

FASTMath Unstructured Mesh Technologies

E. Boman¹, V. Dobrev², D.A. Ibanez¹, K.E. Jansen³, T. Kolev², J.Merson⁴, **O. Sahni4, M.S. Shephard4, G.M. Slota4, C.W. Smith4 , V. Tomov2**

> **1Sandia National Laboratories 2Lawrence Livermore National Laboratory 3University of Colorado 4Rensselaer Polytechnic Institute**

Finite elements are a good foundation for large-scale simula1ons on current and future architectures

- § Backed by well-developed theory
- Naturally support unstructured and curvilinear grids.
- § *Finite elements naturally connect different physics*

- § *High-order finite elements on high-order meshes*
	- increased accuracy for smooth problems
	- sub-element modeling for problems with shocks
	- bridge unstructured/structured grids
	- bridge sparse/dense linear algebra
	- HPC utilization, FLOPs/bytes increase with the order
- § *Need new (interesting!) R&D for full benefits*
	- meshing, discretizations, solvers, AMR, UQ, visualization, …

8th order Lagrangian simulation *of shock triple-point interaction*

Core-Edge tokamak EM wave propagation

Modular Finite Element Methods (MFEM)

Flexible discretizations on unstructured grids

- § Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume, surface and topologically periodic meshes
- Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, ...
- Local conforming and non-conforming AMR, mesh optimization
- **Hybridization and static condensation**

High-order methods and scalability

- § Arbitrary-order H1, H(curl), H(div)- [and L2 elements](http://mfem.org/examples)
- **•** Arbitrary order curvilinear meshes
- § MPI scalable to millions of cores + GPU accelerated
- **Enables development from laptops to exascale machines.**

Solvers and preconditioners

- § Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …
- AMG solvers for full de Rham complex on CPU+GPU, geometric MG
- **Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...**

Open-source software

- § Open-source (GitHub) with 114 *contributors*, 50 *clones/day*
- Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...
- 75+ example codes & miniapps: mfem.org/examples

mfem $(v4.7, M₅)$

§ Mesh

```
// 2. Read the mesh from the given mesh file. We can handle triangular,
64
       \overline{11}quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
65\prime\primethe same code.
66Mesh *mesh;
67ifstream imesh(mesh file);
       if (limesh)
68
690172345677890
       \mathcal{L}cerr << "\nCan not open mesh file: " << mesh file << '\n' << endl;
          return 2:
       mesh = new Mesh(imesh, 1, 1);
       imesh.close();
       int \dim = mesh-Dimensional);
       // 3. Refine the mesh to increase the resolution. In this example we do
       \frac{1}{2}'ref levels' of uniform refinement. We choose 'ref levels' to be the
       \overline{11}largest number that gives a final mesh with no more than 50,000
       \prime\primeelements.
81<br>82<br>83<br>84
           int ref levels =
              (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
           for (int 1 = 0; 1 < ref_{levels; 1++})
85mesh->UniformRefinement();
86
```
§ Finite element space

§ Linear solve

§ Visualization

160

- // 10. Send the solution by socket to a GLVis server. 152 153 if (visualization) 154 $\frac{154}{155}$ char vishost[] = "localhost"; 156 int visport = 19916 ; 157 socketstream sol_sock(vishost, visport); 158 sol_sock.precision(8); 159 sol sock << "solution\n" << *mesh << x << flush;
	-

- works for any mesh & any H1 order
- **•** builds without external dependencies

Mesh **The State**

```
63
       // 2. Read the mesh from the given mesh file. We can handle triangular,
64
             quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
       \prime\prime65
       \prime\primethe same code.
66
       Mesh *mesh;
67
       ifstream imesh(mesh file);
68
       if (!imesh)
69
       €
70
          cerr << "\nCan not open mesh file: " << mesh file << '\n' << endl;
71return 2:
72
       F
73
       mesh = newMesh(imesh, 1, 1);74
       imesh.close();
75
       int dim = mesh-Dimensional):
76
77
       // 3. Refine the mesh to increase the resolution. In this example we do
78
       \prime\prime'ref levels' of uniform refinement. We choose 'ref levels' to be the
79
       \prime\primelargest number that gives a final mesh with no more than 50,000
80
             elements.
       \prime\prime81
       ſ
82
          int ref levels =
83
              (int) floor(log(50000./mesh->GetNE())/log(2.)/dim);84
          for (int l = 0; l < ref levels; l++)85
             mesh->UniformRefinement();
86
       Y
```


