
extremecomputingtraining.anl.govextremecomputingtraining.anl.gov

How to Understand and Tune HPC I/O Performance

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National Laboratory

August 8, 2024

extremecomputingtraining.anl.gov2
Hands on exercises:
https://github.com/radix-io/hands-on

As evidenced by today’s presentations, the HPC I/O
landscape is deep and vast:

○ High-level data abstractions: HDF5, PnetCDF
○ I/O middleware: MPI-IO
○ Storage systems: Lustre, GPFS, DAOS
○ Storage hardware: HDDs, SSDs, SCM

HPC applications themselves are evolving and
encountering new data management challenges.

Understanding I/O behavior in this environment is
difficult, much less turning observations into
actionable I/O tuning decisions.

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

Surveying the HPC I/O landscape

A complex data management ecosystem

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov3
Hands on exercises:
https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

*Note: HDF5 instrumentation is not typically enabled for facility
Darshan installs – you will need to install this version yourself.

HDF5 stats*:
○ Accessed files/datasets
○ Operation counts
○ Total read/write volumes
○ Common access info

(including details of
hyperslab accesses)

○ Chunking parameters
○ Dataset dimensionality and

size
○ MPI-IO usage
○ I/O timing

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads.
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov4
Hands on exercises:
https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads.
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior.

MPI-IO stats:
○ Operation counts (open,

read, write, sync)
○ Collective and independent

I/O usage
○ Total read/write volumes
○ Access size info

‒ Common values
‒ Histograms

○ I/O timing

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov5
Hands on exercises:
https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads.
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior.

POSIX stats:
○ Operation counts (open,

read, write, seek, stat)
○ Total read/write volumes
○ File alignment
○ Access size/stride info

‒ Common values
‒ Histograms

○ I/O timing

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov6
Hands on exercises:
https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads.
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior.

Lustre stats:
○ Data server (OST) and

metadata server (MDT)
counts

○ Stripe size/width
○ OST list serving a file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov7
Hands on exercises:
https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

I/O Hardware

Application

Storage System

Data Model Support

Transformations

A look under the hood of an HPC application

Let’s see how Darshan
can be leveraged in some
practical use cases that

demonstrate general best
practices in tuning HPC

I/O performance.

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads.
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov8
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
For some parallel file systems like Lustre, users have direct control over file striping
parameters.

Bad news: Users may have to have some knowledge of the file system to get good I/O
performance.
Good news: Users can often get higher I/O performance than system defaults with thoughtful
tuning -- file systems aren’t perfect for every workload!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov9
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types.

Simulation
bulk data

Simulation clients write
data to 1 storage server.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov10
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types.

Large application datasets should ideally be distributed across as many storage resources as
possible.

Simulation clients load balance
writes across multiple servers.

Simulation
bulk data

Simulation
bulk data

Simulation clients write
data to 1 storage server.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov11
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types.

On the other hand, smaller files often benefit from being stored on a single server.

Simulation
config files

Simulation clients read config
data from 1 storage server.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov12
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Tuning decisions can and should be made independently for different file types.

On the other hand, smaller files often benefit from being stored on a single server.

Simulation
config files

Simulation clients read config
data from 1 storage server.

Better yet, limit storage contention by
having 1 client read data and distribute

using communication (e.g., MPI).

Simulation
config files

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov13
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Be aware of what file system settings are available to you and don’t assume system defaults
are always the best… you might be surprised what you find.

○ ALCF Polaris and NERSC Perlmutter Lustre scratch file systems both have a default stripe
width of 1 (i.e., files are stored on one server).

256 process (4 node)
h5bench1 runs on NERSC

Perlmutter.

h5bench contains lots of
parameters for controlling

characteristics of generated
HDF5 workloads.

MPI-IO POSIX

1. https://github.com/hpc-io/h5bench

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov14
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Be aware of what file system settings are available to you and don’t assume system defaults
are always the best… you might be surprised what you find.

○ ALCF Polaris and NERSC Perlmutter Lustre scratch file systems both have a default stripe
width of 1 (i.e., files are stored on one server).

All I/O is funneled through
rank 0.

MPI-IO collective I/O driver for
Lustre assigns dedicated
aggregator processes for

each stripe, yielding a single
aggregator for files of 1 stripe.

