
extremecomputingtraining.anl.govextremecomputingtraining.anl.gov

Introduction to Darshan
How to learn more about the I/O behavior of your application

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National Laboratory

August 8, 2024

1

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Understanding I/O problems in your application

2

Example questions:
❏ How much of your run time is spent reading and writing files?

❏ Does it get better, worse, or is it the same as you scale up?

❏ Does it get better, worse, or is it the same across platforms?

❏ How should you prioritize I/O tuning to get the most bang for
your buck?

We recommend using a tool called Darshan as a starting point.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

What is Darshan?

3

Darshan is a scalable HPC I/O characterization tool. It captures a concise
picture of application I/O behavior with minimal overhead.

★ Widely available
‒ Deployed at most large supercomputing sites
‒ Including ALCF, OLCF, and NERSC systems

★ Easy to use
‒ No changes to code or development process
‒ Negligible performance impact: just “leave it on”

★ Produces a summary of I/O activity for every job
‒ This is a great starting point for understanding your application’s data usage
‒ Includes counters, timers, histograms, etc.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

How does Darshan work?

Figure courtesy Jakob Luettgau (Inria)

4

Two primary components:
1. Darshan runtime library

○ Instrumentation modules: lightweight
wrappers intercept application I/O calls and
record per-file statistics about access
patterns
‒ File records stored in bounded, compact

memory on each process

○ Core library: aggregate statistics when the
application exits and generate a log file
‒ Collect, filter, compress records and write a

single summary file for the job

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

How does Darshan work?

NOTE: Though traditionally
restricted to MPI apps, recent
Darshan versions can often be
made to work in non-MPI
contexts.

5

Two primary components:
1. Darshan runtime library

Figure courtesy Jakob Luettgau (Inria)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

How does Darshan work?

6

Two primary components:
2. Darshan log analysis tools

○ Tools and interfaces to inspect and interpret
log data
‒ PyDarshan command line utilities
‒ Python APIs for usage in custom tools,

Jupyter notebooks, etc.
‒ Legacy C-based tools/library

Figure courtesy Jakob Luettgau (Inria)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Darshan hands on exercise

○ We’ll start by collectively working through a hands on exercise demonstrating how to use
the Darshan toolchain on ALCF Polaris.

○ Usage on other systems is very similar, though. The most likely differences are:

‒ Location of log files (where to find data after your job completes)
‒ Analysis utility availability (usually easiest to just copy logs to your workstation to analyze)
‒ Loading the Darshan module (if it’s not already there by default)

○ We’ll briefly cover differences on other DOE systems after this Polaris example.

7

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Darshan hands on exercise:
make sure the software is loaded

Use “module list” to see
a list of software loaded in

your environment.

Darshan should
already loaded by default.

Darshan 3.4.4 is the
current version on Polaris.

8

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Use “module list” to see
a list of software loaded in

your environment.

Darshan should
already loaded by default.

Darshan 3.4.4 is the
current version on Polaris.

If not, just run “module
load darshan” to get it.

9

Darshan hands on exercise:
make sure the software is loaded

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on 10

○ Setup a working directory and checkout the hands-on repo.

Darshan hands on exercise:
build/instrument the helloworld example

○ Move to the darshan/helloworld example directory and
build the example code.

mkdir atpesc-io

cd atpesc-io

git clone https://github.com/radix-io/hands-on.git

cd hands-on

cd darshan/helloworld

cc -o helloworld helloworld.c

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on 11

○ Setup a working directory and checkout the hands-on repo.

Darshan hands on exercise:
build/instrument the helloworld example

○ Move to the darshan/helloworld example directory and
build the example code.

mkdir atpesc-io

cd atpesc-io

git clone https://github.com/radix-io/hands-on.git

cd hands-on

cd darshan/helloworld

cc -o helloworld helloworld.c

With the Darshan software
module loaded, Polaris

compilers will automatically
link in the Darshan library.

No other user intervention
is required! ★

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on 12

○ Setup a working directory and checkout the hands-on repo.

Darshan hands on exercise:
build/instrument the helloworld example

○ Move to the darshan/helloworld example directory and
build the example code.

mkdir atpesc-io

cd atpesc-io

git clone https://github.com/radix-io/hands-on.git

cd hands-on

cd darshan/helloworld

cc -o helloworld helloworld.c

With the Darshan software
module loaded, Polaris

compilers will automatically
link in the Darshan library.

No other user intervention
is required! ★

★ Well, almost. There is one caveat: in the
default Darshan configuration, your
application must call MPI_Init() and
MPI_Finalize() to generate a log.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on 13

Darshan hands on exercise:
run the job

○ Submit the helloworld job script to the scheduler.

qsub helloworld.qsub

○ Use the qstat -u <username> tool to help determine
when your job is complete. (If no qstat output, there are no
queued/running jobs).

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

All Darshan logs are placed in a central location. The ‘darshan-config --log-path’
command will provide the log directory location.

Check the subdirectory for the year / month / day your job executed.

Be aware of time zone (or just check adjacent days)!
Polaris, for example, uses the UTC time zone and will roll over to the

next day at 7pm local time.

14

Darshan hands on exercise:
find your log file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

File name includes your username,
app name, and job ID.

All Darshan logs are placed in a central location. The ‘darshan-config --log-path’
command will provide the log directory location.

15

Darshan hands on exercise:
find your log file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

The hands-on repo includes a Polaris
environment setup script that enables
support for PyDarshan analysis tools.