Finite element space $\mathcal{L}_{\mathcal{A}}$

Initial guess, linear/bilinear forms $\mathcal{C}^{\mathcal{A}}$

Linear solve $\mathcal{L}_{\mathcal{A}}$

Visualization \mathbb{R}^n

Example 1 – parallel Laplace equation

 (2)

Parallel data decomposition in BLASTINI

§ Parallel mesh

• Parallel finite element space Darallol finito alamant

 (1)

122 ParFiniteElement

• Parallel initial guess, linear/bilinear forms Parallel Initial gi

```
|130|ParLinearForm *b = new ParLinearForm(fespace);
\vert 138
         ParGridFunction x(fespace);
147ParBilinearForm *a = new ParBilinearForm(fespace);
```
§ Parallel assembly

// 10. Define the parallel (hypre) matrix and vectors representing $a(.,.)$ 155 156 $b(.)$ and the finite element approximation. 157 HypreParMatrix *A = a->ParallelAssemble(); $HyperParVector *B = b->ParallelAssemble();$ 158 159 $HyperParVector *X = x.ParallelAverage();$

$$
A = P^T a P \qquad B = P^T b \qquad x = PX
$$

§ Parallel linear solve with AMG

- // 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG 164
- 165 preconditioner from hypre.
- 166 $HyperSolver *amp = new HyperBoomerAMG(*A);$ 167
- HyprePCG *pcg = new HyprePCG(*A); $pcg - SetTol(1e-12);$ 168
- 169 pcg->SetMaxIter(200);
- 170 pcg->SetPrintLevel(2);
- 171 pcg->SetPreconditioner(*amg);
- 172 $pcg->Mult(*B, *X);$

§ Visualization

// 14. Send the solution by socket to a GLVis server. 194 $\frac{195}{196}$ if (visualization) 197 char vishost[] = "localhost"; $int \; \text{vispost} = 19916;$ 198
199
200 socketstream sol sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n"; 201 sol sock.precision (8) ; 202 sol_sock << "solution\n" << *pmesh << x << flush; 203

- highly scalable with minimal changes
- § build depends on *hypre* and METIS

Example 1 – parallel Laplace equation

```
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
101
102
        \prime\primethis mesh further in parallel to increase the resolution. Once the
103
              parallel mesh is defined, the serial mesh can be deleted.
        \prime\primeParMesh *pmesh = new ParMesh (MPI COMM WORLD, *mesh);
104
105
        delete mesh:
106
        \left\{ \right.107
           int par ref levels = 2;
108
           for (int l = 0; l < par ref levels; l++)pmesh-YIniformRefinement();
109
110
122ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
       ParLinearForm *b = new ParLinearForm(fespace);
130ParGridFunction x(fespace);
138
147ParBilinearForm *a = new ParBilinearForm(fespace);
155
        // 10. Define the parallel (hypre) matrix and vectors representing a(.,.)156
               b(.) and the finite element approximation.
        ^{\prime\prime}157HyperParMatrix *A = a->ParallelAssemble();
158
        HyperParVector *B = b->ParallelAssemble();
159
        HyperParVector *X = x.ParallelAverage();// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
164165
               preconditioner from hypre.
        \prime\prime166
        Hypresolver *amq = new HypreBoomerAMG(*A);167
        HyperPCG *pcq = new HyperPCG(*A);168
        pcq->SetTol(1e-12);169
        pcg->SetMaxIter(200);
170
        pcq->SetPrintLevel(2);
171
        pcg->SetPreconditioner(*amg);
172
        pcq->Mult(*B, *X);sol sock << "parallel " << num procs << " " << myid << "\n";
200
201
           sol sock.precision(8);
           sol sock << "solution\n" << *pmesh << x << flush;
202
```


MFEM example codes: mfem.org/examples

- § 40+ example codes, most with both serial + parallel versions
- § Tutorials to learn MFEM features
- Starting point for new applications
- **Show integration with many external packages**
- Miniapps: more advanced, ready-to-use physics solvers

Example Codes and Miniapps

Example 1: Laplace Probler

Example 2: Linear Elasticity

 $-\text{div}(a)$ in $\theta = 0$

Demo

https://xsdk-project.github.io/MathPackagesTraining2024/ lessons/mfem_convergence/

Some large-scale simulation codes powered by MFEM

Inertial confinement fusion (BLAST)

Topology optimization for additive manufacturing (LiDO)

MRI modeling (Harvard Medical)

Core-edge tokamak EM wave propagation (SciDAC, RPI)

Heart modeling (Cardioid) Adaptive MHD island
 Adaptive MHD island
 Coalescence (SciDAC, LANL)

