ARGONNE ATPESC2024 EXTREME - SCALE COMPUTING

Data Analysis and Visualization

Visualization & Data Analysis

Time	Title of presentation	Lecturer
8:30 am	Data Analysis and Visualization Introduction	Joe Insley ANL/NIU, Silvio Rizzi ANL, Victor Mateevitsi, ANL
9:30 am	Large Scale Visualization with ParaView	Dan Lipsa <i>Kitware</i>
10:00 am	Break	
10:30 am	Large Scale Visualization with ParaView (Cont.)	Dan Lipsa Kitware
11:30 am	Visualization and Analysis of HPC Simulation Data with Vislt	Cyrus Harrison LLNL
12:30 pm	Lunch	
1:30 pm	Visualization and Analysis of HPC Simulation Data with Vislt (Cont.)	Cyrus Harrison LLNL
2:00 pm	Exploring Visualization with Jupyter Notebooks	David Koop <i>NIU</i>
2:45 pm	Ascent	Cyrus Harrison <i>LLNL</i> Andres Sewell <i>Utah State</i>
3:45 pm	Break	
4:15 pm	Trame	Patrick Avery Kitware
4:45 pm	NOODLES	Nicholas Brunhart-Lupo NREL
5:30 pm	Hands-on	All
6:30 pm	Dinner	
7:30 pm	After-dinner talk	Brad Carvey Sandia

2 Argonne Leadership Computing Facility

Here's the plan...

- Examples of visualizations
- Visualization tools and formats
- Data representations
- Visualization for debugging
- Advanced Rendering
- In Situ Visualization and Analysis

4 Argonne Leadership Computing Facility

Multi-Scale Simulation / Visualization Arterial Blood Flow

PI: George Karniadakis, Brown University

2011

2012

Engineering / Combustion / Biofuels

PI: Sibendu Som, Argonne National Laboratory

2023

2021

7 Argonne Leadership Computing Facility

Climate

PI: Warren Washington, National Center for Atmospheric Research

2012

2022

PI: Rao Kotamarthi, Argonne National Laboratory

Physics: Stellar Radiation

PI: Lars Bildsten, University of California, Santa Barbara

2017

ting Facility

Astrophysics

PI: Adam Burrows, Princeton University

HACC: Cosmology

2020

2020

PI: Salman Habib and HACC Team, Argonne National Laboratory

1700 MPC.

400 MPC/

2021 11 Argonne Leadership Computing Facility Computed and Rendered on **2023** Aurora

Arterial Blood Flow

PI: Amanda Randles, Duke University

2023 Rendered on Aurora

Materials Science / Molecular

Data courtesy of: Subramanian Sankaranarayanan, Argonne National Laboratory

Data courtesy of: Paul Kent, Oak Ridge National Laboratory, Anouar Benali, Argonne National Laboratory

Romero, Argonne National Laboratory

Visualization Tools and Data Formats

All Sorts of Tools

- **Visualization Applications**
- -Vislt
- -ParaView
- -EnSight
- **Domain Specific**
- -VMD, PyMol, Ovito, Vapor
- APIs
- -VTK: visualization
- -ITK: segmentation & registration

Analysis Environments

- -Matlab
- -Parallel R
- Utilities
- -GnuPlot
- -ImageMagick

ParaView & Vislt vs. vtk

ParaView & Vislt

- -General purpose visualization applications
- -GUI-based
- -Client / Server model to support remote visualization
- -Scriptable / Extendable
- -Built on top of vtk (largely)
- -In situ capabilities

vtk

- -Programming environment / API
- -Additional capabilities, finer control
- -Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & Vislt)

VTK	PLOT2D	Meta Image
Parallel (partitioned)	PLOT3D	Facet
VTK	SpyPlot CTH	PNG
VTK MultiBlock	HDF5 raw image	SAF
Hierarchical.	data	LS-Dyna
Hierarchical Box)	DEM	Nek5000
Legacy VTK	VRML	OVERFLOW
Parallel (partitioned)	PLY	paraDIS
legacy VTK	Polygonal Protein	PATRAN
EnSight files	Data Bank	PFLOTRAN
EnSight Master	XMol Molecule	Pixie
Server	Stereo Lithography	
Exodus	Gaussian Cube	
BYU	Raw (binary)	550
XDMF	AVS	343

