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What is HPC I/O?

HPC I/O: storing and retrieving persistent scientific 
data on a high-performance computing platform

– Data is usually stored on a parallel file system that has 
been optimized to rapidly store and access enormous 
volumes of data.

– This is an important job!  Valuable CPU time is wasted if 
applications spend too long waiting for data.

– It also means that parallel file systems are quite 
specialized and have some unusual properties.

Today’s lectures are really
all about the proper care
and feeding of exotic
parallel file systems.

open()
write()
close()

Scientific application processes

Persistent data sets

https://github.com/radix-io/hands-on
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A look under the hood
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Workstation (laptop) storage path

• A typical workstation/laptop has 
only one storage device.

• The path between applications and 
storage is short.

• Properties:
• Low latency
• Low bandwidth

https://github.com/radix-io/hands-on
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A look under the hood

• In contrast, an HPC storage  system manages 
many (e.g., thousands of) disaggregated 
devices.

• Paths between applications and storage 
devices are quite long, but numerous.

• Properties:
• High latency
• High bandwidth
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Workstation (laptop) storage pathHPC system storage path

https://github.com/radix-io/hands-on
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Striping / Layout

• Large files (or sets of files) are not 
generally stored on a single storage device.

• They are distributed across multiple 
servers (and then each server further 
distributes across storage devices).

• This is referred to as data layout or 
striping.

• Different file systems use different striping 
strategies.

• It can usually be tuned to better suit your 
application.

Example of a single logical file 

striped across all available 

servers and storage devices

HPC system storage path

https://github.com/radix-io/hands-on
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Is that all?

HPC system storage path

https://github.com/radix-io/hands-on
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Is that all?

HPC system storage path Each HPC storage system is unique.
Some systems have:

• In-system storage: low latency but not shared
• Burst buffers: high performance with limited 

capacity
• Multiple file systems: storage systems 

optimized for different kinds of data
• Object stores: alternative methods of 

organizing data

 o ’t worry.  The tools a d tech  ques that 
we will teach today will help to tame this 
complexity. The important thing to know 
for now is why HPC storage systems need 
specialized techniques.

Stayed tuned for more details 

in a session later this morning:

10:30 HPC Storage Systems

https://github.com/radix-io/hands-on
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Presenting storage to HPC applications

A parallel file system can be accessed just like 
any other file system:

•open() / close() / read() / write() for binary data

•fopen() / fclose() / fprintf() for text data

•Various language-specific bindings

Data is organized in a hierarchy of directories 
and files.

We call th s API the “PO IX   terface”;  t  s 
standardized across all UNIX-like systems.

This API works, and is great for compatibility, but 
it was created 50 years ago before the rise of 
parallel computing.

• The API has no concept of 
parallel access; semantics for 
that are largely undefined.

• File descriptors are stateful at 
each process.

• File position is implied.

• Files are unstructured.

https://github.com/radix-io/hands-on
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Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different parts of a file.

• In this example, we have a big gap (32 MiB) 
between them. Assume we are writing reasonably 
large chunks to optimize bandwidth.

Why is it difficult to access files concurrently with POSIX?
Example 1: writing different parts of the same file

https://github.com/radix-io/hands-on


extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(32 MiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different parts of a file.

• In this example, we have a big gap (32 MiB) 
between them. Assume we are writing reasonably 
large chunks to optimize bandwidth.

•      The writes probably map to different servers and 
devices.

•      There is no device contention, and both I/O 
operations can be executed at the same time.

•      There is also no coordination of which path each 
write will take, though, and eventually you will want 
access adjacent data...

Why is it difficult to access files concurrently with POSIX?
Example 1: writing different parts of the same file

https://github.com/radix-io/hands-on
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Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(256 KiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different parts of a file.

• I  th s case the wr tes st ll do ’t o erla , but they 
access adjacent bytes.

https://github.com/radix-io/hands-on
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Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

Rank 0: lseek(0); write(256 KiB);

Rank 1: lseek(256 KiB); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different parts of a file.

• I  th s case the wr tes st ll do ’t o erla , but they 
access adjacent bytes.

•      The writes are likely to access the same server 
and storage device because of locality.

•      Counterintuitively, this almost certainly causes 
conflicting access.  The file system caches and 
locks data at a different granularity.

•      U coord  ated adjace t access ca  cause “false 
shar   ” a d ser al ze I/O o erat o s that should 
have proceeded in parallel.

https://github.com/radix-io/hands-on
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Why is concurrent access hard?
Example 3: writing separate files

Rank 0: open(“a”); write(256 KiB);

Rank 1: open(“b”); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different files.

• There is no possibility of I/O conflict. That should be 
good, right?

https://github.com/radix-io/hands-on
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Why is concurrent access hard?
Example 3: writing separate files

Rank 0: open(“a”); write(256 KiB);

Rank 1: open(“b”); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different files.

• There is no possibility of I/O conflict. That should be 
good, right?

•      The writes are indeed issued to independent 
servers and storage devices.  This probably works 
well at small scale.

https://github.com/radix-io/hands-on
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Why is concurrent access hard?
Example 3: writing separate files

Rank 0: open(“a”); write(256 KiB);

Rank 1: open(“b”); write(256 KiB);

• Consider a case in which two ranks write data 
simultaneously to different files.

• There is no possibility of I/O conflict. That should be 
good, right?

•      The writes are indeed issued to independent servers 
and storage devices.  This probably works well at small 
scale.