BLAST models shock hydrodynamics using high-order FEM in both Lagrangian and Remap phases of ALE

High-order finite elements lead to more accurate, robust and reliable hydrodynamic simulations

High-order finite elements have excellent strong scalability

Strong scaling, p-refinement

Strong scaling, fixed #dofs

Finite element partial assembly FLOPs increase faster than runtime

ATPESC 2024

Conforming & Nonconforming Mesh Refinement

■ Conforming refinement

Nonconforming refinement

Natural for quadrilaterals and hexahedra $\mathcal{L}^{\mathcal{L}}$

MFEM's unstructured AMR infrastructure

Adaptive mesh refinement on library level:

- Conforming local refinement on simplex meshes
- *Non-conforming refinement for quad/hex meshes*
- h-refinement with fixed p

General approach:

- any high-order finite element space, H1, H(curl), H(div), …, on any high-order curved mesh
- $-2D$ and $3D$
- arbitrary order hanging nodes
- anisotropic refinement
- derefinement
- serial and parallel, including parallel load balancing
- independent of the physics (easy to incorporate in applications)

Shaper miniapp

General nonconforming constraints Simple example: first order *H*(*curl*) (edge elements)

Constraint: e = f = d/2

Constraint: *e* = *f* = *d/*2 *Indirect constraints*

 α in β ... *More complicated in 3D…*

Some methods enforce 2:1 ratio between

 $Uich$ and q alements *High-order elements*

Constraint: local interpolation matrix

$$
s = Q \cdot m, \quad Q \in \mathbb{R}^{9 \times 9}
$$

Variational Restriction Nonconforming variational restriction

General constraint:

$$
y = Px, \quad P = \left[\begin{array}{c} I \\ W \end{array} \right].
$$

x – conforming space DOFs,

y – nonconforming space DOFs (unconstrained + slave),

 $dim(x) \leq dim(y)$

W – interpolation for slave DOFs

Constrained problem:

$$
P^TAPx=P^Tb,
$$

$$
y = Px.
$$

Nonconforming variational restriction

Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh

Nonconforming variational restriction

Conforming solution $y = P x$

AMR = smaller error for same number of unknowns

Anisotropic adaptation to shock-like fields in 2D & 3D

Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and derefinement. 2nd order Lagrangian Sedov *Parallel load balancing based on spacefilling curve partitioning, 16 cores*

Parallel AMR scaling to ~400K MPI tasks

- weak+strong scaling up to ~400K MPI tasks on BG/Q
- **measure AMR only components**: interpolation matrix, assembly, marking, refinement & rebalancing (no linear solves, no "physics")

Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into **parallel**, **mesh topology**, **basis**, and **geometry/physics** components:

* *libCEED,* github.com/ceed/libceed

FASTMATH

Example of a fast high-order operator

Poisson Example. Variational Form: *Poisson problem in variational form*

Find
$$
u \in Q_p \subset \mathcal{H}_0^1
$$
 s.t. $\forall v \in Q_p$,

$$
\int_{\Omega}\nabla u\cdot\nabla v=\int_{\Omega}fv
$$

^r*^v ·* ^r*u dV* ⁼ ^X $\boldsymbol{\mathsf{Stiff}}$ ness matrix (unit coefficient) ^r*v^e ·* ^r*u^e dV* ⁼ ^X

$$
\int_{\Omega} \nabla \varphi_i \nabla \varphi_j = \sum_{E} \int_{E} \nabla \varphi_i \nabla \varphi_j
$$
\n
$$
= \sum_{E} \sum_{k} \alpha_k J_E^{-1}(q_k) \hat{\nabla} \hat{\varphi}_i(q_k) J_E^{-1}(q_k) \hat{\nabla} \hat{\varphi}_j(q_k) |J_E(q_k)|
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k)) J_E(q_k)}_{\text{maximize } \varphi_j(q_k) |J_E(q_k)|}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q_k)}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q_k)}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q_k)}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q_k)}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q_k)}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q_k)}
$$
\n
$$
= \sum_{E} \sum_{k} \hat{\varphi}_i(q_k) \underbrace{(\alpha_k J_E^{-T}(q_k) J_E^{-1}(q_k) |J_E(q_k)|)}_{\text{maximize } \varphi_j(q
$$

Z mapping (geometric factors) • *J* is the Jacobian of the element

- \overline{a} : ้นล ually Boolean (except AMR) R) \overline{y} • *G* is usually Boolean (except AMR)
- Element matrices $A_E = B^TDB$, are full, account for bulk of the physics, can be applied in parallel

and the sum-factorization in the sum-separation in the set of A_E, just apply its action in C_R is action in C_R is a Boolean in case of A_E, is a COD in case of A_E, is a COD in case of A_E, is a COD in case of A_E based on actions of *B*, *BT* and *D*

CEED BP1 bakeoff on BG/Q

 \blacktriangledown All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ..., 16; quad. points q = p + 2.

