
extremecomputingtraining.anl.govextremecomputingtraining.anl.gov

Principles of HPC I/O

Phil Carns
carns@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory

Track 7 (I/O) August 8, 2024

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

What is HPC I/O?

HPC I/O: storing and retrieving persistent scientific
data on a high-performance computing platform

– Data is usually stored on a parallel file system that has
been optimized to rapidly store and access enormous
volumes of data.

– This is an important job! Valuable CPU time is wasted if
applications spend too long waiting for data.

– It also means that parallel file systems are quite
specialized and have some unusual properties.

Today’s lectures are really
all about the proper care
and feeding of exotic
parallel file systems.

open()
write()
close()

Scientific application processes

Persistent data sets

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

A look under the hood

 o ute

 ores

 tora e

 o troller

 tora e

 e ces

Workstation (laptop) storage path

• A typical workstation/laptop has
only one storage device.

• The path between applications and
storage is short.

• Properties:
• Low latency
• Low bandwidth

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

A look under the hood

• In contrast, an HPC storage system manages
many (e.g., thousands of) disaggregated
devices.

• Paths between applications and storage
devices are quite long, but numerous.

• Properties:
• High latency
• High bandwidth

 o ute

 ores

 tora e

 o troller

 tora e

 e ces

Workstation (laptop) storage pathHPC system storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Striping / Layout

• Large files (or sets of files) are not
generally stored on a single storage device.

• They are distributed across multiple
servers (and then each server further
distributes across storage devices).

• This is referred to as data layout or
striping.

• Different file systems use different striping
strategies.

• It can usually be tuned to better suit your
application.

Example of a single logical file

striped across all available

servers and storage devices

HPC system storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Is that all?

HPC system storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Is that all?

HPC system storage path Each HPC storage system is unique.
Some systems have:

• In-system storage: low latency but not shared
• Burst buffers: high performance with limited

capacity
• Multiple file systems: storage systems

optimized for different kinds of data
• Object stores: alternative methods of

organizing data

 o ’t worry. The tools a d tech ques that
we will teach today will help to tame this
complexity. The important thing to know
for now is why HPC storage systems need
specialized techniques.

Stayed tuned for more details

in a session later this morning:

10:30 HPC Storage Systems

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Presenting storage to HPC applications

A parallel file system can be accessed just like
any other file system:

•open() / close() / read() / write() for binary data

•fopen() / fclose() / fprintf() for text data

•Various language-specific bindings

Data is organized in a hierarchy of directories
and files.

We call th s API the “PO IX terface”; t s
standardized across all UNIX-like systems.

This API works, and is great for compatibility, but
it was created 50 years ago before the rise of
parallel computing.

• The API has no concept of
parallel access; semantics for
that are largely undefined.

• File descriptors are stateful at
each process.

• File position is implied.

• Files are unstructured.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• In this example, we have a big gap (32 MiB)
between them. Assume we are writing reasonably
large chunks to optimize bandwidth.

Why is it difficult to access files concurrently with POSIX?
Example 1: writing different parts of the same file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• In this example, we have a big gap (32 MiB)
between them. Assume we are writing reasonably
large chunks to optimize bandwidth.

• The writes probably map to different servers and
devices.

• There is no device contention, and both I/O
operations can be executed at the same time.

• There is also no coordination of which path each
write will take, though, and eventually you will want
access adjacent data...

Why is it difficult to access files concurrently with POSIX?
Example 1: writing different parts of the same file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(256 KiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• I th s case the wr tes st ll do ’t o erla , but they
access adjacent bytes.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(256 KiB); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• I th s case the wr tes st ll do ’t o erla , but they
access adjacent bytes.

• The writes are likely to access the same server
and storage device because of locality.

• Counterintuitively, this almost certainly causes
conflicting access. The file system caches and
locks data at a different granularity.

• U coord ated adjace t access ca cause “false
shar ” a d ser al ze I/O o erat o s that should
have proceeded in parallel.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Rank 0: open(“a”); write(256 KiB);

Rank 1: open(“b”); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Rank 0: open(“a”); write(256 KiB);

Rank 1: open(“b”); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

• The writes are indeed issued to independent
servers and storage devices. This probably works
well at small scale.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

Rank 0: open(“a”); write(256 KiB);

Rank 1: open(“b”); write(256 KiB);

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

• The writes are indeed issued to independent servers
and storage devices. This probably works well at small
scale.

• Directories are hierarchical, though, so processes
will conflict at open() time to coordinate access to the
parent directory. This problem gets progressively
worse at scale.

• It also makes the file system spend more time
managing metadata (names, permissions, attributes)
than performing productive data transfer.

• It also (eventually) places more burden on the user
to manage files.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
The common theme

There is a common underlying problem in each of the
preceding examples:

Fundamentally, the sequential POSIX API cannot
describe a complete, coordinated parallel access
pattern to the file system.

Because each process issues I/O operations independently,
the storage system must service each one in isolation (even if
there are thousa ds or e e ll o s fl ht). There s ’t
much opportunity to aggregate or structure the flow of data.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Help is on the way

• Our speakers this afternoon will teach you about a variety of APIs
designed specifically to facilitate parallel access to scientific data.

• All of them implement portable optimizations that shape traffic for
parallel file systems.

• If you have no choice but to use uncoordinated POSIX APIs: do ’t
worry, we will also share techniques to help you extract
performance there.