MPI-IO POSIX

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov15
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
MPI-IO POSIX

Manually setting the stripe width to
16 yields more I/O aggregators
and better performance:

> lfs setstripe -c 16 testFile

1
stripe

16
stripes

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov16
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
MPI-IO POSIX

Manually setting the stripe width to
16 yields more I/O aggregators
and better performance:

> lfs setstripe -c 16 testFile

 4x performance improvement!

1
stripe

16
stripes

1341.13
MiB/s

5571.27
MiB/s

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov17
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Consult facilities documentation for established best practice!

ALCF (left) and NERSC (right) docs providing suggestions/commands for
properly striping different types of files (i.e., small vs large, file-per-process

vs shared file)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov18
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning the storage system

Ensuring storage resources match application I/O needs
Consult facilities documentation for established best practice!

OLCF presentation on Orion storage
system detailing usage of Lustre’s new

progressive file layout mechanism

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov19
Hands on exercises:
https://github.com/radix-io/hands-on

write
read

Tuning the storage system

Ensuring storage resources match application I/O needs
Consult facilities documentation for established best practice! Sometimes you may even need
to experiment yourself.

https://github.com/radix-io/io-sleuthing/tree/main/examples/striping

128-node example of the IOR
benchmark using various stripe

counts on ALCF Polaris.

For more I/O intensive programs,
it’s typically better to err on the side

of more storage servers. The
following command stripes across

all servers:

> lfs setstripe -c -1 testFile

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov20
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file.

○ Accesses that are not aligned can introduce performance inefficiencies on file systems.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov21
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file.

○ Accesses that are not aligned can introduce performance inefficiencies on file systems.

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

Unaligned I/O requests can span
multiple servers and introduce

inefficiencies in storage protocols.
File:

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov22
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file.

○ Accesses that are not aligned can introduce performance inefficiencies on file systems.

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

File: Instead, ensure client accesses are
well-aligned to avoid Lustre server

contention.
File:

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov23
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file:

aligned

Use Darshan’s DXT tracing module to get details about each
individual write access – more details on DXT usage coming soon.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov24
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file:

aligned

Each access is aligned to the Lustre stripe size (1 MiB).

Each process interacts with a single Lustre server (OST).

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov25
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file:

unaligned

Each access spans two Lustre stripes due to unaligned offsets.

Each process interacts with two Lustre servers (OSTs).

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov26
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Even in this small workload, we pay a nearly 20% performance penalty when I/O accesses
are not aligned to file stripes (1 MB).

aligned

unaligned

310.14
MiB/s

380.28
MiB/s

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov27
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Making efficient use of a no-frills I/O API
Accounting for subtle I/O performance factors like file alignment can be a painstaking
process…

As highlighted by other presentations, high-level I/O libraries like HDF5 and PnetCDF can
help mask much of the complexity needed for transforming scientific computing I/O workloads
into performant POSIX-level file system accesses – don’t reinvent the wheel, use
high-level I/O libraries wherever you can!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov28
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Recall that HDF5 provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file.

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov29
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Recall that HDF5 provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file.

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns.

By default, HDF5 will store the
dataset contiguously row-by-row
(i.e., row-major format) in the file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov30
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Recall that HDF5 provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file.

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns.

If dataset access patterns do not suit
a simple row-major storage scheme,

chunking can be applied to map
chunks of dataset data to contiguous

regions in the file.
column-based block-based

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov31
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total):

With no chunking, each process must issue
many smaller non-contiguous I/O requests

(solid lines) and seek around the file (dashed
lines), yielding low I/O performance.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov32
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total):

256 individual
HDF5 writes

(1-per-process)
yields 500K+
POSIX writes.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov33
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total):

With chunking applied, each process can
read their entire data block using one large,

contiguous access in the file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov34
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total):

Chunking results in
a much more

manageable POSIX
workload.

 Nearly a 3x
performance

improvement!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov35
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
An alternative optimization forgoes chunking and uses collective I/O to improve the efficiency
of this block-style data access.

○ Rely on MPI-IO layer collective buffering algorithm to generate contiguous storage
accesses and to limit number of clients interacting with storage system.

With collective I/O enabled, designated aggregator
processes perform I/O on behalf of their peers,
and communicate their data using MPI calls.

E.g., the green process sends its write data to the
blue process (aggregator), who then writes both of

their data in one big contiguous chunk.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov36
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total):

Collective I/O
yields 26x

improvement
over no

chunking, and 9x
improvement

over chunking!!!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov37
Hands on exercises:
https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
MPI-IO POSIX

Darshan I/O activity
heatmaps illustrate how

different the I/O behavior is
for the unoptimized

independent configuration
(top) and the most

performant collective I/O
configuration (bottom).

