
LLNL-PRES-867585
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC LLNL-PRES-867585

ATPESC 2024
Monday August 5th, 2024

Visualization and Analysis of HPC Simulation Data with VisIt

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Cyrus Harrison (cyrush@llnl.gov)

LLNL-PRES-867585

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

LLNL-PRES-867585

Outline

Intro to VisIt

Simulation Exploration

§ VisIt Project Introduction (30 min)

§ Hands-on: (60 min)
— Guided tour of VisIt (30 min)
— [Lunch!]
— Visualization of an Aneurysm (30 min)

(Blood Flow) Simulation

LLNL-PRES-867585

§ VisIt 3.4.1
— https://github.com/visit-dav/visit/releases

§ Tutorial Materials
— http://visitusers.org/index.php?title=VisIt_Tutorial

§ How to get in touch
— GitHub: https://github.com/visit-dav/visit

— GitHub Discussions: https://github.com/visit-dav/visit/discussions

Tutorial Resources

https://github.com/visit-dav/visit/releases
http://visitusers.org/index.php?title=VisIt_Tutorial
https://github.com/visit-dav/visit
https://github.com/visit-dav/visit/discussions

LLNL-PRES-867585

Aneurysm Simulation Dataset
Simulated using the LifeV (http://www.lifev.org/) finite element solver.
Available thanks to:

— Gilles Fourestey and Jean Favre
Swiss National Supercomputing Centre (http://www.cscs.ch/)

Potential Flow Simulation Dataset
Simple tutorial simulation built using MFEM (https://mfem.org/)
Available thanks to:

— Aaron Fisher and Mark Miller, LLNL

Tutorial Data Acknowledgements

http://www.lifev.org/
http://www.cscs.ch/
https://mfem.org/

LLNL-PRES-867585

VisIt Project Introduction

LLNL-PRES-867585

The VisIt team develops open-source Visualization,
Analysis, and I/O tools.

In-memory data
description, HPC I/O,
and shared schemas
for simulation data
exchange

File-based, scientific
data exchange
library for
checkpoint restart
and visualization

Easy-to-use
flyweight in situ
visualization
and analysis library
for HPC simulations

Turnkey HPC
application for
visualization and
analysis of
simulation data

Silo

LLNL-PRES-867585

LLNL-PRES-867585

§ Production end-user tool supporting
scientific and engineering
applications.

§ Provides an infrastructure for
parallel post-processing that scales
from desktops to massive HPC
clusters.

§ Source released under a BSD style
license.

VisIt is an open source, turnkey application for data
analysis and visualization of mesh-based data

Pseudocolor plot of Density
(27 billion element dataset)

LLNL-PRES-867585

VisIt supports a wide range of use cases

Data Exploration

Visual Debugging

Quantitative Analysis

Comparative Analysis

=?

Presentation Graphics

LLNL-PRES-867585

VisIt provides a wide range of plotting features for
simulation data across many scientific domains

Molecular Visualization Parallel Coordinates

Pseudocolor RenderingVector / Tensor Glyphs

Volume Rendering

Streamlines / Pathlines

LLNL-PRES-867585

§ The VisIt project started in 2000 to support LLNL’s large-scale ASC physics
codes.

§ The project grew beyond LLNL and ASC with development from DOE SciDAC
and other efforts.

§ VisIt is now supported by multiple organizations:
— LLNL, LBNL, ORNL, Univ of Oregon, Univ of Utah, Intelligent Light, …

§ Over 100 person years of effort, 1.5+ million lines of code.

VisIt is a vibrant project with many participants

VisIt Started

2000

LLNL ASC users
adopt VisIt

2005 R&D 100 DOE SciDAC:
VACET Funded

Transition to
Public VisIt Repo

VisIt 2.0 Release Conduit Started ECP ALPINE and
Ascent Started

VisIt 3.0 Release

Transition to
 repo

ECP CompletedLLNL CS Modular
Strategy Started

2003 2005 2007 2008 2010 2013 2014 2017 2019 2024

LLNL-PRES-867585

§ Our Source Code, Issue tracking, and
Discussions are in the `visit-dav` GitHub
organization:
— https://github.com/visit-dav/

§ Our Docs are hosted on Read the Docs
— https://visit-sphinx-github-user-

manual.readthedocs.io/en/develop/

VisIt is hosted and developed using GitHub

VisIt source repo and issue tracking on GitHub

VisIt manuals on Read the Docs

https://github.com/visit-dav
https://github.com/visit-dav/visit
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/

LLNL-PRES-867585

§ Mesh Types
— Point, Curve, 2D/3D Rectilinear,

Curvilinear, Unstructured
— Domain Decomposed, AMR
— Time Varying
— Primarily linear element support,

limited quadratic element support

§ Field Types
— Scalar, Vector, Tensor, Material Volume

Fractions, Species

VisIt provides a flexible data model, suitable for many
application domains

LLNL-PRES-867585

“How do I obtain VisIt?”