Tetrad UNIC VASP **ZeusMP** ANALYZE BOV GMV Tecplot Vis5D Xmdv XSF

Data Representations

Data Representations: Cutting Planes

Slice a plane through the data

Can apply additional visualization methods to resulting plane

VisIt & ParaView & vtk good at this

VMD has similar capabilities for some data formats

Data Representations: Volume Rendering

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

- good at this

vtk:

- same, but again requires more effort

Data Representations: Glyphs

2D or 3D geometric object to represent point data

- Location dictated by coordinate
- 3D location on mesh
- 2D position in table/graph
 Attributes of graphical entity
 dictated by attributes of data
- color, size, orientation

Data Representations: Streamlines

From vector field on a mesh (needs connectivity) – Show the direction an element will travel in at any point in time. Vislt & ParaView & vtk good at this

Data Representations: Pathlines

From vector field on a mesh (needs connectivity) – Trace the path an element will travel over time. Vislt & ParaView & vtk good at this

Molecular Dynamics Visualization

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

VisIt & ParaView:

Limited support for these types of representations, but improving

VTK:

 Anything's possible if you try hard enough

Visualization for Debugging

Visualization for Debugging

Visualization for Debugging

Visualization as Diagnostics: Color by Thread ID

Advanced Rendering

Rendering

Slide courtesy of Roba Binyahib and Dave Demarle of Intel

Visualizing water flowing through a limestone karst from a South Florida ground core sample. Credit: Data courtesy of Michael Sukop, Sade Garcia, Florida International University and Kevin Cunningham, United States Geological Survey. Visualization: Carson Brownlee, Aaron Knoll, Paul Navratil, Texas Advanced Computing

Render slice

Ke-co	ore			Xe-c	ore			Xe-o	ore			Xe.	core		
Vector	XMX	XMX	Vector	Vector	XMX	XMX	Vector	Vector	хмх	XMX	Vector	Vect	r xmx	XMX	Vecto
	XMX	XMX	Vector Engine	Vector Engine	XMX	XMX	Vector Engine	Vector Engine	жмх	XMX	Vector Engine	Vect Engle	r xmx	XMX	
Vector Engine	XMX	XMX	Vector Enghe	Vector	жмж	XMX	Vector Engine	Vector	хмх	XMX	Vector Engine	Vect	r xmx	×M×	Vecto
Vector	XMX	XMX	Vector	Vector	XMX	XMX	Vector	Vector Engine	жмк	XMX	Vector	Vect	IT XMX	ХМК	Vecto Englise
Vector Engine	XMX	XMX	Vector Engine	Vector	жмж	XMX	Vector Engine	Vector	жых	XMX	Vector	Vect	г хмх	XMX	Vecto Engre
Vector Engine	XMX	хмх	Vector Engine	Vector Engine	жмж	XMX	Vector Engine	Vector Engris	хмх	XMX	Vector Engine	Vect Engin	r xmx	ХМК	Vecto Engre
Vector Engine	XMX	XMX	Vector Englise	Vector	жмж	XMX	Vector	Vector	хмх	XMX	Vector Engine	Vect	r xmx	ХМЖ	Vecto
Vector	XMX	XMX	Vector Engine	Vector	жмж	XMX	Vector	Vector Engine	хмх	XMX	Vector	Vect	r xmx	ХМК	Vecto Engine
								100000				10000			
IS		L1\$/5	LM	IŞ		L1\$/S	LM	IŞ		L1\$/S	LM	IŞ		L1\$/5	LM
Ra	ay Trac	cinal J			ay Tra	cing U	nit 💼 💼		Pay Tra	cing U	nit		Ray Tra	icing U	nit
mpler				Sampler				Sampler				Sample			
		Geor	netry				Ras	terizer					HiZ		
		KURAN			-					-	No. of Concession, Name		-		-

x10000 -> Aurora has 7.6M Ray Tracing Units x6 + 2 SPR = node aka "blade" x2 = GPU aka "device" x4 = Tile aka "subdevice"