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov38
Hands on exercises:
https://github.com/radix-io/hands-on

Summarizing I/O tuning options

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

As a user of I/O interface X, what tuning vectors do I have?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov39
Hands on exercises:
https://github.com/radix-io/hands-on

Summarizing I/O tuning options

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

As a user of I/O interface X, what tuning vectors do I have?

Automatically align application
data and library metadata, if

user requests so.

Collective I/O can
be automatically

aligned.

POSIX I/O requires
manually aligning every

access.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov40
Hands on exercises:
https://github.com/radix-io/hands-on

Summarizing I/O tuning options

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

Just another reminder that high-level I/O libraries are here to make your life easier!

○ I/O optimization strategies like collective I/O & chunking can net large performance
gains, especially when combined with striping and alignment optimizations.

As a user of I/O interface X, what tuning vectors do I have?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Additional Darshan
tips and tricks

extremecomputingtraining.anl.gov42
Hands on exercises:
https://github.com/radix-io/hands-on

Finer-grained details with Darshan:
DXT tracing

By default, Darshan captures a fixed set of counters for each file.

With DXT (Darshan Extended Tracing), Darshan additionally traces every read/write operation
(for POSIX and MPI-IO interfaces).

Enabled by setting DXT_ENABLE_IO_TRACE env variable.

Finer grained instrumentation data comes at a cost of additional overhead and larger logs.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov43
Hands on exercises:
https://github.com/radix-io/hands-on

Finer-grained details with Darshan:
DXT tracing

Trace includes the timestamp,
file offset, and size of every
I/O operation on every rank.
darshan-dxt-parser utility
can provide a raw text dump

of the trace.

By default, Darshan captures a fixed set of counters for each file.

With DXT (Darshan Extended Tracing), Darshan additionally traces every read/write operation
(for POSIX and MPI-IO interfaces).

Enabled by setting DXT_ENABLE_IO_TRACE env variable.

Finer grained instrumentation data comes at a cost of additional overhead and larger logs.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov44
Hands on exercises:
https://github.com/radix-io/hands-on

Finer-grained details with Darshan:
DXT tracing

Traces can be visualized using job summary
report heatmaps or custom analysis tools.

By default, Darshan captures a fixed set of counters for each file.

With DXT (Darshan Extended Tracing), Darshan additionally traces every read/write operation
(for POSIX and MPI-IO interfaces).

Enabled by setting DXT_ENABLE_IO_TRACE env variable.

Finer grained instrumentation data comes at a cost of additional overhead and larger logs.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov45
Hands on exercises:
https://github.com/radix-io/hands-on

Darshan runtime library configuration

To bound memory overheads, Darshan
imposes several internal memory limits (total
memory usage, per-module record limits,
etc.).

For some workloads, default limits may be
exceeded resulting in partial instrumentation
data.

To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system.

○ Environment variables or config files

Regular expressions can be specified to
control whether matching record name

patterns are included/excluded in
Darshan instrumentation.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov46
Hands on exercises:
https://github.com/radix-io/hands-on

Darshan runtime library configuration

Settings are also offered to control total
per-process memory usage (8 MiB) and

per-module maximum record counts
(4000 POSIX records).

To bound memory overheads, Darshan
imposes several internal memory limits (total
memory usage, per-module record limits,
etc.).

For some workloads, default limits may be
exceeded resulting in partial instrumentation
data.

To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system.

○ Environment variables or config files

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov47
Hands on exercises:
https://github.com/radix-io/hands-on

Darshan runtime library configuration

Additional settings allow control over
enabled/disabled modules, as well as

application names that should be
included/excluded from instrumentation.

To bound memory overheads, Darshan
imposes several internal memory limits (total
memory usage, per-module record limits,
etc.).

For some workloads, default limits may be
exceeded resulting in partial instrumentation
data.

To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system.

○ Environment variables or config files

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

A changing HPC data
management landscape

extremecomputingtraining.anl.gov49
Hands on exercises:
https://github.com/radix-io/hands-on

A changing HPC data management landscape

The various technologies covered today form much of the
foundation of the traditional HPC data management stack.

○ Variations on this stack have been deployed at HPC
facilities and leveraged by users for high-performance
parallel I/O for decades.

But, the HPC computing landscape is changing, even if
slowly.
Changes are being driven at both ends of the stack.