§ Use an existing build:
— For your Laptop or Workstation:

• Binaries for Windows, OSX, and Linux (RHEL, Ubuntu, and many other flavors):
(https://github.com/visit-dav/visit/releases/)

— Several HPC centers have VisIt installed

§ Build VisIt yourself:
— “build_visit” is a script that automates the process of building VisIt and its third-party

dependencies. (also at: https://github.com/visit-dav/visit/releases/))
— Fledgling support for building via spack (https://github.com/spack/spack)

The VisIt team releases binaries for several platforms
and a script that automates the build process

https://github.com/visit-dav/visit/releases/
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/gui_manual/Building/index.html
https://github.com/visit-dav/visit/releases/
https://github.com/spack/spack

LLNL-PRES-867585

“How do I get my data into VisIt?”

§ The PlainText database reader can read simple text files (CSV, etc)
— http://visitusers.org/index.php?title=Using_the_PlainText_reader

§ Write to a commonly used format:
— VTK, Silo, Xdmf, PVTK, Conduit Blueprint (JSON/YAML, or HDF5 files)

§ We are investing heavily in Conduit Blueprint Support
— http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html

§ Experiment with the visit_writer utility.

§ Consult the Getting Data Into VisIt Manual.

VisIt supports more than 110 file formats

http://visitusers.org/index.php?title=Using_the_PlainText_reader
http://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/data_into_visit/VTKFormat.html?highlight=visit_writer
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/data_into_visit/index.html

LLNL-PRES-867585

1999 (LLNL Internal) 2008 (NERSC) 2019 (GitHub) Notes

Revision control ClearCase (LLNL/Yellow) Subversion (NERSC) Git (GitHub) Binary content, git-lfs, svn->git full history, custom scripts

Issue Tracking ClearQuest (LLNL/Yellow) Redmine (ORNL) Issues (GitHub) Tied to code

Testing+Dashboard B-Div Irix (LLNL/Yellow) LLNL-CZ + (NERSC) LLNL-CZ + (GitHub) 3k image+2k txt, fix/rebase tests, exact vs. fuzzy match

CI Testing N/A Cicle-CI à Azure Presently ensuring only compile of core

User contact Majordomo (LLNL)
GNU Mailman (ORNL)
4-2Viz (LLNL)

Discussions (GitHub)
4-2Viz, Teams (LLNL)

Discoverable, attachments/size, notification controls
Privacy, where users are hanging out

Documentation FrameMaker OpenOffice Sphinx (ReadTheDocs) Mergeable, committed & versioned w/code (docs like code)

Website N/A Drupal (LLNL, WSC web) Jekyll + GH Pages Developers can edit directly, GitHub Pages

Configuration AutoTools CMake Native windows dev

Operating System
• Windows
• OSX/macOS
• Linux

• XP Vista 7 8 9 10 11
• OSX-10.? 10.2 10.4 10.5/6 10.8 10.10 10.12 10.14 11 12 13
• RedHat +ubuntu +(fedora, debian, centos)

• Visual Studio, sys-call changes, manually trigger tests
• Security changes getting harder to manage
• No means to test variants fully

Core 3rd Party Libs
• Qt
• VTK
• GL

• Qt3 Qt4 Qt5 Qt6
• VTK-5.0 VTK-5.8 VTK-6 VTK-8 VTK-9
• GL Drivers + Mesa (OpenGL, GL rendering changes)

Qt+VTK+GL is a complex interdependency
• Integration w/GL tricky, no automated testing for GUI
• API changes, baselines change
• hw GL when possible, driver compat, baselines change

Language Standards
• C++
• Python

• C w/classes templates OK C++ 11 allowed C++ 14
Required

• Python 2 Python 2 or 3

• Very conservative in adopting new language features
• A lot of users still using Python 2 workflows

