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§ Backed by well-developed theory

§ Naturally support unstructured and curvilinear grids.

§ Finite elements naturally connect different physics

§ High-order finite elements on high-order meshes
• increased accuracy for smooth problems
• sub-element modeling for problems with shocks
• bridge unstructured/structured grids
• bridge sparse/dense linear algebra
• HPC utilization, FLOPs/bytes increase with the order

§ Need new (interesting!) R&D for full benefits
• meshing, discretizations, solvers, AMR, UQ, visualization, …

8th order Lagrangian simula0on 
of shock triple-point interac0on

High-order 
thermodynamics

High-order 
MHD

High-order 
rad. diffusion

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes” “elems”“edges” “faces”

High-order 
kinematics

Core-Edge tokamak EM wave 
propaga0on

Finite elements are a good founda1on for large-scale 
simula1ons on current and future architectures
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mfem.org
(v4.7, May 2024)

Flexible discretizations on unstructured grids
§ Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume, 

surface and topologically periodic meshes
§ Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, …
§ Local conforming and non-conforming AMR, mesh optimization
§ Hybridization and static condensation

High-order methods and scalability
§ Arbitrary-order H1, H(curl), H(div)- and L2 elements
§ Arbitrary order curvilinear meshes
§ MPI scalable to millions of cores + GPU accelerated
§ Enables development from laptops to exascale machines.

Solvers and preconditioners
§ Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …
§ AMG solvers for full de Rham complex on CPU+GPU, geometric MG
§ Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software
§ Open-source (GitHub) with 114 contributors, 50 clones/day
§ Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …
§ 75+ example codes & miniapps: mfem.org/examples 

Modular Finite Element Methods (MFEM)

http://mfem.org/examples
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Example 1 – Laplace equa1on
§ Mesh

§ Finite element space

§ Initial guess, linear/bilinear forms

§ Linear solve

§ Visualization

§ works for any mesh & any H1 order
§ builds without external dependencies
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Example 1 – Laplace equa1on

§ Mesh
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Example 1 – Laplace equa1on

§ Finite element space
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Example 1 – Laplace equa1on

§ Initial guess, linear/bilinear forms
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Example 1 – Laplace equa1on

§ Linear solve

§ Visualization
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Example 1 – parallel Laplace equa1on
§ Parallel mesh

§ Parallel finite element space

§ Parallel initial guess, linear/bilinear forms

§ Parallel linear solve with AMG

§ Visualization

§ highly scalable with minimal changes
§ build depends on hypre and METIS

§ Parallel assembly

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh

�⇥
(1)

�⇥
(2)

(1) Parallel mesh splitting (domain decomposition using METIS).
(2) Parallel mesh refinement.

Parallel finite element space

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh
Parallel finite element space

�⇥
(1)

�⇥
(2)

(1) Find shared degrees of freedom (dofs).
(2) Form groups of dofs and assign ownership.
(3) Build a parallel Boolean matrix P = dofs truedofs identifying each dof with a master (true) dof.

We use the ParCSR format in the hypre library for parallel matrix storage.

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

P : true dof 7! dof

A = PTaP B = PT b x = PX
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Example 1 – parallel Laplace equa1on
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MFEM example codes: mfem.org/examples 
§ 40+ example codes, most with both serial + parallel versions

§ Tutorials to learn MFEM features

§ Starting point for new applications

§ Show integration with many external packages

§ Miniapps: more advanced, ready-to-use physics solvers
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Demo
h"ps://xsdk-project.github.io/MathPackagesTraining2024/

lessons/mfem_convergence/
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Topology op(miza(on for 
addi(ve manufacturing (LiDO)

Core-edge tokamak EM
wave propaga(on (SciDAC, RPI)

Iner(al confinement 
fusion (BLAST)

Heart modeling (Cardioid) Adap(ve MHD island
coalescence (SciDAC, LANL)

MRI modeling (Harvard Medical)