○ Newly embraced compute paradigms
○ Emerging storage technologies

I/O Hardware

Application

Storage System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov50
Hands on exercises:
https://github.com/radix-io/hands-on

Emerging storage technologies

HPC storage technology is changing to meet the diverse I/O
needs of scientific applications.
Traditionally, HPC users have had limited storage options
for scientific data:

○ One-size-fits-all parallel file systems, typically deployed
over large arrays of hard disk drives

Growing application I/O demands and evolving hardware
trends are leading the way to exciting new HPC storage:

○ Storage systems based on high-performance flash
devices and emerging storage class memory (SCM)
devices

○ New storage services offering appealing alternatives to
traditional parallel file systems

I/O Hardware

Application

Storage System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov51
Hands on exercises:
https://github.com/radix-io/hands-on

Emerging storage technologies: DAOS

ALCF Aurora features Intel’s DAOS storage system, a
first-of-a-kind object-based storage system for
large-scale HPC platforms.

○ Leverages both SCM and SSDs for storage

DAOS offers multiple I/O interfaces to users:
○ Filesystem emulation API allowing legacy POSIX file

access to DAOS storage
○ Native object-based APIs (e.g.., key-val, array)

offering more powerful semantics compared to
POSIX-like file APIs

– Data locality, replication strategy, etc.
Various access methods for DAOS users.

Figure courtesy of Intel

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov52
Hands on exercises:
https://github.com/radix-io/hands-on

Emerging storage technologies: DAOS

ALCF Aurora features Intel’s DAOS storage system, a
first-of-a-kind object-based storage system for
large-scale HPC platforms.

○ Leverages both SCM and SSDs for storage

DAOS offers multiple I/O interfaces to users:

Various access methods for DAOS users.

Figure courtesy of Intel

Perhaps most key to the I/O
performance of DAOS is that the

libraries are all userspace, allowing
bypass of costly calls into the kernel for

handling of I/O as with POSIX.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov53
Hands on exercises:
https://github.com/radix-io/hands-on

Emerging storage technologies: DAOS

DAOS’s native object interfaces allow for constructing
powerful and performant data storage models not
shackled by POSIX semantics.

○ Array objects
‒ Extent-based access, similar to files

○ Key-val objects
‒ Data accessed using arbitrary keys
‒ Keys are split into a dkey (distribution key)

and an akey (attribute key) to offer users
control over data locality

■ All keys with same dkey are co-located
on the same DAOS storage target

DAOS storage model. DAOS objects
can be accessed using either key-val or

array interfaces.

Figure courtesy of Intel

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov54
Hands on exercises:
https://github.com/radix-io/hands-on

Emerging storage technologies: DAOS

DAOS’s native object interfaces allow for constructing
powerful and performant data storage models not
shackled by POSIX semantics.

DAOS storage model. DAOS objects
can be accessed using either key-val or

array interfaces.

Figure courtesy of Intel

The traditional components of the HPC I/O
stack that we have learned about today (e.g.,

MPI-IO and HDF5) have been modified to allow
mapping of their storage models onto DAOS

objects to get the best performance.

Development of Darshan instrumentation
modules for DAOS APIs is well underway

and should be included in our next release.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov55
Hands on exercises:
https://github.com/radix-io/hands-on

New scientific computing paradigms

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Understanding and improving I/O behavior in novel HPC
applications and compute frameworks is critical to
scientific productivity.
Large-scale MPI applications are still the norm at most
HPC centers, but other non-MPI compute frameworks
are gaining traction:

○ AI/ML (TensorFlow, Keras, PyTorch, Ray)
○ Data analytics frameworks (Dask, PySpark)
○ Other non-MPI distributed computing frameworks

(Legion, UPC)

Many of these frameworks define their own data models,
have their own mechanisms for managing distributed
tasks, and demonstrate unique I/O access patterns.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov56
Hands on exercises:
https://github.com/radix-io/hands-on

Darshan instrumentation beyond MPI

Darshan
instrumentation

Though originally designed for MPI apps, Darshan was re-designed
to support instrumentation in non-MPI contexts as well:

○ Uses GCC-specific library constructor/destructor attributes to
initialize/shutdown the Darshan library (instead of
MPI_Init/MPI_Finalize)

To enable non-MPI mode, users must explicitly opt-in by setting the
DARSHAN_ENABLE_NONMPI environment variable.

