponsor of your research may require (or encourage) you to release your software
products as open source. At this point in time, many (most) U.S. federal research sponsors are encouraging “open science” with policies that
explicitly or implicitly encourage open source. Within the U.S. Department of Energy, several programs have adopted a policy
(https://science.osti.gov/-/media/ascr/pdf/research/docs/Doe_lab_developed_software_policy.pdf) that prefers open-source release unless
there is a reason not to do so.

Another common reason to favor open-source licensing is to facilitate building a community around your software. Understandably, an open
and accessible code base is likely to be more attractive and have a lower barrier to entry for potential contributors than closed source. On the
other hand, having to complete an explicit license agreement is a barrier to use (or contribution) of closed-source software. At most
institutions, only a few people are authorized to sign legal agreements on behalf of the organization. Usually, a license agreement would have
to be reviewed and executed by an IP lawyer, which can cause delays. In some cases, the institution and the licensor may be unable to come to
an agreement on the terms and it may be impossible to obtain the license.

And, on a related note, if you’re using a proprietary license, you have to manage and archive all of the paperwork associated with those
licenses so that you know who your licenses are. Some �nd that this is more trouble than it’s worth.

Debunking some arguments against open-source

There are also a variety of reasons that some people argue against open-sourcing software, which don’t hold up if you dig a little deeper.

Myth: You can’t sell open-source software

It is a common misconception that open-sourcing software prevents you from making money o� of it. In fact, there are many di�erent
business models that are commonly used around software, and nearly all of them are as applicable to open-source as to proprietary software.

Approach Proprietary Copyleft Permissive

Sell the software yes yes yes

“Freemium” or “dual licensing” allows free use by some, paid by others yes yes yes

Relicense to proprietary n/a no yes

Sell convenience, e.g., packaging, installation media, pre-compiled executables yes yes yes

Sell professional services around the software, e.g., training, technical support, consulting yes yes yes

Sell custom development services, e.g., proprietary extensions, accelerated development yes yes yes

Sell software-as-a-service (SaaS) yes yes yes

Sell the research yes yes yes

I don’t want others to pro�t from my open-source software

If you’re using a permissive license, someone else can take derivatives proprietary. But, with the wealth of permissively licensed software out
there, this is not a common experience. If you’re still concerned, you might prefer a copyleft license, which will prevent this scenario.

But there might be other considerations at play, too. For example, what if you do want a commercial entity to use your software – for example,
for it to be adopted by a computer vendor or distributed in a Linux or similar large distribution of software? This is a way of getting your
software broader exposure and broader distribution. Assuming you’re not expecting �nancial compensation, this kind of collaboration

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 8/21

https://science.osti.gov/-/media/ascr/pdf/research/docs/Doe_lab_developed_software_policy.pdf
https://science.osti.gov/-/media/ascr/pdf/research/docs/Doe_lab_developed_software_policy.pdf

becomes much easier with open-source licensing, and more speci�cally with permissive licenses.

Commercial entities prefer permissive licenses

Many commercial entities �nd copyleft licenses scary. They are concerned about how far the viral nature of copyleft licenses reaches into
other parts of their product. Legal opinions on this di�er, and that is little or no case law on this yet. Since lawyers tend towards conservative
answers, they will often advise their commercial clients to avoid copyleft software. As a result, many companies will not consider working with
copyleft software, only permissively licensed software. Some (typically larger) companies consider sta� working on copyleft software to be
“contaminated” and will not allow them to work on other software.

The software-as-a-service conundrum

“Software-as-a-service” (SaaS) is a popular way of making software products available today. Many SaaS products make extensive use of open-
source software. Some developers don’t like the possibility that another company can trivially monetize (other people’s) software by turning it
into a SaaS product. It may compete with the developer’s own SaaS o�ering. And the SaaS provider can keep enhancements proprietary while
making the bene�ts available in the SaaS product.

Use in a SaaS product is not considered distribution of the software per se. But some licenses, such as the GNU A�ero General Public License
(https://opensource.org/license/agpl-v3/) include “network” clauses that require that the source be made available to remote users of the
service. Other ways of addressing these concerns tend to result in licenses that are not open source. In some cases, key modules are changed
to proprietary licenses while others remain open.

An article on the Ars Technica (https://arstechnica.com/) website discusses the SaaS conundrum further: In 2019, multiple open source
companies changed course—is it the right move? (https://arstechnica.com/information-technology/2019/10/is-the-software-world-taking-too-
much-from-the-open-source-community/)

I want to protect my intellectual property

Another concern that people sometimes raise about openly accessible code is that others can use the novel ideas embodied in it to “scoop”
them. Proprietary licenses, by their nature, allow you to keep the source code private, so you can avoid this concern. But there are also
strategies that you can use with open source to provide functional protection.