Some large-scale simula1on codes powered by MFEM
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Advection phase (~c = �~vm)

Momentum Conservation:
d(⇢~v)

d⌧
= ~vm ·r(⇢~v)

Mass Conservation:
d⇢

d⌧
= ~vm ·r⇢

Energy Conservation:
d(⇢e)

d⌧
= ~vm ·r(⇢e)

Mesh velocity: ~vm =
d~x

d⌧

Lagrange phase
Physical *me evolu*on
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion

Lagrangian phase (~c = ~0)

Momentum Conservation: ⇢
d~v

dt
= r · �

Mass Conservation:
d⇢

dt
= �⇢r · ~v

Energy Conservation: ⇢
de

dt
= � : r~v

Equation of Motion:
d~x

dt
= ~v

t = 0

⌧ = 0

⌧ = 0.5

⌧ = 1

t = 1.5

t = 3.0

v Galerkin FEM

v Discont. Galerkin

Gauss-Lobatto basis

Bernstein basis

BLAST models shock hydrodynamics using high-order FEM 
in both Lagrangian and Remap phases of ALE
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Parallel ALE for Q4 Rayleigh-
Taylor instability (256 cores)

High-order finite elements lead to more accurate, robust 
and reliable hydrodynamic simula1ons

Robustness in 
Lagrangian shock-3pt 
axisymm. interaction

Symmetry in 
3D implosion

Symmetry in 
Sedov blast
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Strong scaling, p-refinement

1 zone/core

~600 dofs/zone

2D
256K DOFs

Strong scaling, fixed #dofs

SGH

Finite element partial assembly FLOPs increase faster than runtime

more FLOPs, 
same runtime

256 cores

High-order finite elements have excellent strong scalability
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Conforming & Nonconforming Mesh Refinement
Mesh Refinement

Conforming refinement

Nonconforming refinement

Natural for quadrilaterals and hexahedra
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Adaptive mesh refinement on library level:
– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes 

– h-refinement with fixed p

General approach: 
– any high-order finite element space, H1, H(curl), 

H(div), …, on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derefinement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in 
applications)

MFEM’s unstructured AMR infrastructure

Example 15

Shaper miniapp
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General nonconforming constraintsConstructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

High-order elements

Constraint:  local interpolation matrix

Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(tangential component discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: first order H(curl) (edge elements)

Constraint: e = f = d/2

Constraint:  e = f = d/2

H(curl) elements

Constructing the P matrix

Indirect constraints: slave DOFs may depend on other
slaves

More complex situations in 3D.
Some methods enforce 2:1 ratio between
edges/faces, we do not.

Indirect constraints

More complicated in 3D…
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Variational Restriction

General constraint:

y = Px , P =


I

W

�
.

x – conforming space DOFs,
y – nonconforming space DOFs (unconstrained + slave),

dim(x)  dim(y)

W – interpolation for slave DOFs

Constrained problem:

P
T
APx = P

T
b,

y = Px .

Nonconforming varia1onal restric1on
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Nonconforming varia1onal restric1onConstructing the P matrix
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Nonconforming varia1onal restric1onConstructing the P matrix

Regular assembly of A on the elements of the (cut) mesh
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Nonconforming varia1onal restric1onAnisotropic refinement

Conforming solution y = P x
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AMR = smaller error for same number of unknowns

Anisotropic adaptation to 
shock-like fields in 2D & 3D

uniform refinement
1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR
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Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and 
derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-
filling curve partitioning, 16 cores



ATPESC 2024

 1

 10

 100

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 384K    

Ti
m

e 
of

 A
M

R
 it

er
at

io
n 

[s
ec

on
ds

]

CPU cores

ideal strong scaling
weak scaling

size 0.5M
size 1M
size 2M
size 4M
size 8M

size 16M
size 32M
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Parallel decomposition 
(2048 domains shown)