16

Darshan hands on exercise:
generate job summary report

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

If successful, the tool should generate an HTML report matching the input log file name.

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

The hands-on repo includes a Polaris
environment setup script that enables
support for PyDarshan analysis tools.

17

Darshan hands on exercise:
generate job summary report

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on 18

Darshan hands on exercise:
analyze job summary report in a browser

○ First, use scp to copy the log to your own personal system.

scp snyder@polaris.alcf.anl.gov:/path/to/report.html \

 /local/path/to/report.html

○ Next, open up the HTML report with your browser of choice
and scan through the information it provides.

We will pause here to give everyone some
time to catch up before moving onto

interpreting the job summary report results.
Reach out to an instructor if you need help!

https://github.com/radix-io/hands-on
mailto:snyder@polaris.alcf.anl.gov

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

The PyDarshan job summary
tool generates this HTML
report containing graphs,
tables, and performance

estimates characterizing the
I/O workload of the application.

We will summarize some of the
highlights from the helloworld
example in the following slides.

Job summary report example

19

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: high-level job info

Executable
name and job

date
Detailed job

metadata

20

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: I/O heatmaps

Heatmaps showcase application I/O intensity (read+write volume) across time, ranks,
and interfaces – helpful for identifying hot spots, I/O and compute phases, etc.

21

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: I/O heatmaps

Sum time
slice over

ranks

Sum rank
over time

slices

22

Heatmaps showcase application I/O intensity (read+write volume) across time, ranks,
and interfaces – helpful for identifying hot spots, I/O and compute phases, etc.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: I/O heatmaps

This application demonstrates some notable I/O characteristics:
● Application I/O phases demonstrating increasing I/O intensity over time

23

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: I/O heatmaps

This application demonstrates some notable I/O characteristics:
● Balanced, collective MPI-IO accesses transformed to subset of POSIX “aggregators”

24

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: I/O cost

I/O cost indicates how much time on
average was spent reading, writing,
and doing metadata across different

I/O interfaces.

If I/O cost is a small portion of
application runtime, tuning efforts are
likely to have a relatively small impact.

25

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: Per-interface statistics

Stats available for various
I/O APIs: POSIX, MPI-IO,
STDIO, HDF5, PnetCDF

Aggregate stats for
interface, as well as a

performance estimate

Number of files of different
types (total, read-only,

read/write, etc.) recorded
by Darshan

26

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: Per-interface statistics

Operation counts provide the relative totals of
different types of I/O operations.

Lots of metadata operations (open, stat, seek,
etc.) could be a sign of poorly performing I/O.

Access pattern indicates whether read/write
operations progress sequentially or consecutively★

through the file.

More random access patterns can be expensive for
some types of storage.

★
sequential: greater
than previous offset
consecutive:
immediately following
previous offset

27

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: Per-interface statistics

Details on access sizes are provided to better understand
granularity of application read/write accesses.

In general, larger access sizes (e.g., O(MiBs)) perform better
with most storage systems.

28

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: Per-interface statistics

Note that the file access pattern
issued by the application (i.e.,

using MPI-IO) can vary
drastically from what is

ultimately issued to the file
system (i.e., using POSIX).

This application increases its
access size each I/O phase, yet
only 1 MiB operations are ever

issued to the file system via
POSIX calls.

POSIX

MPI-IO

29

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: Data access by category

Data accesses, in terms of total files
read/written and total bytes read/written,

binned by different categories:
● FS mount points (e.g., /home,

/scratch)
● standard streams (e.g., STDOUT)
● object storage pools
● etc.

Informs on job’s general usage of different
storage resources.

30

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Job summary report: additional help

Remember to contact your site’s
support team for help! The Darshan
job summary can be a good discussion
starter if you aren’t sure how to proceed
with performance tuning or problem
solving.

31

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

What about using Darshan on other systems?

If not available on a system, Darshan can either be
installed via Spack or from source. It is provided as two

separate packages in Spack:
● darshan-runtime - library for instrumenting apps
● darshan-util - tools for analyzing Darshan log files

Note that admin privileges are not required for
installing/using Darshan tools on a system.

PyDarshan is available on PyPI (e.g., ‘pip install
darshan’) and also in Spack.

See our website for more details:
https://www.mcs.anl.gov/research/projects/darshan/

32

○ Perlmutter (NERSC):
‒ How to enable: ‘module load darshan’

‒ Log directory: /pscratch/darshanlogs/

○ Summit (OLCF):
‒ How to enable: automatic

‒ Log directory: /gpfs/alpine/darshan/summit

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

Darshan: a recap

○ These slides covered some basic Darshan usage and tips.
○ Refer to facility documentation, support channels, or these slides when you need to.
○ Key takeaways:

‒ Tools are available to help you understand how your application accesses data.
‒ The simplest starting point is Darshan.
‒ It’s likely already instrumenting your application, or can quickly be made to do so.
‒ You will probably start with an HTML report generated using PyDarshan.

○ We’ll see more Darshan use cases and features this afternoon.

33

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.govHands on exercises:
https://github.com/radix-io/hands-on

More Darshan hands on exercises

○ The hands-on repo contains additional Darshan examples (warpdrive and
fidgetspinner) that you can try as time permits:
‒ Each example has A and B versions that you can compare to spot the performance

differences (and their cause).
‒ These examples will be easier to understand after seeing this afternoon’s MPI-IO

presentation.

○ We encourage you to try these exercises out and to check with the instructors to share what
you find!

○ We also encourage you to try Darshan with your own applications to see what sorts of
insights it can provide!

34

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Thank you!