First, as we discussed earlier, open source licenses do not require that you make derived works public, only that if you do, you make the source
available. So the basic strategy is not to disclose your novel derived work until you’ve had a reasonable chance to exploit the results of your
work. For example, you might wait until you’ve published the initial papers about the method and results that might not be obtainable with
other methods. Or you might give yourself (or your team) a �xed “exploitation period” (e.g., one year) before publishing the source code. This
is similar to a compromise that’s often used in academic publishing, where a sponsor wants the publications to be open access, but they allow
the publisher a proprietary exploitation period (also often one year) before making the document openly available.

Licensing as a tool

As we’ve suggested, the licensing of your software should be viewed as a tool to help you pursue your goals for the software and the
associated project.

Basically, you want to ask yourself (and your collaborators) what rights you want to grant to others or retain for yourselves:

Who can use the program?
Can users see the source code?
Can users modify the source code?
Can the users redistribute the original or modi�ed code?

And think about how these choices will a�ect your project, would-be contributors to the software, and would-be users of the software.

Discussion

Have you ever been involved in a discussion of proprietary versus open source licensing for a software package?

What arguments were made in favor of proprietary licensing? What arguments were made in favor of open-source?

Was there a particular argument that carried the day, in either direction?

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 9/21

https://opensource.org/license/agpl-v3/
https://opensource.org/license/agpl-v3/
https://arstechnica.com/
https://arstechnica.com/
https://arstechnica.com/information-technology/2019/10/is-the-software-world-taking-too-much-from-the-open-source-community/
https://arstechnica.com/information-technology/2019/10/is-the-software-world-taking-too-much-from-the-open-source-community/
https://arstechnica.com/information-technology/2019/10/is-the-software-world-taking-too-much-from-the-open-source-community/
https://arstechnica.com/information-technology/2019/10/is-the-software-world-taking-too-much-from-the-open-source-community/

Avoid magical thinking: Open-source is no guarantee of sustainability or
community

Open-source is a great tool to help you build a community around your software. But you shouldn’t imagine that simply slapping an open
source license on your software makes it sustainable. Besides having software that is potentially useful to others, you’ll need to work at it if
you want to build a community that contributes to and helps support your software. Many open source software projects never receive any
outside contributions. In a webinar entitled What I Learned from 20 Years of Leading Open Source Projects (https://ideas-
productivity.org/events/hpcbp-056-20yearsopensource), Wolfgang Bangerth, one of the founders of the deal.II package, o�ers his experience
of what it took to build a small single-group software project into a truly community-based resource – and what it takes to keep it going.

Discussion

Does your research community include any truly community-based software packages? Packages which are both widely used and widely
contributed to?

If you happen to be involved in such a project, what is your role? User? Contributor? Maintainer? What is your experience with the
community?

Key Points

Philosophical reasons to choose open-source licenses include consistency with the scienti�c method and openness of publicly funded
research results. Another reason is that it facilitates building a community around your software.

Most software-related business models work as well for open-source software as for proprietary.

Open-source doesn’t guarantee that outsiders will engage with your software. You’ll need to work to build a community of
contributors and users.

Choosing an Open Source License
Overview

Don’t reinvent the license

If you want to use an open-source license with your software, the �rst advice is to use an existing license rather than inventing your own. The
OSI has approved more than 80 di�erent licenses as qualifying as open source. They cover a wide range of situations, and with that many
options, you’re pretty unlikely to have a need that’s not already covered. Moreover, the OSI feels that there are too many open-source licenses
already, and has been reluctant to review and approve new licenses to control the proliferation.

Another reason to choose an OSI-approved license is that there are some publication venues (e.g., the Journal of Open Source Software
(https://joss.theoj.org/) (JOSS)) that will only accept OSI-approved licenses. There is at least one case in which JOSS rejected a submission for a
software package that was licensed under an institution-speci�c variant of the 3-Clause BSD License (https://opensource.org/license/bsd-3-
clause/) which was not OSI-approved. While there are other options besides JOSS for publishing your software, it is important to be aware of
such restrictions when selecting a license.

Teaching: 13 min
Exercises: 15 min
Questions

What are some of the reasons for going with an established open-source license instead of creating a new one?

What are some of the most popular open-source licenses?

Name a tool that can help with a more detailed understanding of common open-source licenses?

Objectives

Be able to identify some of the most common open-source licenses.