Parallel partitioning via 
Hilbert curve

• weak+strong scaling up to ~400K MPI tasks on BG/Q

• measure AMR only components: interpolation matrix, assembly, marking, 
refinement & rebalancing (no linear solves, no “physics”)

Parallel AMR scaling to ~400K MPI tasks
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A = PTGTBTDBGP

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh 
topology, basis, and geometry/physics components:

Fundamental finite element operator decomposi1on

✔ purely algebraic

✔ partial assembly = store only D, evaluate B (tensor-product structure)

✔ AD-friendly

✔ better representation than A: optimal memory, near-optimal FLOPs

✔ high-order operator format
* libCEED, github.com/ceed/libceed
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Z

⌦
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Poisson Example. Variational Form:

Find u 2 Qp ⇢ H
1
0 s.t. 8v 2 Qp,

Z

⌦
⌫rv ·ru dV =

Z

⌦
v f dV.

Z

⌦
rv ·ru dV =

EX

e=1

Z

⌦e
rv

e
·ru

e
dV =

EX

e=1

(v
e
)
T
A

e
u
e
= v

T
Q

T

2

6664

A
1

A
2

. . .

A
4

3

7775
Qu.

• Q is a Boolean assembly matrix (non-Boolean in case of AMR); communication intensive.

• Local element sti↵ness matrices applied in parallel.

• Each A
e
is nominally full and accounts for the bulk of the physics.

Tensor-product sum-factorization is key to e�cient implementation.

• Never form A
e
. Use the factored matrix-vector product

w
e
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• Dj : tensor products of 1D (q ⇥ q) interpolation (Ĵ) and derivative (D̂) matrices.

D1 = Ĵ ⌦ Ĵ ⌦ D̂

D2 = Ĵ ⌦ D̂ ⌦ Ĵ

D3 = D̂ ⌦ Ĵ ⌦ Ĵ ,

where q=number of quadrature points in each direction.

• Can be applied fast. Only O(q
4
) work and O(q

3
) storage, vs. O(p

6
) cost of traditional FEM.

• Geometric factors are diagonal matrices of size q
3
⇥ q

3
.

• G is a symmetric tensor, Gij = Gji, =) 6q
3
memory references per element.

• For spectral elements, q = p+ 1 and Ĵ = Î.

• Work complexity: W = 12q
4
+ 15q

3
,

• Leading order O(q
4
) term: tensor contractions cast as e�cient BLAS3 kernels.

Poisson problem in variational form

Stiffness matrix (unit coefficient)

(BT)ik BkjDkkG,GT

Aij 

• J is the Jacobian of the element 
mapping (geometric factors)

• G is usually Boolean (except AMR)

• Element matrices AE = BTDB, are 
full, account for bulk of the physics, 
can be applied in parallel

• Never form AE, just apply its action 
based on actions of B, BT and D

Poisson Example. Variational Form:

Find u 2 Qp ⇢ H
1
0 s.t. 8v 2 Qp,
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• Q is a Boolean assembly matrix (non-Boolean in case of AMR); communication intensive.

• Local element sti↵ness matrices applied in parallel.

• Each A
e
is nominally full and accounts for the bulk of the physics.

Tensor-product sum-factorization is key to e�cient implementation.

• Never form A
e
. Use the factored matrix-vector product
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• Dj : tensor products of 1D (q ⇥ q) interpolation (Ĵ) and derivative (D̂) matrices.

D1 = Ĵ ⌦ Ĵ ⌦ D̂

D2 = Ĵ ⌦ D̂ ⌦ Ĵ

D3 = D̂ ⌦ Ĵ ⌦ Ĵ ,

where q=number of quadrature points in each direction.

• Can be applied fast. Only O(q
4
) work and O(q

3
) storage, vs. O(p

6
) cost of traditional FEM.

• Geometric factors are diagonal matrices of size q
3
⇥ q

3
.