Max GPU ("PVC")

Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	X ^e -core	X ^e -core	X ^e -core	X ^e -core	X ^e -core
Sampler	Sampler	Sampler	Sampler	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector
Geometry	Raste	rizer	HiZ	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector
Pixel Backend		Pixel Backend		Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector
	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector	Vector XMX XMX Vector
	IS LIS/SLM	IS LIS/SLM	IS LIS/SLM	IS LIS/SLM	IS LIS/SLM	15 LIS/SLM	15 L19/SLM	IS LIS/SLM
	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit
	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit	Ray Tracing Unit
Slide courtesy of Roba Binyahib and Dave Demarle	IS LIG/SLM Low/Store Veryal XMX XMX Veryal Veryal XMX XMX Veryal Veryal XMX XMX Veryal Veryal XMX XMX Veryal Veryal XMX Veryal	IS LIG/SLM Low/ Store Veryer XPK XPK Veryer Veryer XPK XPK Veryer Veryer XPK XPK Veryer Veryer XPK XPK Veryer	IS LIG/SLM Low/Store Univer Veryer	15 LIG/SLM Count Store Vector XMX XMX Vector Vector XMX XMX Vector	IS LIG/SLM Load / Store Vector XMM XMX Vector Vector XMM XMM Vector Vector XMM XMM Vector Vector XMM XMM Vector Vector XMM XMM Vector	IS LIG/SLM Load /Store Vector XMX XMX Vector Vector XMX XMX Vector	19 LIG/SLM Load / Store Vector XMX XMX Vector Vector XMX XMX Vector Vector XMX XMX Vector Vector XMX XMX Vector	IS LIG/SLM Load/Store Vector
of Intel								inte

Internal Combustion Engine Simulation

TCC Engine Apparatus

Fluid Dynamics Simulation

Goal

Provide context to tell the story/explain the science Integrate production tools into the existing visualization pipeline Tools used:

- ParaView
- Maya
- Substance Painter
- V-Ray
- Custom scripts and HPC Resources
- ffmpeg
- Premiere/After Effects

THE VISUALIZATION PIPELINE

Overview

In Situ Visualization and Analysis

Five orders of magnitude between compute and I/O capacity on Titan Cray system at ORNL

In Situ vis and Analysis Problem:

FLOPS to I/O Bottleneck

- Frontier

- Peak Performance: 1.6 EF
- Storage: 2-4x Summit's I/O 2.5TB/s. At best 10TB/s
- 5 orders of magnitude difference

- Aurora

- Peak Performance: 1.012 EF
- Storage: 31TB/s
- 5 orders of magnitude difference

Problem

I/O is too expensive Scientists cannot save every timestep, and/or resolution Lost cycles: simulation waits while I/O is happening Lost discoveries: scientists might miss discoveries

Solution: In situ visualization and analysis

What is IN SITU

Traditionally visualization and analysis happens post hoc

–aka: Data gets saved to the disk, scientist opens it after the simulation has ended

In situ

- -Data gets visualized/analyzed while in memory.
- -If zero-copy used, there is no data movement
- -Ideally the data is on the GPU and stays on the GPU