Know about a tool that can help you select an open-source license that meets your needs.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 10/21

https://ideas-productivity.org/events/hpcbp-056-20yearsopensource
https://ideas-productivity.org/events/hpcbp-056-20yearsopensource
https://ideas-productivity.org/events/hpcbp-056-20yearsopensource
https://joss.theoj.org/
https://joss.theoj.org/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/

Considerations in selecting an open-source license

The most signi�cant decision in open-source is between permissive or copyleft licenses. Technically, this is a decision as to whether derivative
works can be changed to a new license or not. But it can have knock-on e�ects, particularly in the area of license compatibility.

License compatibility comes into play when you start combining software to get your work done. As we discussed earlier, there are di�erent
interpretations of what kinds of combinations do or do not result in derived works which, under copyleft licensing, might become subject to
the terms of the original work’s license. Permissive licenses have fewer compatibility issues.

On a related note, it is worth considering the norms of the community you and your software are engaging with. If, for example, “everyone” in
your �eld uses a particular license, it may be easier for your software to be accepted by others if you follow the same approach – unless, of
course, you have strong reasons for doing otherwise.

Another clause that appears in many open-source licenses has to do with the labeling of derived works, requiring that derived works be
identi�ed di�erently than the original. Why would we want this? What if someone took your code, and in modifying it introduced a bug that
made all of the results it produced subtly wrong? That could easily give your code a bad name – unless the problem code had a di�erent name
that enabled the community to easily distinguish them.

Patents in software licenses

A patent is a di�erent form of intellectual property than a creative work like a piece of software. But they are often connected in the software,
and increasingly software licenses also include patent-related clauses.

Patents cover an invention that is useful and non-obvious. That invention could be embodied in software. Some people make strong
arguments against the idea that inventions embodied in software should be patentable at all. But in the legal sense, they are a reality. If you’re
using a piece of software (even open source) that is covered by a patent and you don’t have a license for the patent, you’re infringing. Not
being aware of the patent does not excuse the infringement. And you could be sued for monetary damages.

Historically, many open-source licenses were silent on patents – they said nothing at all about them. More recently, since the courts have
decided that software inventions are patentable, some open-source licenses have started including patent-related clauses.

The most common type of patent clause grants royalty-free (i.e. no cost) right to use patented content owned by the copyright holder(s) (e.g.
Apache 2.0 (https://opensource.org/license/apache-2-0/), GPLv3 (https://opensource.org/license/gpl-3-0/)). (Obviously, the copyright holders
can’t provide licenses for other people’s patents – which is important to remember. It is still possible that a code has (presumably unknowingly)
infringed on some other patent.) Another form of patent clause involves retaliation, e�ectively saying “If you sue me for patent infringement,
your license to use this software is terminated”, (e.g. Apache 2.0 (https://opensource.org/license/apache-2-0/)). A weak retaliation clause is
triggered by an action related to the speci�c software, whereas a strong retaliation clause is triggered by any patent action against the
licensor.

Although it is no longer listed by the OSI, there is also a BSD 3-Clause Clear License (https://choosealicense.com/licenses/bsd-3-clause-clear/)
which explicitly states that no patent rights are granted by the license.

Popular OSI-approved licenses

Some of the most widely used OSI-approved licenses are listed below, along with notes as to their permissiveness, compatibility, and what
type of patent clause(s) it has. Any license on this list is a good choice because they are among the most popular and well-known open-source
licenses.

License Type
GPL-
Compatible Patent Clause(s)

Apache License, Version 2.0 (https://opensource.org/license/apache-2-0/) Permissive v3, not v2 Grant, Weak
retaliation

Common Development and Distribution License 1.0
(https://opensource.org/license/cddl-1-0/)

Permissive No Grant, Weak
retaliation

Eclipse Public License version 2.0 (https://opensource.org/license/epl-2-0/) Weak
Copyleft

Yes Grant, Weak
retaliation

GNU General Public License version 2 (https://opensource.org/license/gpl-2-0/) Copyleft Yes Implied grant

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 11/21

https://opensource.org/license/apache-2-0/
https://opensource.org/license/apache-2-0/
https://opensource.org/license/gpl-3-0/
https://opensource.org/license/gpl-3-0/
https://opensource.org/license/apache-2-0/
https://opensource.org/license/apache-2-0/
https://choosealicense.com/licenses/bsd-3-clause-clear/
https://choosealicense.com/licenses/bsd-3-clause-clear/
https://opensource.org/license/apache-2-0/
https://opensource.org/license/apache-2-0/
https://opensource.org/license/cddl-1-0/
https://opensource.org/license/cddl-1-0/
https://opensource.org/license/epl-2-0/
https://opensource.org/license/epl-2-0/
https://opensource.org/license/gpl-2-0/
https://opensource.org/license/gpl-2-0/

License Type
GPL-
Compatible Patent Clause(s)