• G is a symmetric tensor, Gij = Gji, =) 6q
3
memory references per element.

• For spectral elements, q = p+ 1 and Ĵ = Î.

• Work complexity: W = 12q
4
+ 15q

3
,

• Leading order O(q
4
) term: tensor contractions cast as e�cient BLAS3 kernels.

Example of a fast high-order operator

<latexit sha1_base64="/WvgtQulW6LQCybBaBps3wrEAL8="></latexit>Z

⌦
ru ·rv =

Z

⌦
fv
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CEED BP1 bakeoff on BG/Q

✔ All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ...,16; quad. points q = p + 2.

✔ BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q. 

✔ Paper: “Scalability of High-Performance PDE Solvers”, IJHPCA, 2020
✔ Cooperation/collaboration is what makes the bake-offs rewarding.

Nek5000 MFEM-improved deal.ii
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Device support in MFEM
MFEM support GPU acceleration in many linear algebra and finite element operations

§ Several MFEM examples + miniapps have been ported with small changes

§ Many kernels have a single source for CUDA, RAJA and OpenMP backends

§ Backends are runtime selectable, can be mixed

§ Recent improvements in CUDA, HIP, RAJA, SYCL, …

“MFEM: A modular finite element methods library”, CAMWA 2020
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1 GPU 4 GPUs 1024 GPUs

Best total performance: 2.1 TDOF/s
Largest size: 34 billion

Op#mized kernels for MPI buffer packing/unpacking on the GPU

Single GPU performance: 2.6 GDOF/s
Problem size: 10+ million

MFEM performance on mul1ple GPUs
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Recent improvements on NVIDIA and AMD GPUs

New MFEM GPU kernels: perform on both V100 + MI100,

MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

can u#lize tensor cores on A100
have beKer strong scaling,

V100 MI100 A100 H100

achieve 10+ GDOFs on H100
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• Explicit matrix assembly impractical at high order:

– Polynomial degree 𝑝, spatial dimension 𝑑

– Matrix assembly + sparse matvecs:

• 𝒪(𝑝!") memory transfers

• 𝒪(𝑝#") computations

• can be reduced to 𝒪(𝑝!"$%) computations by sum factorization

– Matrix-free action of the operator (partial assembly):

• 𝒪(𝑝") memory transfers – optimal 

• 𝒪(𝑝"$%) computations – nearly-optimal

• efficient iterative solvers if combined with effective preconditioners

• Challenges:

– Traditional matrix-based preconditioners (e.g. AMG) not available

– Condition number of diffusion systems grows like 𝒪(𝑝!/ℎ")

Matrix-free precondi1oning

𝑝 + 1

𝒪(𝑝") element	dofs
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Low-Order-Refined (LOR) precondi1oning

“Low-order precondi.oning for the high-order de Rham complex”, Pazner, Kolev, Dohrmann, 2022

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

I

I

HO LOR

§ Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

§ ALOR is sparse and spectrally equivalent to AHO 

§ (AHO)-1 ≈ (ALOR)-1 ≈ BLOR  - can use BoomerAMG, AMS, ADS
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§ More information and publications
• MFEM – mfem.org

• BLAST – computation.llnl.gov/projects/blast

• CEED – ceed.exascaleproject.org

§ Open-source software

§ Ongoing R&D 
• GPU-oriented algorithms for Frontier, Aurora, El Capitan

• Matrix-free scalable preconditioners

• Automatic differentiation, design optimization

• Deterministic transport, multi-physics coupling

High-order FE methods show promise for high-quality & 
performance simula1ons on exascale plaaorms

Q4 Rayleigh-Taylor single-
material ALE on 256 processors  
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Upcoming MFEM Events

MFEM in the Cloud Tutorial

August 22, 2024

MFEM Community Workshop

October 22-24, 2024

h"ps://mfem.org/workshoph"ps://mfem.org/tutorial

Seminar series:  h"ps://mfem.org/seminar
36
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