 \checkmark BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.

✔ Paper: "Scalability of High-Performance PDE Solvers", IJHPCA, 2020

 \checkmark Cooperation/collaboration is what makes the bake-offs rewarding.

Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations

- Several MFEM examples + miniapps have been ported with small changes
- § Many kernels have a single source for CUDA, RAJA and OpenMP backends
- Backends are runtime selectable, can be mixed
- Recent improvements in CUDA, HIP, RAJA, SYCL, ...

ATPESC 2024

"MFEM: A modular finite element methods library", CAMWA 2020

MFEM performance on multiple GPUs

Problem size: 10+ million

Best total performance: **2.1 TDOF/s** Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

Recent improvements on NVIDIA and AMD GPUs

New MFEM GPU kernels: perform on both V100 + MI100,

can utilize tensor cores on A100 have better strong scaling, achieve 10+ GDOFs on H100

MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

Matrix-free preconditioning

- *Explicit matrix assembly impractical at high order:* – Polynomial degree p , spatial dimension d
	- Matrix assembly $+$ sparse matvecs:
		- $O(p^{2d})$ memory transfers
		- $O(p^{3d})$ computations
		- can be reduced to $O(p^{2d+1})$ computations by sum factorization
	- Matrix-free action of the operator (partial assembly):
		- $O(p^d)$ memory transfers *optimal*
		- $O(p^{d+1})$ computations *nearly-optimal*
		- efficient iterative solvers *if combined with effective preconditioners*
- *Challenges:*
	- Traditional matrix-based preconditioners (e.g. AMG) not available
	- Condition number of diffusion systems grows like $O(p^3/h^2)$

ATPESC 2024

Low-Order-Refined (LOR) preconditioning

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

- Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann) Г
- A_{LOR} is sparse and spectrally equivalent to A_{HO} $\mathcal{L}_{\mathcal{A}}$

Theorem 2. Let M_{\star} and K_{\star} denote the mass and stiffness matrices, respectively, where \star represents one of the above-defined finite element spaces with basis as in Section $\overline{4.3}$. Then we have the following spectral equivalences, independent of mesh size h and polynomial degree p.

> $M_{V_h} \sim M_{V_n}$, $K_{V_h} \sim K_{V_n}$ $M_{\mathbf{W}_h} \sim M_{\mathbf{W}_p}, \qquad K_{\mathbf{W}_h} \sim K_{\mathbf{W}_p},$ $M_{\mathbf{X}_h} \sim M_{\mathbf{X}_p}, \qquad K_{\mathbf{X}_h} \sim K_{\mathbf{X}_p},$ $M_{Y_h} \sim M_{Y_{n-1}}$ $M_{Z_h} \sim M_{Z_v}$, $K_{Z_h} \sim K_{Z_v}$.

 $(A_{HO})^{-1} \approx (A_{LOR})^{-1} \approx B_{LOR}$ - can use BoomerAMG, AMS, ADS $\overline{}$

 $\beta = 10^{-6}$ Copper $\beta=1$ $\nabla \times \nabla \times \boldsymbol{u} + \beta \boldsymbol{u} = \boldsymbol{f}$

"Low-order preconditioning for the high-order de Rham complex", Pazner, Kolev, Dohrmann, 2022

High-order FE methods show promise for high-quality & performance simulations on exascale platforms

- § **More information and publications**
	- MFEM **mfem.org**
	- BLAST **computation.llnl.gov/projects/blast**
	- CEED **ceed.exascaleproject.org**
- § **Open-source software**

- § **Ongoing R&D**
	- GPU-oriented algorithms for Frontier, Aurora, El Capitan
	- Matrix-free scalable preconditioners
	- Automatic differentiation, design optimization
	- Deterministic transport, multi-physics coupling

Q4 Rayleigh-Taylor singlematerial ALE on 256 processors

Upcoming MFEM Events

MFEM in the Cloud Tutorial

August 22, 2024

October 22-24, 2024

https://mfem.org/tutorial https://mfem.org/workshop

ALINE Seminar series: https://mfem.org/seminar

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-755924

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