GNU General Public License version 3 (https://opensource.org/license/gpl-3-0/) Copyleft Yes Grant, Weak
retaliation

GNU Lesser General Public License version 2.1 (https://opensource.org/license/lgpl-
2-1/)

Weak
Copyleft

Yes Implied grant

GNU Lesser General Public License version 3 (https://opensource.org/license/lgpl-3-
0/)

Weak
Copyleft

Yes Silent

GNU Library General Public License version 2 (https://opensource.org/license/lgpl-
2-0/)

Weak
Copyleft

Yes Implied grant

Mozilla Public License 2.0 (https://opensource.org/license/mpl-2-0/) Permissive Yes Grant, Weak
retaliation

The 2-Clause BSD License (https://opensource.org/license/bsd-2-clause/) Permissive Yes Silent

The 3-Clause BSD License (https://opensource.org/license/bsd-3-clause/) Permissive Yes Silent

The MIT License (https://opensource.org/license/mit/) Permissive Yes Silent*

* In Why so little love for the patent grant in the MIT License? (https://opensource.com/article/18/3/patent-grant-mit-license), Scott Peterson
argues that the MIT license, which provides the right to “deal with the Software without restriction,” includes the right to use associated
patents based on the language used.

ChooseALicense.com

If you want more choices for your open-source license or are interested in clauses other than those in the table above, check out
ChooseALicense.com (https://choosealicense.com). This tool, which was developed by GitHub and is openly curated through a GitHub
repository (https://github.com/github/choosealicense.com) starts with three very simple suggestions:

Use the license preferred by your community
If you want a permissive license, they recommend MIT
If you want a copyleft license, they recommend GPLv3

But then their Licenses (https://choosealicense.com/licenses/) page lists eight licenses that span a broad spectrum and provide analyses of
thirteen di�erent characteristics. And their Appendix (https://choosealicense.com/appendix/) has a table of more than forty licenses analyzed
in terms of the thirteen di�erent characteristics. The characteristics include:

Commercial use
Distribution
Modi�cation
Patent use
Private use
Disclose source
License and copyright notice
License and copyright notice for source
Network use is distribution
Same license
Same license (�le)
Same license (library)
State changes
Liability
Trademark use
Warranty

By understanding which characteristics are important for how you want to license your software, you can use the table in the
ChooseALicense.com appendix (https://choosealicense.com/appendix/) to identify speci�c licenses that are worth looking at more deeply.
Once you have some candidates, you should read each of them carefully – there may be additional clauses that you may or may not want in
your license.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 12/21

https://opensource.org/license/gpl-3-0/
https://opensource.org/license/gpl-3-0/
https://opensource.org/license/lgpl-2-1/
https://opensource.org/license/lgpl-2-1/
https://opensource.org/license/lgpl-2-1/
https://opensource.org/license/lgpl-3-0/
https://opensource.org/license/lgpl-3-0/
https://opensource.org/license/lgpl-3-0/
https://opensource.org/license/lgpl-2-0/
https://opensource.org/license/lgpl-2-0/
https://opensource.org/license/lgpl-2-0/
https://opensource.org/license/mpl-2-0/
https://opensource.org/license/mpl-2-0/
https://opensource.org/license/bsd-2-clause/
https://opensource.org/license/bsd-2-clause/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/mit/
https://opensource.org/license/mit/
https://opensource.com/article/18/3/patent-grant-mit-license
https://opensource.com/article/18/3/patent-grant-mit-license
https://choosealicense.com/
https://choosealicense.com/
https://github.com/github/choosealicense.com
https://github.com/github/choosealicense.com
https://github.com/github/choosealicense.com
https://choosealicense.com/licenses/
https://choosealicense.com/licenses/
https://choosealicense.com/appendix/
https://choosealicense.com/appendix/
https://choosealicense.com/appendix/
https://choosealicense.com/appendix/

And remember, even the list of licenses that ChooseALicense.com has analyzed is less than half of the number of OSI-approved open-source
licenses. So don’t give up!

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 13/21

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 14/21

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 15/21

✏

Activity: Open-source licenses in your community

Try to identify 2-3 open-source software packages within your community that use di�erent licenses.

Which licenses do they use? Or does a single license strongly dominate your community? Are they permissive or copyleft? In what other
ways do they di�er?

(Hint: the https://choosealicense.com/appendix/ (https://choosealicense.com/appendix/) page might be helpful.)

Key Points

There are many OSI-approved licenses already available covering most needs. Some publications or other venues require OSI-approved
licenses.

The variants of the GNU GPL license are among the most popular copyleft licenses, while Apache, BSD, and MIT are among the most
popular permissive licenses.