• A b feature of today’s ater al s also how to easure,
characterize, and understand I/O behavior so that you can
continually improve.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

High-level I/O libraries:
an early sales pitch
Applications use advanced data models according to their

scientific objectives:

– The data itself: Multidimensional typed arrays,
images composed of scan lines, etc.

– Descriptions of data (metadata): Headers,
attributes, time stamps, etc.

In contrast, parallel file systems present a very simple
data model:

– Tree-based hierarchy of containers

– Containers with streams of bytes (files)

– Containers listing other containers (directories)

– As we saw in previous slides: quirky performance
properties

You could map between these two models yourself:
“The freque cy attr bute s a 8-byte float in GHz, stored
at offset 4096.”

Right Interior

Carotid Artery

Platelet

Aggregation

Model complexity:

Spectral element mesh (top) for thermal

hydraulics computation coupled with

finite element mesh (bottom) for

neutronics calculation.

Scale complexity:

Spatial range from the

reactor core in meters to fuel

pellets in millimeters.

Images from T. Tautges (ANL)

(upper left), M. Smith (ANL) (lower

left), and K. Smith (MIT) (right).

18

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

High-level I/O libraries:
an early sales pitch

Platelet

Aggregation

Model complexity:

Spectral element mesh (top) for thermal

hydraulics computation coupled with

finite element mesh (bottom) for

neutronics calculation.

Scale complexity:

Spatial range from the

reactor core in meters to fuel

pellets in millimeters.

19

Data libraries (like HDF5, PnetCDF, and ADIOS)
help to bridge this gap between application data
models and file system interfaces.

Why use a high-level data library?

More expressive interfaces for scientific data
• e.g., multidimensional variables and their descriptions

Interoperability
• e.g., enables collaborators to share data in self-

describing, well-documented formats

Performance
• e.g., high level libraries implement platform-specific

o t zat o s so that you do ’t ha e to

Future proofing
• e.g., interfaces and data formats that outlive specific

storage technologies

Stay tuned for more information

in the following sessions:

2:00 Parallel-NetCDF

2:45 HDF5

Images from T. Tautges (ANL)

(upper left), M. Smith (ANL) (lower

left), and K. Smith (MIT) (right).

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Application-level I/O interface layers

Storage System

POSIX API

I/O Middleware

High-level Libraries

H5Fopen()

MPI_File_open()

open()

(vendor

specific)

Application
And optional runtime bindings

(e.g., Python)

• Applications have access to multiple I/O
interfaces that may be mixed and matched
for different purposes.

• They are often layered:

• H5Fopen() -> MPI_File_open() -> open()

We’ll see exa les of how to

instrument and understand

interactions between I/O layers

in the next session:

9:10 Darshan Introduction

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

And finally, even if you do everything right
… performance can still be surprising

– Thousands of storage devices will never
perform perfectly at the same time.

– You are sharing storage with many other users
across multiple HPC systems.

– You are also sharing storage with remote
transfers, tape archives, and other data
management tasks.

Compute nodes belong exclusively to you
during a job allocation, but the storage
system does not.

Storage performance varies in ways that
are fundamentally different from
compute performance.

ALCF project file systems

Sofia Globus HPSS …Polaris

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

How to account for variability

Best practice: take multiple samples when
measuring I/O performance if you need to
understand subtle changes.

This figure shows 15 samples of I/O time
from a 6,000 process benchmark on the
(now retired) NERSC Edison system.

How do you assess if a change in your
application helped or hurt performance
under these conditions?

We will have a hands-on exercise later in
the day that you can use to investigate this
phenomenon yourself.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Parting message: I/O optimization is an ongoing
process

Observe

Understand

Optimize

Measure your application and

be mindful of your storage needs.

Use facility resources to

u dersta d what’s oss ble.

A ly tech ques that you’ e

learned today to improve

performance and usability.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Thank you!

Any questions before we move on to
the next presentation?

https://github.com/radix-io/hands-on

	Slide 1: Principles of HPC I/O
	Slide 2: What is HPC I/O?
	Slide 3: A look under the hood
	Slide 4: A look under the hood
	Slide 5: Striping / Layout
	Slide 6: Is that all?
	Slide 7: Is that all?
	Slide 8: Presenting storage to HPC applications
	Slide 9: Why is it difficult to access files concurrently with POSIX? Example 1: writing different parts of the same file
	Slide 10: Why is it difficult to access files concurrently with POSIX? Example 1: writing different parts of the same file
	Slide 11: Why is concurrent access hard? Example 2: writing adjacent parts of the same file
	Slide 12: Why is concurrent access hard? Example 2: writing adjacent parts of the same file
	Slide 13: Why is concurrent access hard? Example 3: writing separate files
	Slide 14: Why is concurrent access hard? Example 3: writing separate files
	Slide 15: Why is concurrent access hard? Example 3: writing separate files
	Slide 16: Why is concurrent access hard? The common theme
	Slide 17: Help is on the way
	Slide 18: High-level I/O libraries: an early sales pitch
	Slide 19: High-level I/O libraries: an early sales pitch
	Slide 20: Application-level I/O interface layers
	Slide 21: And finally, even if you do everything right … performance can still be surprising
	Slide 22: How to account for variability
	Slide 23: Parting message: I/O optimization is an ongoing process
	Slide 24