○ A unique log will be generated for every process that executes.
○ Often best to limit instrumentation scope to the target executable:

LD_PRELOAD=/path/to/libdarshan.so \
DARSHAN_ENABLE_NONMPI=1 \
./exe <args>

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov57
Hands on exercises:
https://github.com/radix-io/hands-on

Caveats for instrumenting Python with Darshan

Recent Darshan development efforts have focused on enabling comprehensive instrumentation of
a growing Python software ecosystem in HPC:
1. Started with Darshan’s support for non-MPI, as Python often uses other mechanisms for

parallelizing/distributing work across multiple processes

LD_PRELOAD=/path/to/libdarshan.so \
DARSHAN_ENABLE_NONMPI=1 \
python script.py <script_args>

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov58
Hands on exercises:
https://github.com/radix-io/hands-on

Caveats for instrumenting Python with Darshan

Recent Darshan development efforts have focused on enabling comprehensive instrumentation of
a growing Python software ecosystem in HPC:
1. Started with Darshan’s support for non-MPI, as Python often uses other mechanisms for

parallelizing/distributing work across multiple processes
2. Darshan library configuration support for focusing scope of Darshan instrumentation

exclude Python compiled code, shared libraries, etc.
NAME_EXCLUDE \.pyc$, \.so$, *

pre-allocate 5000 POSIX records (default 1024)
MAX_RECORDS 5000 POSIX

bump up Darshan's default memory usage to 8 MiB
MODMEM 8

Otherwise, Darshan
exhausts its memory and

only instruments a portion of
the application I/O workload.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov59
Hands on exercises:
https://github.com/radix-io/hands-on

Caveats for instrumenting Python with Darshan

Recent Darshan development efforts have focused on enabling comprehensive instrumentation of
a growing Python software ecosystem in HPC:
1. Started with Darshan’s support for non-MPI, as Python often uses other mechanisms for

parallelizing/distributing work across multiple processes
2. Darshan library configuration support for focusing scope of Darshan instrumentation
3. Enhancements to Darshan to handle Pythonic approaches to spawning/terminating new processes

○ Support for restarting the Darshan library on fork() child processes
○ Graceful handling of Python approaches for terminating new processes

– Child processes frequently use _exit() or are issued SIGTERM signals from the
parent process, sidestepping Darshan’s typical shutdown procedure.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov60
Hands on exercises:
https://github.com/radix-io/hands-on

Caveats for instrumenting Python with Darshan

Recent Darshan development efforts have focused on enabling comprehensive instrumentation of
a growing Python software ecosystem in HPC:
1. Started with Darshan’s support for non-MPI, as Python often uses other mechanisms for

parallelizing/distributing work across multiple processes
2. Darshan library configuration support for focusing scope of Darshan instrumentation
3. Enhancements to Darshan to handle Pythonic approaches to spawning/terminating new processes

We recommend building Darshan with the “--enable-mmap-logs” option to help
protect against this. This setting will enable capture of uncompressed Darshan

logs in /tmp for processes that terminate abruptly. These logs can be
compressed and moved somewhere longer term with the following command:

darshan-convert /tmp/log.darshan /path/to/logs/log.darshan

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Other I/O
analysis tools

extremecomputingtraining.anl.gov62
Hands on exercises:
https://github.com/radix-io/hands-on

Darshan-based analysis tools

Using Darshan as a starting point for developing new I/O analysis tools is attractive for
a couple of reasons:

1. Darshan is commonly deployed in production at many HPC sites, making its I/O
characterization data generally accessible to custom tools.

2. Recent PyDarshan work has enabled much more agile development of Darshan-based
I/O analysis tools in Python.

We will start by considering a couple of Darshan-based
I/O analysis tools: DXT Explorer and Drishti.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov63
Hands on exercises:
https://github.com/radix-io/hands-on

DXT Explorer

○ Darshan does not offer much in terms of DXT trace
analysis tools beyond general I/O activity heatmaps.

○ DXT Explorer★ is an interactive web-based trace
analysis tool for DXT data that was developed to provide:
‒ Combined views of MPI-IO and POSIX activity
‒ Zoom in/out capabilities to focus on subsets of ranks

or specific time slices
‒ Contextual information about I/O calls
‒ Views based on operation type, size, and spatiality

○ Interactive trace analysis with DXT Explorer can enable
interesting new insights into app I/O behavior.

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

★ DXT Explorer was developed
by Jean Luca Bez (LBL). Slide
content also provided courtesy
of Jean Luca.