ChooseALicense.com (https://choosealicense.com) has analyses of more than 40 open-source licenses along 13 di�erent
characteristics.

Documenting Your Choice of License
Overview

So you’ve chosen a license for your software. Now you need to ensure that people are aware of it! This is particularly important for open-
source software because you won’t have the interaction of someone having to sign and return or otherwise indicate their acceptance of the
terms that you would have with a proprietary license.

Two strategies for documenting your license

There are, in essence, two strategies for indicating your choice of license. The �rst is to put it in a �le at the repository level. The second is to
put it inside the individual �les. The centralized approach has the advantage of simplicity and maintainability. However, if an individual �le is
separated from the distribution or repository, the recipient won’t see the copyright and license information if the notice only appears in a
central �le.

The Software Freedom Law Center (https://softwarefreedom.org/)’s (SFLC’s) whitepaper on Managing copyright information within a free
software project (https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html) suggests that the best practice is to do
both.

Discussion

Have you ever received a �le by itself, outside of the context of a version control repository or complete distribution of the package, for
example as a potential solution to a problem or a bug? Was the origin of the �le and its copyright and licensing evident to you? Or perhaps
the person who gave it to you told you about the license and copyright terms?

Did that �le (or parts of it) end up in another software package that you were working on at the time?

Teaching: 10 min
Exercises: 10 min
Questions

What are the two basic strategies for documenting your choice of license?

What information should you include in each �le in your software?

Objectives

Understand the importance of marking your software with your chosen license and copyright information.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 16/21

https://choosealicense.com/appendix/
https://choosealicense.com/appendix/
https://choosealicense.com/
https://choosealicense.com/
https://softwarefreedom.org/
https://softwarefreedom.org/
https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html
https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html
https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html

Centralized license and copyright information

You should place the complete copyright information together with the text of the license you’ve chosen in a prominent location in the main
directory of your repository. In the past COPYING used to be a popular recommendation for this �le, but LICENSE seems like a more obvious

choice and is probably more commonly used these days.

If your package is more complicated, with multiple licenses, they can often naturally be grouped into subdirectories with consistent licensing
and each subdirectory can include an appropriate LICENSE �le. If the licensing structure is su�ciently complex, it may be worth placing a
“roadmap” to the various licenses applying to di�erent parts of the code in the top directory.

Tracking authorship and copyright information

Every person who makes a non-trivial contribution to a software package has a copyright interest in that package. (There’s no legal de�nition
for what constitutes a non-trivial contribution. The package maintainers need to determine that on a case by case basis. Fixing a typo, or even
perhaps a simple bug �x may not be considered substantive. But a complex bug �x or implementing new functionality probably would be.)
Such a list can get rather long and could change frequently as new contributors join. (Though if many of the contributors are performing work
for hire and their employers actually own the copyright, the list of rightsholders may not be so long after all.) But it is important to maintain
this information to the best of your ability to ensure that contributors get the credit they deserve and contributors can be identi�ed if legal
issues arise.

If used carefully, version control systems provide a good means to track authorship. But you need to use the version control tools in such a way
that maintains the �le histories as �les are moved, renamed, etc. In other words, instead of changing the name of a �le by git rm ing the old

name and git add ing the new name, use git mv so that the history (of commits and the authorship of those commits) follows the �le
through the name change.

But this authoritative information about authorship is only available in the version control repository, using your version control tool. If the
package is bundled up and distributed as a tarball, or in some other form outside of the repository, this information may be inaccessible to the
recipient. The same is true for individual �les which might be distributed outside of the package for various reasons.

So the recommendation is to construct a copyright notice for the entire repository (as opposed to for each individual �le), and try to do a
reasonable job of keeping it up to date. The most likely place for the copyright notice to live is in your LICENSE �le because the license
normally includes a copyright notice. But another option, if you prefer, could be a separate COPYRIGHT or AUTHORS �le. Note, however, that

the copyright holders are not necessarily the authors of the code, depending on whether the authors or their employers are the rightsholders.

File-scope license and copyright information

As a point of reference, the recommendation of the FSF is to include the following in the header (beginning) of every �le in the package:

1. one sentence naming and brie�y describing the program,
2. the copyright notice of the authors,
3. the name(s) of the license(s) under which the software is available,
4. a brief warranty disclaimer, and
5. a URL pointing to the full copy of the license.

Others recommend including the full text of the license rather than just the name and a URL. This is a lot of information to insert into every �le
and a lot of information to maintain. Note that the contributors to each individual �le are likely to be di�erent, so in principle, each �le could
have a di�erent copyright notice, each of which would need to be maintained. All of which seems a little overboard for most purposes.