Overview of continuous technology refresh (CTR) on VisIt

We continuously evolve our software development
processes and resources

https://github.com/visit-dav/visit
https://github.com/visit-dav/visit/issues
https://github.com/visit-dav/visit/tree/develop/src/test/tests
https://visit-dav.github.io/dashboard/
https://github.com/visit-dav/visit/blob/develop/azure-pipelines.yml
https://github.com/visit-dav/visit/blob/develop/azure-pipelines.yml
https://github.com/visit-dav/visit/discussions
https://visit-sphinx-github-user-manual.readthedocs.io/en/v3.2.1/
https://visit-dav.github.io/visit-website/
https://github.com/visit-dav/visit/blob/develop/src/CMakeLists.txt

LLNL-PRES-867585

We are actively developing VisIt’s 3.4 release series

§ VisIt 3.4.0
— Initial Qt6, VTK-9, Ospray 3 support
— Keyframing + Colorable Improvements, Hypertree Grid Export
— 25+ enhancements, 19 bugfixes
— https://visit-dav.github.io/visit-website/releases/release-notes-3.4.0/

§ VisIt 3.4.1 -the one you want!
— LANL Crossroads (XR) Install
— Hardened Qt6, VTK-9 Support
— Blueprint, MFEM LOR, X Ray Image Query Improvements
— Python 3.9+ Support
— 18 enhancements, (also) 19 bug fixes
— https://visit-dav.github.io/visit-website/releases/release-notes-3.4.1/

https://visit-dav.github.io/visit-website/releases/release-notes-3.4.0/
https://visit-dav.github.io/visit-website/releases/release-notes-3.4.1/

LLNL-PRES-867585

VisIt uses MPI for distributed-memory parallelism on
HPC clusters

Full Dataset
(27 billion total elements)

3072 sub-grids
(each 192x129x256 cells)

LLNL-PRES-867585

VisIt employs a parallelized client-server architecture

ne
tw

or
k

 c
on

ne
ct

io
n

Parallel HPC ClusterClient Computer

VisIt Viewer

VisIt GUI VisIt CLI Python
Clients

Java
Clients

(Files or Simulation)

Data
Plugin

VisIt
Engine Data

Data
Plugin

VisIt
Engine Data

Data
Plugin

VisIt
Engine Data

M
PI

LLNL-PRES-867585

VisIt automatically switches to a scalable rendering
mode when plotting large data sets on HPC clusters

Task 1 Task 2

Task 3 Task 4

Parallel
Compositing

Final Composited Image

In addition to scalable surface rendering, VisIt also provides scalable volume rendering

LLNL-PRES-867585

DOE’s visualization community is collaborating to
create open source tools ready for Exascale simulations
Addressing node-level parallelism

§ VTK-m is an effort to provide a toolkit
of visualization algorithms that
leverage emerging node-level HPC
architectures from NVIDIA, AMD, Intel.

http://m.vtk.org

Addressing I/O gaps with in-situ

§ There are several efforts focused on
in-situ infrastructure and algorithms

http://www.paraview.org/in-situ https://github.com/Alpine-DAV/ascent

VisIt LibSim
https://visit.llnl.govhttp://www.sensei-insitu.org

http://alpine.dsscale.org

http://m.vtk.org/
http://www.paraview.org/in-situ
https://github.com/Alpine-DAV/ascent
https://visit.llnl.gov/
http://www.sensei-insitu.org/
http://alpine.dsscale.org/

LLNL-PRES-867585

The VisIt team is investing in Conduit and Ascent to
create next generation in situ infrastructure

Flyweight in-situ visualization and
analysis for HPC simulations

http://ascent-dav.orghttp://software.llnl.gov/conduit

Intuitive APIs for in-memory data
description and exchange

http://ascent-dav.org/
http://software.llnl.gov/conduit

LLNL-PRES-867585

§ Provides an intuitive API for in-memory data description
— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

§ Provides common conventions for exchanging complex data
— Shared conventions for passing complex data (eg: Simulation Meshes) enable

modular interfaces across software libraries and simulation applications

§ Provides easy to use I/O interfaces for moving and storing
data
— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

Conduit provides intuitive APIs for in-memory data
description and exchange

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Website and GitHub Repo

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

LLNL-PRES-867585

§ Easy to use in-memory visualization and analysis
— Use cases: Making Pictures, Transforming Data, and Capturing Data