~2014 PHASTA, Catalyst, Ken Jansen

2018 Nek5000, SENSEI

2021 - 2024

Palabos+LAMMPS, SENSEI + Catalyst, bi-directional

2024 nekRS, Ascent + 4Catalystea

In Situ Frameworks and Infrastructures at ALCF

Name	Description	Contact person at ATPESC
ASCENT	The Ascent in situ infrastructure is designed for leading-edge supercomputers, and has support for both distributed-memory and shared-memory parallelism.	Cyrus Harrison
ParaView/Catalyst	<i>In situ</i> use case library, with an adaptable application programming interface (API), that orchestrates the delicate alliance between simulation and analysis and/or visualization tasks	Dan Lipsa
Cinema	Cinema is an innovative way of capturing, storing, and exploring both extreme scale scientific data and experimental data. It is a highly interactive image-based approach to data analysis and visualization that promotes investigation of large scientific datasets.	Joe Insley / Silvio Rizzi
SmartSim	SmartSim is a software framework that facilitates the convergence of numerical simulations and AI workloads on heterogeneous architectures	Joe Insley / Silvio Rizzi

Ascent

- Flyweight design, minimizes dependencies
- Data model based on Conduit from LLNL
- Vis and analysis algorithms implemented in VTK-m

// Run Ascent Ascent ascent; ascent.open(); ascent.publish(data); ascent.execute(actions); ascent.close();

VTK-m's main thrust: a write-once-run-everywhere framework

What is Cinema?

- **Cinema** is part of an integrated workflow, providing a method of extracting, saving, analyzing or modifying and viewing complex data artifacts from large scale simulations.
 - If you're having difficulty exploring the complex results from your simulation, Cinema can help.
- The Cinema 'Ecosystem' is an integrated set of writers, viewers, and algorithms that allow scientists to export, analyze/modify and view Cinema databases.
 - This ecosystem is embodied in widely used tools (ParaView, Vislt, Ascent) and the database specification.

SmartSim Overview

The SmartSim open-source library enables scientists, engineers, and researchers to embrace a "data-in-motion" philosophy to accelerate the convergence of Al/data science techniques and HPC simulations SmartSim enables simulations to be used as engines within a system, producing data, consumed by other services enable new applications

- Embed machine learning training and inference with existing in Fortran/C/C++ simulations
- Communicate data between C, C++, Fortran, and Python applications
- Analyze and visualize data streamed from HPC applications while they are running
- Launch, configure, and coordinate complex simulation, analysis, and visualization workflows

All of these can be done without touching the filesystem, i.e. data-in-motion

slide courtesy of the HPE SmartSim team

Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Nekrs + SENSEI

Mateevitsi, Victor A., Mathis Bode, Nicola Ferrier, Paul Fischer, Jens Henrik Göbbert, Joseph A. Insley, Yu-Hsiang Lan et al. "Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI." In *Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis*, pp. 862-867. 2023.

Introduction

- NekRS
 - Rooted in the Spectral Element Method (SEM)
 - GPU-accelerated thermal-fluid simulation code
 - Predecessor is Nek5000
 - Supports modern heterogenous systems (CPU/GPU)
- Exascale and I/O
 - Exascale machines
 - Disparity between on-chip processing and disk storage is set to widen
 - Data saving to disk notably hampers simulations
 - Tough choice: reduce checkpointing OR simplify the domain
- Solution: In situ and in transit processing
 - In situ: facilitates data processing while in memory
 - In transit: offloads data processing to a set secondary resources
- How?
 - SENSEI

SENSEI

Experiments

- Goal
 - Quantify the computational overhead introduced by *in situ* and in transit methodologies to CFD codes
- Resources
 - The in situ case run on Polaris, at ALCF
 - The in transit case run on JUWELS Booster, at the Jülich Supercomputing Centre
- Reproducibility
 - All source code, analysis code, and use cases have been made available¹

1. Victor A. Mateevitsi, Mathis Bode, Nicola Ferrier, Paul Fischer, Jens Henrik Göbbert, Joseph A. Insley, Yu-Hsiang Lan, Misun Min, Michael E. Papka, Saumil Patel, Silvio Rizzi, and Jonathan Windgassen. 2023. Software and Analysis for paper: Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI. https://doi.org/10.5281/zenodo.8377974