The SFLC’s suggestion is to boil the per-�le header down to the essentials. You want enough information that if the �le was distributed
separately from the rest of the repository, the recipient could identify the origins of the �le and know where to look for the remaining details.
Something along the following lines:

Code

Copyright 2012 The Foo Project Developers. See the LICENSE file at the top-level directory of this distribution and at http://www.example.co
m/foo/LICENSE.

This file is part of Foo Project. It is subject to the license terms in the LICENSE file found in the top-level directory of this distributi
on and at http://www.example.com/foo/LICENSE. No part of Foo Project, including this file, may be copied, modified, propagated, or distribut
ed except according to the terms contained in the LICENSE file.

Consider writing scripts to help you insert and maintain the �le-scope copyright and license headers you decide upon.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 17/21

Discussion

Is there any software that you work with directly, or in your community, which you know has a license associated with it but is not marked in
at least one of the two ways we’ve discussed here (centralized and �le-scope)?

Badges

Badges at the top of README.md �les are a popular way to summarize a variety of information about the software package. Such badges often

include testing status and other dynamic information. Licenses are pretty static, so it may be more and so more fun than functional, but
badges are available to re�ect many popular licenses.

The badge generation site https://shields.io (https://shields.io) can automatically render a badge for any license that GitHub recognizes by
simply referencing the repository as follows:

Code

![GitHub](https://img.shields.io/github/license/:user/:repo)

for example, ![GitHub](https://img.shields.io/github/license/hpc-simtools/ips-framework) which renders as

licenselicense BSD-3-ClauseBSD-3-Clause

The site also provides many license badges which can be selected explicitly, such as the badge for this lesson:
[![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)

which renders as

LicenseLicense CC BY 4.0CC BY 4.0

(https://creativecommons.org/licenses/by/4.0/)

While the shields.io (https://shields.io) site lists many licenses directly, a developer named Lukas Himsel (https://gist.github.com/lukas-h) has
posted a Gist (https://gist.github.com/lukas-h/2a5d00690736b4c3a7ba) which provides badges for even more licenses.

Key Points

License and copyright information can be documented in a centralized manner (at the repository level) and within individual �les.

Individual �les should include enough information to identify that they are copyrighted and licensed and point the recipient to the
details.

Collaboration and Licensing
Overview

If you are lucky, you have an open-source project with an active user base and a few developers to help �eld issues. As a project grows, it’s
possible you will get pull requests from people you’ve never met. Even if the code looks great, it’s possible the has author inadvertently has
caused a licensing issue.

A somewhat related topic is how to handle code snippets from external sources like web forums or large language models.

Teaching: 17 min
Exercises: 15 min
Questions

What are the concerns with accepting code from collaborators?

What mechanisms are there to ensure collaborators agree to license terms?

What concerns are there with using code from online forums?

Why are LLMs challenging for copyright and licensing?

Objectives

Understand the challenges surrounding code contributed from outside the project.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 18/21

https://shields.io/
https://shields.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://shields.io/
https://shields.io/
https://gist.github.com/lukas-h
https://gist.github.com/lukas-h
https://gist.github.com/lukas-h/2a5d00690736b4c3a7ba
https://gist.github.com/lukas-h/2a5d00690736b4c3a7ba

✏

✏

Contributors and Licenses

There are two cases where a contributor can cause problems with licensing your code.

First, if you have a copyleft license, contributors from industry may be reluctant to contribute over fear of accidentally violating the terms of
the GPL license. Since GPL requires derivative works to be copyleft, if the contributor were to incorporate some of the code into a larger
project, they would be obligated to release the entire code base under the license terms.

Alternatively, if you have a restrictive license, it’s possible a contribution may not be subject to copyright at all! Any work from a government
employee, say a researcher at a federal agency, is not subject to copyright and is in public domain.

It is important to communicate your license terms to all collaborators and decide on a license early in a project’s life cycle. Changing a license is
possible, but may require the explicit approval of all contributors; for larger, older projects the prospect is daunting.

Part of being proactive is developing and publishing your CONTRIBUTING guidelines. You can also choose to use a Contributor License

Agreement (CLA), which is a legal document that new contributors must sign prior to merging their code. While protective of the software
project, CLAs may limit inclusivity by acting as a barrier to �rst-time contributors. They can also create a power imbalance between maintainers
and contributors. Practically, CLAs often require review and approval by the legal department of the contributor.

A Developer Certi�cate of Origin (DCO) is a lighter-weight agreement that allows contributors to con�rm the code they commit is suitable for
the project license. They can be integrated into a pull request or commit message instead of a separate legal document. In either case, the
policies for contributors should be clear and easy to �nd and verify if legal issues do arise.