— Supports common visualization operations

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs

§ Uses a flyweight design targeted at next-generation HPC platforms
— Efficient distributed-memory (MPI) and many-core (CUDA, HIP, OpenMP) execution

• Demonstrated scaling: In situ filtering and ray tracing across 16,384 GPUs on
LLNL's Sierra Cluster

— Has lower memory requirements than current tools

— Requires less dependencies than current tools (ex: no OpenGL)

• Builds with Spack https://spack.io/

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

https://spack.io/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent

LLNL-PRES-867585

VisIt’s Visualization Building Blocks

LLNL-PRES-867585

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate derived quantities

§ Queries: Summarize data

VisIt’s interface is built around five core abstractions

LLNL-PRES-867585

Examples of VisIt Pipelines

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate
derived quantities

§ Queries: Summarize data

Open a database, which reads from a file
(Example: Open file1.hdf5)Database

Make a plot of a field in the database
(Example: Pseudocolor plot of density)Plot

LLNL-PRES-867585

Examples of VisIt Pipelines

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate
derived quantities

§ Queries: Summarize data

Open a database, which reads from a file
(Example: Open file1.hdf5)Database

Make a plot of the result
(Example: Pseudocolor plot of density)Plot

Apply an operator to transform the data
(Example: Slice operator)Operator

LLNL-PRES-867585

Examples of VisIt Pipelines

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate
derived quantities

§ Queries: Summarize data

Open a database, which reads from a file
(Example: Open file1.hdf5)Database

Make a plot of the result
(Example: Pseudocolor plot of density)Plot

Apply an operator to transform the data
(Example: Slice operator)Operator 1

Apply a second operator to transform the data
(Example: Elevate operator)Operator 2

LLNL-PRES-867585

Examples of VisIt Pipelines

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate
derived quantities

§ Queries: Summarize data

Open a database, which reads from a file
(Example: Open file1.hdf5)Database

Make a plot of the result
(Example: Pseudocolor plot of speed)Plot

Create derived quantity from existing fields
(Example: speed = magnitude(velocity)Expression

LLNL-PRES-867585

Examples of VisIt Pipelines

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate
derived quantities

§ Queries: Summarize data

Open a database, which reads from a file
(Example: Open file1.hdf5)Database

Extract quantitative information
(Example: integrate density to find mass)Query

Make a plot of a field in the database
(Example: Pseudocolor plot of density)Plot

LLNL-PRES-867585

Examples of VisIt Pipelines

§ Databases: Read data

§ Plots: Render data

§ Operators: Manipulate data

§ Expressions: Generate
derived quantities

§ Queries: Summarize data

Open a database, which reads from a file
(Example: Open file1.hdf5)Database

Create derived quantity from existing fields
(Example: speed = magnitude(velocity)Expression

Apply an operator to transform the data
(Example: Slice operator)Operator 1

Apply a second operator to transform the data
(Example: Elevate operator)Operator 2

Plot a field
(Example: Pseudocolor plot of speed)Plot

Extract quantitative information
(Example: Maximum speed over cross-section)Query

LLNL-PRES-867585

Resources

Presenter Contact Info:

§ Cyrus Harrison: cyrush@llnl.gov

Resources:

§ Main website: http://www.llnl.gov/visit

§ Github: https://github.com/visit-dav/visit

§ GitHub Discussions: https://github.com/visit-dav/visit/discussions

§ Wiki: http://www.visitusers.org

mailto:cyrush@llnl.gov
http://www.llnl.gov/visit
https://github.com/visit-dav/visit
https://github.com/visit-dav/visit/discussions
http://www.visitusers.org/

LLNL-PRES-867585

Aneurysm Simulation Exploration

https://visit-sphinx-github-user-
manual.readthedocs.io/en/develop/tutorials/Aneurysm.html

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/Aneurysm.html
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/Aneurysm.html

LLNL-PRES-867585

Remote Usage Tips

https://visit-sphinx-github-user-
manual.readthedocs.io/en/develop/tutorials/RemoteUsage.html

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/RemoteUsage.html
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/RemoteUsage.html

LLNL-PRES-867585

Python Scripting Basics

https://visit-sphinx-github-user-
manual.readthedocs.io/en/develop/tutorials/Scripting.html

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/Scripting.html
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/Scripting.html

LLNL-PRES-867585

Connected Components

https://visit-sphinx-github-user-
manual.readthedocs.io/en/develop/tutorials/CCL.html

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/CCL.html
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/CCL.html