Bez, Jean Luca, et al. "I/O bottleneck detection and tuning: connecting the dots using interactive log
analysis." 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW). IEEE, 2021.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov64
Hands on exercises:
https://github.com/radix-io/hands-on

DXT Explorer

Explore the timeline
by zooming in and
out and observing

how the MPI-IO calls
are translated to the

POSIX layer. For
instance, you can use
this feature to detect

stragglers.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov65
Hands on exercises:
https://github.com/radix-io/hands-on

DXT Explorer

Explore the spatiality
of accesses in file by

each rank with
contextual

information.
Understand how each

rank is accessing
each file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov66
Hands on exercises:
https://github.com/radix-io/hands-on

Drishti

github.com/hpc-io/drishti-io

docker pull hpcio/drishti

★ Drishti was developed by
Jean Luca Bez (LBL). Slide
content also provided courtesy
of Jean Luca.

○ Darshan can capture detailed I/O characterization
data for an app, but translating this raw data to
actionable tuning feedback is a significant challenge.

○ Drishti★ is a command-line tool to guide end-users
in optimizing I/O in their applications by detecting
typical I/O performance pitfalls and providing a set of
recommendations.

○ Drishti checks each given Darshan log against 30+
heuristic triggers for various I/O issues and suggests
actions to take to resolve them.
‒ 4 levels of triggers: high, warning, ok, info

Bez, Jean Luca, Hammad Ather, and Suren Byna. "Drishti: guiding end-users in the I/O optimization
journey." 2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW). IEEE, 2022.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov67
Hands on exercises:
https://github.com/radix-io/hands-on

Drishti

Overall information about the
Darshan log and execution

Number of critical issues,
warning, and recommendations

Details on metadata and
data operations

Critical issue and corresponding
recommendation for

benchmark.h5

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov68
Hands on exercises:
https://github.com/radix-io/hands-on

Other I/O analysis tools

○ There are some other notable tools that may be of use for gaining more insights into the
I/O behavior of an application:

‒ Recorder: https://github.com/uiuc-hpc/Recorder

■ Multi-level detailed I/O traces and corresponding trace viz tools
■ More detail than DXT but not as production hardened

‒ DFTracer: https://github.com/hariharan-devarajan/dftracer

■ Hybrid profiling tool capturing low-level I/O details (i.e., POSIX) as well as
application-level profiling

■ Allows correlation of applications and frameworks (e.g., AI/ML frameworks) behavior with
low-level I/O

https://github.com/radix-io/hands-on
https://github.com/uiuc-hpc/Recorder
https://github.com/hariharan-devarajan/dftracer

extremecomputingtraining.anl.gov69
Hands on exercises:
https://github.com/radix-io/hands-on

Other I/O analysis tools

○ There are some other notable tools that may be of use for gaining more insights into the
I/O behavior of an application:

‒ TAU: http://www.cs.uoregon.edu/research/tau/

■ General call profiling/tracing toolkit for HPC applications, including I/O routines
■ Tools for visualizing profiles/traces and detecting bottlenecks, etc.
■ See: https://hps.vi4io.org/_media/events/2019/sc19-analyzing-tau.pdf

‒ LDMS: https://hmdsa.github.io/hmdsa/pages/tools/ldms

■ Beyond the application, includes detailed system metrics collection
■ Not typically something users deploy, but may be another resource to consider at some

facilities

https://github.com/radix-io/hands-on
http://www.cs.uoregon.edu/research/tau/
https://hps.vi4io.org/_media/events/2019/sc19-analyzing-tau.pdf
https://hmdsa.github.io/hmdsa/pages/tools/ldms

extremecomputingtraining.anl.gov70
Hands on exercises:
https://github.com/radix-io/hands-on

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Wrapping up

○ Hopefully this material proves useful in providing a
deeper understanding of the different layers of the HPC
I/O stack covered today, as well as potential tuning
vectors available to you as user.

○ Some key takeaways:
‒ Optimizing your I/O workload can be challenging, but can

offer large performance gains.
‒ Use high-level I/O libraries where you can.
‒ Don’t always count on I/O libraries or file systems to

automatically provide you the best performance
out-of-the-box.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov71
Hands on exercises:
https://github.com/radix-io/hands-on

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Wrapping up

○ Darshan is an invaluable tool for understanding application
I/O behavior and informing tuning efforts – use it to
instrument application workloads, analyze resulting
performance, and experiment with different I/O strategies!

○ Please reach out with questions, feedback, etc.

https://www.mcs.anl.gov/research/projects/darshan/

github.com/darshan-hpc/darshan

darshan-io.slack.com

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Thank you!