Activity

What are the contributor guidelines for some open source code you use?

Pick one dependency or utility you regularly use. Does the project have a CONTRIBUTING �le? CLA? DCO? Does the license mention
contributors?

Code from Internet Forums

Question and answer forums like Stack Over�ow provide a valuable avenue for developers to connect with knowledgeable users covering a
range of topics from installation, language usage, and debugging. It is satisfying to �nd the exact answer to your problem so you can get back
to work. But as with anything else you see on the internet, the material is subject to copyright. It is worth thinking about how you can
incorporate solutions found online into your work while respecting their copyrights. Material on Stack Over�ow, for example, is published
under a CC-BY-SA license (Creative Commons Attribution Sharealike (https://creativecommons.org/licenses/by-sa/4.0/)).

Generally, if you’re using the Stack Over�ow material as guidance or documentation, and adapting it to your particular situation without using
text (code) verbatim from the Stack Over�ow posting, it should be relatively straightforward because you’re not making direct use of the
copyrighted material. You don’t have to disclose where the original idea came from, but for your own bene�t it is a good idea to include the
URL in a comment. Its also nice to give credit where credit is due. An example of this kind of use might be if you are searching for how to plot a
scatter plot with transparency given by another column in your dataframe. An answer may suggest matplotlib, seaborn, or another plotting
library. It may provide example code or command line instructions to make such a plot. But you adapt it, with your variables and �lenames, and
other details. And in the end, there’s probably little from the original post appearing in your code – maybe routine or command names and a
few key options.

On the other hand, if you are searching for, say, a binary search written in python, or the answer contains a function snippet for performing the
task you need? Fair use does not use length as a factor, if you directly copy and paste code and you want to distribute that code, it would then
fall under the license applicable to the forum posting. As mentioned, for Stack Over�ow, for example, that’s CC-BY-SA.

Pop Quiz

If you use CC-BY-SA work in your project, what kind of license should you use?

Solution Though they are considered appropriate for software documentation, the Creative Commons recommend against
using their licenses for software per se (see Can I apply a Creative Commons license to software? (https://creativecommons.org/faq/#can-i-
apply-a-creative-commons-license-to-software)). But they do de�ne a concept of “compatibility” between some CC licenses and software
licenses precisely for situations like this (see Compatible Licenses (https://creativecommons.org/share-your-work/licensing-
considerations/compatible-licenses/)). According to this page, CC-BY-SA 4.0 (not prior versions) is compatible with the Free Art License
(http://artlibre.org/licence/lal/en/) or the GPLv3 (https://www.gnu.org/copyleft/gpl.html) licenses.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 19/21

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/
https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/
http://artlibre.org/licence/lal/en/
http://artlibre.org/licence/lal/en/
https://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/copyleft/gpl.html

Generative AI, Large Language Models, and Code Assistants

A recent development for software engineers is the rise of large language models (LLMs) capable of producing code from English descriptions.
The utilities are integrated in many search engines, integrated development environments (IDEs), or as standalone assistants. While
performance and utility can vary wildly, LLMs can increase developer productivity by removing some of the tedious jobs. Just be wary, correct-
seeming code can be worse than something clearly wrong!

Just as the technological limits of LLMs are still being discovered, the legal aspect of AI, copyright, and licensing are actively being determined
in court. There are three phases where licensing and copyright concerns appear in utilizing LLMs:

1. Does the training process respect the licenses of the code used for training?
2. If you want to re�ne an LLM, what license is the model distributed with?
3. If I use code generated by an LLM, what attribution does it need and will it a�ect my license?

Ingested Code

Unless you are training your own LLM, this is more of an interesting case study in copyright than a day-to-day concern. Since the
implementation details of many LLMs are proprietary, you may not know what code a model was trained on, what license the code used, or if
permission was attained to use the software for training.

Legal challenges against AI companies have been brought up by artists and authors, who allege the generation of verbatim passages or
replication of artistic style indicates that the training data included copyrighted material against the creators’ wishes. Code generation hasn’t
been included in these lawsuits so far, but rulings on other domains could a�ect how LLMs are trained. If you are concerned about the origin of
code used to train an LLM, look for LLMs that provide information on the training set and use a training set aligned with your license and
values.

Re�ning an LLM

In a technical sense, re�ning a published network is fairly straight forward! Just like any other piece of software, you can follow the license
distributed with the material in creating new works derived from the original network. However, the weights of the foundation model could
“contain” copyrighted material from data on which they were trained. It’s possible that during re�nement, the network will retain the
copyright material in a form that can be recovered. Litigation will be needed to sort out fair use, but keep in mind that re�ned networks may
contain the foundation model largely unchanged.