Polaris

Polaris System Specs

Peak Performance	34 petaflops (44 petaflops of Tensor Core FP64 performance)
NVIDIA GPU	A100
AMD EPYC Processor	Milan
Platform	HPE Apollo Gen10+
Compute Node	1 AMD EPYC "Milan" processor; 4 NVIDIA A100 GPUs; Unified Memory Architecture; 2 fabric endpoints; 2 NVMe SSDs
GPU Architecture	NVIDIA A100 GPU; HBM stack
CPU-GPU Interconnect	CPU-GPU: PCIe; GPU-GPU: NVLink
System Interconnect	HPE Slingshot 11*; Dragonfly topology with adaptive routing
Network Switch	200 Gbps (after Slingshot-11 upgrade*)
Node Performance	78 Teraflops (double precision)
System Size	560 nodes

Results – In situ Pebble-bed reactor case

- Metrics
 - Runtime
 - total elapsed wall-clock time
 - Memory footprint
 - aggregate memory high water mark across all MPI ranks.
- Configurations
 - Original: NekRS sans SENSEI
 - Checkpointing: NekRS with built-in checkpointing
 - Catalyst: NekRS with SENSEI, employing the Catalyst
 Adaptor
- Pebble-bed reactor case
 - Pb146 use case simulation from NekRS codebase
 - representation of a pebble-bed nuclear reactor core, housing 146 spherical pebbles
 - Such a simulation is of particular interest, given the growing interest in advanced carbon-neutral nuclear fission reactors

Visualization of the pb146 use case simulation, illustrating flow dynamics within a pebble-bed nuclear reactor

Results – In situ Pebble-bed reactor case

(12.5% of Polaris)

(25% of Polaris)

- NekRS simulation
 - Runs on the GPU
 - Ran for 3,000 timesteps
 - Checkpointing and in situ processing at 100 timestep intervals
- Scale
 - 70 nodes 280 ranks
 - 140 nodes 560 ranks
 - 280 nodes 1,120 ranks (50% of Polaris)

Visualization of the pb146 use case simulation, illustrating flow dynamics within a pebble-bed nuclear reactor

5.5e+0C

JUWELS Booster

- Peak Performance
- System Size
- Platform
- Setup
- Top500

ATOS BullSequana 2020 13. (06/2023)

70.98 PFLOPs

936 nodes

- Compute Node
 - 2x AMD EPYC 7402 24-core, 2.8GHz
 - 512 GB DDR memory
 - 4x NVIDIA A100 GPUs
 - 4x Mellanox HDF200 Infiniband
 - 78 TFLOPs (GPUs)
- System Interconnect
 - Mellanox Infiniband
 - DragonFly+ topology
 - Adaptive routing

Results – In transit Mesoscale case

Mesoscale case

- Rayleigh-Bénard convection (RBC)

 classical natural convection type Basic setup leading to RBC
 - fluid heated from below
- Such simulation is of particular interest to study unusual dynamics of turbulent convection in the sun [1].

Simulation

- Periodic BCs in width and length direction
- In z direction: Temperature: Dirichlet, Velocity: no slip
- Rayleigh number up to 1e12 (full JUWELS Booster runs)
 - examples here are 1e5

[1] Convective mesoscale turbulence at very low Prandtl numbers Ambrish Pandey, Dmitry Krasnov, Katepalli R. Sreenivasan and Jörg Schumacher

Visualization of the temperature field

Strong-scaling plot for JUWELS Booster

Results – In transit Mesoscale case

- In transit configurations
 - No Transport: No SENSEI endpoint
 - Reference measurement
 - No SENSEI analysis adapter connected
 - Checkpointing: SENSEI endpoint writes VTU files
 - pressure and velocity fields
 - Catalyst: SENSEI endpoint passes data to Catalyst
 - Renders two images using ParaView over Python
 - Endpoint: SENSEI data consumer
 - Ratio of simulation- to endpoint nodes: 4:1
 - Sustainable Staging Transport (SST) engine of ADIOS2
 - Communication: UCX
 - Control operations: TCP sockets on Infiniband
 - Data marshaling option: BP4

Visualization of the RBC case. A side view and a top view colored by temperature.