•      Directories are hierarchical, though, so processes 
will conflict at open() time to coordinate access to the 
parent directory.  This problem gets progressively 
worse at scale.

•      It also makes the file system spend more time 
managing metadata (names, permissions, attributes) 
than performing productive data transfer.

•      It also (eventually) places more burden on the user 
to manage files.

https://github.com/radix-io/hands-on
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Why is concurrent access hard?
The common theme

There is a common underlying problem in each of the 
preceding examples:

Fundamentally, the sequential POSIX API cannot 
describe a complete, coordinated parallel access 
pattern to the file system.

Because each process issues I/O operations independently, 
the storage system must service each one in isolation (even if 
there are thousa ds or e e    ll o s    fl  ht).  There  s ’t 
much opportunity to aggregate or structure the flow of data.

https://github.com/radix-io/hands-on
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Help is on the way

• Our speakers this afternoon will teach you about a variety of APIs 
designed specifically to facilitate parallel access to scientific data.

• All of them implement portable optimizations that shape traffic for 
parallel file systems.

• If you have no choice but to use uncoordinated POSIX APIs: do ’t 
worry, we will also share techniques to help you extract 
performance there.

• A b   feature of today’s  ater al  s also how to  easure, 
characterize, and understand I/O behavior so that you can 
continually improve.

https://github.com/radix-io/hands-on
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High-level I/O libraries:
an early sales pitch
Applications use advanced data models according to their 

scientific objectives:

– The data itself: Multidimensional typed arrays, 
images composed of scan lines, etc.

– Descriptions of data (metadata): Headers, 
attributes, time stamps, etc.

In contrast, parallel file systems present a very simple 
data model:

– Tree-based hierarchy of containers

– Containers with streams of bytes (files)

– Containers listing other containers (directories)

– As we saw in previous slides: quirky performance 
properties

You could map between these two models yourself:
“The freque cy attr bute  s a  8-byte float in GHz, stored 
at offset 4096.”

Right Interior

Carotid Artery

Platelet 

Aggregation

Model complexity:

Spectral element mesh (top) for thermal 

hydraulics computation coupled with 

finite element mesh (bottom) for 

neutronics calculation.

Scale complexity:

Spatial range from the 

reactor core in meters to fuel 

pellets in millimeters.

Images from T. Tautges (ANL) 

(upper left), M. Smith (ANL) (lower 

left), and K. Smith (MIT) (right).
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High-level I/O libraries:
an early sales pitch

Platelet 

Aggregation

Model complexity:

Spectral element mesh (top) for thermal 

hydraulics computation coupled with 

finite element mesh (bottom) for 

neutronics calculation.

Scale complexity:

Spatial range from the 

reactor core in meters to fuel 

pellets in millimeters.

19

Data libraries (like HDF5, PnetCDF, and ADIOS) 
help to bridge this gap between application data 
models and file system interfaces.

Why use a high-level data library?

More expressive interfaces for scientific data
• e.g., multidimensional variables and their descriptions

Interoperability 
• e.g., enables collaborators to share data in self-

describing, well-documented formats 

Performance
• e.g., high level libraries implement platform-specific 

o t   zat o s so that you do ’t ha e to

Future proofing
• e.g., interfaces and data formats that outlive specific 

storage technologies

Stay tuned for more information 

in the following sessions:

2:00 Parallel-NetCDF

2:45 HDF5

Images from T. Tautges (ANL) 

(upper left), M. Smith (ANL) (lower 

left), and K. Smith (MIT) (right).

https://github.com/radix-io/hands-on
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Application-level I/O interface layers

Storage System

POSIX API

I/O Middleware

High-level Libraries

H5Fopen()

MPI_File_open()

open()

(vendor

specific)

Application
And optional runtime bindings

(e.g., Python)

• Applications have access to multiple I/O 
interfaces that may be mixed and matched 
for different purposes.

• They are often layered:

• H5Fopen() -> MPI_File_open() -> open()

We’ll see exa  les of how to 

instrument and understand 

interactions between I/O layers 

in the next session:

9:10 Darshan Introduction

https://github.com/radix-io/hands-on
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And finally, even if you do everything right
… performance can still be surprising

– Thousands of storage devices will never 
perform perfectly at the same time.

– You are sharing storage with many other users 
across multiple HPC systems.

– You are also sharing storage with remote 
transfers, tape archives, and other data 
management tasks.

Compute nodes belong exclusively to you 
during a job allocation, but the storage 
system does not.

Storage performance varies in ways that 
are fundamentally different from 
compute performance.

ALCF project file systems

Sofia Globus HPSS …Polaris

https://github.com/radix-io/hands-on
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How to account for variability

Best practice: take multiple samples when 
measuring I/O performance if you need to 
understand subtle changes.

This figure shows 15 samples of I/O time 
from a 6,000 process benchmark on the 
(now retired) NERSC Edison system.

How do you assess if a change in your 
application helped or hurt performance 
under these conditions?

We will have a hands-on exercise later in 
the day that you can use to investigate this 
phenomenon yourself.

https://github.com/radix-io/hands-on
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Parting message: I/O optimization is an ongoing 
process

Observe

Understand

Optimize

Measure your application and

be mindful of your storage needs.

Use facility resources to

u dersta d what’s  oss ble.

A  ly tech  ques that you’ e

learned today to improve

performance and usability.

https://github.com/radix-io/hands-on
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Thank you!

Any questions before we move on to 
the next presentation?

https://github.com/radix-io/hands-on
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