Using Code from LLMs

You may have already used code from an LLM, either to play with a new technology or even in production to save time on development.
Continuing with the theme of this section, we don’t know all the answers until legislation and lawsuits settle.

Consider the following scenario: you use an LLM to generate a function that is later discovered to be verbatim from a copyrighted code base,
violating the license. Who’s liable for damages? You? The company that trained the network? The company you pay to use the LLM? Legally, we
don’t yet have answers to this, but getting the code from an LLM may not be considered a defense against the fact that your code infringes on
someone else’s copyright.

Some tools have been developed to scan LLM output to �ag large snippets that are present in other sources. Many tech companies don’t allow
code generation from outside products due to privacy concerns, as well as licensing issues. As an aside, if you’re interested in a job in industry,
you might want to make sure your coding skills are solid without help from an LLM.

The US government recently declared that AI-generated work can not be copyrighted if it’s produced without human intervention beyond
prompt engineering. This is likely to apply to a work as a whole instead of snippets, e.g. if your project has a few generated functions it could
still have a copyright. If instead you instruct an LLM to “make a game” (and it’s able to do so), that could would not be copyrighted. As an
example, “Zaraya of the Dawn” (https://www.copyright.gov/docs/zarya-of-the-dawn.pdf) is a comic book where the images were produced by
Midjourney. While the text and layout were human-generated and therefore subject to copyright, the US Copyright O�ce found the images
could not be copyrighted. Extending this to software, if you have AI produce all of your UI, that portion of your code might not be
copyrightable.

If you are developing code you intend to monetize, the safest advice currently would be to avoid LLM-generated code altogether. Were it
brought to light in discovery, AI-generated code could open the door to damages over the entire code base. Otherwise, treat LLM output like
code from an internet forum, you can use it for information and to point you towards the code you need, but don’t copy its entire output. If
you do copy and paste code, you may also want to mark in the source code what is LLM-derived. Doing this consistently could safeguard parts
of your project that may resemble proprietary code by chance.

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 20/21

https://www.copyright.gov/docs/zarya-of-the-dawn.pdf
https://www.copyright.gov/docs/zarya-of-the-dawn.pdf

 Key Points

Collaborators may be restricted in their ability to contribute to open source projects (e.g. industrial partners) or unable to copyright
their work (government employees).

You can include a Contributor License Agreement (CLA) to ensure collaborators agree to license terms prior to committing code.

Stackover�ow content is licensed as CC BY-SA, which is incompatible with permissive or proprietary licenses.

License and copyright around LLM-generated content is actively being litigated.

Content licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 2020–2024 by INTERSECT (https://intersect-training.org/)
Lesson setup licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 2018–2024 by The Carpentries (https://carpentries.org/)

Edit on GitHub (https://github.com/bssw-tutorial/software-licensing/edit/main/aio.md) / Contributing (https://github.com/bssw-tutorial/software-
licensing/blob/2024-08-02-atpesc/CONTRIBUTING.md) / Source (https://github.com/bssw-tutorial/software-licensing/) / Cite

(https://github.com/bssw-tutorial/software-licensing/blob/2024-08-02-atpesc/CITATION) / Contact (https://intersect-training.org/contact/)

Using The Carpentries style (https://github.com/carpentries/styles/) version 9.5.3 (https://github.com/carpentries/styles/releases/tag/v9.5.3).

7/31/24, 6:14 PM Software Licensing

https://bssw-tutorial.github.io/software-licensing/aio/index.html 21/21

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://intersect-training.org/
https://intersect-training.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://carpentries.org/
https://carpentries.org/
https://github.com/bssw-tutorial/software-licensing/edit/main/aio.md
https://github.com/bssw-tutorial/software-licensing/edit/main/aio.md
https://github.com/bssw-tutorial/software-licensing/blob/2024-08-02-atpesc/CONTRIBUTING.md
https://github.com/bssw-tutorial/software-licensing/blob/2024-08-02-atpesc/CONTRIBUTING.md
https://github.com/bssw-tutorial/software-licensing/blob/2024-08-02-atpesc/CONTRIBUTING.md
https://github.com/bssw-tutorial/software-licensing/
https://github.com/bssw-tutorial/software-licensing/
https://github.com/bssw-tutorial/software-licensing/blob/2024-08-02-atpesc/CITATION
https://github.com/bssw-tutorial/software-licensing/blob/2024-08-02-atpesc/CITATION
https://intersect-training.org/contact/
https://intersect-training.org/contact/
https://github.com/carpentries/styles/
https://github.com/carpentries/styles/
https://github.com/carpentries/styles/releases/tag/v9.5.3
https://github.com/carpentries/styles/releases/tag/v9.5.3