LLNL-PRES-867585

§ Potential Flow Simulation Exploration
— https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/PotentialFlow.html

§ Water Flow Simulation Exploration
— http://visitusers.org/index.php?title=Water_Flow_Tutorial

§ Volume Rendering
— http://visitusers.org/index.php?title-Visit-tutorial-Volume-Rendering

§ Movie Making
— https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/MakingMovies.html

§ Advanced Movie Making
— http://visitusers.org/index.php?title=Visit-tutorial-Advanced-movie-making

Additional Hands-on Materials

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/PotentialFlow.html
http://visitusers.org/index.php?title=Water_Flow_Tutorial
http://visitusers.org/index.php?title-Visit-tutorial-Volume-Rendering
https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/tutorials/MakingMovies.html
http://visitusers.org/index.php?title=Visit-tutorial-Advanced-movie-making

LLNL-PRES-867585

Visualization Techniques for
Mesh-based Simulations

LLNL-PRES-867585

Pseudocolor rendering maps scalar fields to a range of
colors

Pseudocolor rendering of Elevation Pseudocolor rendering of Density

LLNL-PRES-867585

Volume Rendering cast rays though data and applies
transfer functions to produce an image

Emitter

Film/Image

LLNL-PRES-867585

Isosurfacing (Contouring) extracts surfaces of that
represent level sets of field values

LLNL-PRES-867585

Particle advection is the foundation of several flow
visualization techniques
§ S(t) = position of particle at time t

§ S(t0) = p0
— t0: initial time
— p0: initial position

§ S’(t) = v(t, S(t))
— v(t, p): velocity at time t and position p
— S’(t): derivative of the integral curve at time t

This is an ordinary differential equation.

LLNL-PRES-867585

§ Streamlines – Instantaneous paths

§ Pathlines – Time dependent paths

Streamline and Pathline computation are built on
particle advection

LLNL-PRES-867585

Meshes discretize continuous space

§ Simulations use a wide range of mesh types, defined in terms of:
— A set of coordinates (“nodes” / “points” / “vertices”)
— A collection of “zones” / “cells” / “elements” on the coordinate set

VisIt uses the “Zone” and “Node” nomenclature throughout its interface.

Points Uniform Curvilinear Unstructured

LLNL-PRES-867585

§ Field values are associated with the zones or nodes of a mesh
— Nodal: Linearly interpolated between the nodes of a zone
— Zonal: Piecewise Constant across a zone

§ Field values for each zone or node can be scalar, or multi-valued
(vectors, tensors, etc.)

Mesh fields are variables associated with the mesh
that hold simulation state

Nodal Association Zonal Association Vector Field Tensor Field

LLNL-PRES-867585

§ Multi-material simulations use
volume/area fractions to capture
disjoint spatial regions at a sub-grid
level.

§ These fractions can be used as input
to high-quality sub-grid material
interface reconstruction algorithms.

Material volume fractions are used to capture sub-
zonal interfaces

LLNL-PRES-867585

§ Species describe sub-grid variable composition
— Example: Material “Air” is made of species “N2” ,“O2”, “Ar”, “CO2”, etc.

§ Species are used for weighting, not to indicate sub-zonal interfaces.
— They are typically used to capture fractions of “atomically mixed” values.

Species are used to capture sub-zonal weightings

LLNL-PRES-867585

§ Simulation meshes may be composed of smaller mesh “blocks” or
“domains”.

§ Domains are partitioned across MPI tasks for processing.

Domain decomposed meshes enable scalable parallel
visualization and analysis algorithms

LLNL-PRES-867585

§ Mesh domains are associated with patches and levels

§ Patches are nested to form a AMR hierarchy

Adaptive Mesh Refinement (AMR) refines meshes into
patches that capture details across length scales

LLNL-PRES-867585

Resources

Presenter Contact Info:

§ Cyrus Harrison: cyrush@llnl.gov

Resources:

§ Main website: http://www.llnl.gov/visit

§ Github: https://github.com/visit-dav/visit

§ GitHub Discussions: https://github.com/visit-dav/visit/discussions

§ Wiki: http://www.visitusers.org

mailto:cyrush@llnl.gov
http://www.llnl.gov/visit
https://github.com/visit-dav/visit
https://github.com/visit-dav/visit/discussions
http://www.visitusers.org/

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software, applications, and hardware technology,
to support the nation’s exascale computing imperative.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

