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Plan for the OpenMP sessions
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3:30 Introduction: Parallel programming and the OpenMP Common Core
4:00 Working with threads (Including synchronization): the SPMD Pattern
5:00 Worksharing and data sharing: The Loop Parallelism Pattern
~6:30 Dinner

Next Day
8:30 Task-level parallelism in OpenMP: The Divide and Conquer Pattern
10:00 Break
10:30 Beyond the common core: More Worksharing and synchronization … plus threadprivate
12:30 Lunch
1:30 Wrapping up the CPU and transitioning to GPU-programming  
2:30 The loop construct … GPU programming made “simple”
3:30 Break
4:00 Explicit Data Movement and basic principles of GPU optimization
5:30 Detailed control of the GPU … and comparisons to other GPU programming models
6:30 Dinner
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• Start an interactive job on one node
        qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle  -A ATPESC2024 -q R2035670

• Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)  
   cc -mp=gpu program.c 

• It might impact performance to match to the specific GPU architecture … 
     cc –mp=gpu -gpu=cc80 program.c
     cc –mp=gpu –gpu=sm_80 program .c

• Run a job as you normally would (.i.e.  The executable name on a command line … ./a.out) ... For 
short jobs you may need to force it to run on the GPU
      OMP_TARGET_OFFLOAD=MANDATORY ./a.out.  

• For the GPU, you can profile an execution using the nvprof profile in nsys:
      nsys nvprof ./a.out

• This will generate all sorts of data about the job.   What we care most about is the summary of 
memory movement at the end of the profile report.

   
 

Preliminaries: Systems for exercises, Polaris
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Hardware is diverse … and its only getting worse!!!

CPU

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well 
rounded HPC programmer should know what they are and how they work.
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experts and know a 

great deal about 
multithreading

You will 
learn about 
MPI later 
this week



The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well 
rounded HPC programmer should know what they are and how they work.

6

The “new” 
kid on the 
block … 
GPUs

You will 
learn about 
MPI later 
this week

You are all OpenMP 
experts and know a 

great deal about 
multithreading



The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area 

of science than computer science.

• The complexity has grown considerably over the years!

Supports general 
multithreading, but 
the emphasis was 
on parallel loops



OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment 
variablesPr

og
. 

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case …. 
i.e., lots of threads with “equal cost access” to memory 8



The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area 

of science than computer science.

• The complexity has grown considerably over the years!

Tasks added to 
OpenMP ... supports 
irregular parallelism

Target constructs added 
to OpenMP ... supports 
host-device model

Proc_bind and 
Places added to 
support thread 

affinity for 
NUMAsystms
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OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading
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The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}
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Assume a GPU with 
unified shared memory 

… allocate on host, 
visible on device too

int main() {
   int N = . . . ;
   float *a, *b, *c;
   
   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)
   // and fill with data

   for (int i=0;i<N; i++)
      c[i] = a[i] + b{i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)
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// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) 
{
    int i = blockIdx.x * blockDim.x + 
threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, 
N);
}

1. Turn source code into a 
scalar work-item

2. Map work-items onto an 
N dim index space. 

4. Run on hardware 
designed around the 

same SIMT 
execution model

3. Map data structures 
onto the same index 

spaceThis is CUDA code … the sort of code 
the OpenMP compiler generates on 

your behalf
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SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD 
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of 
Scalar 
instructions

NVIDIA calls this set of 
work-items a warp
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A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD 
processor
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A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local  Memory (work-group)

Global  Memory (kernel)

Logical Memory Hierarchy



GPU terminology is Broken (sorry about that)

16



A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners. 17



Running code on the GPU:  
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{
      target region, 
can use A, B and N
    

}

Device Initial 
thread

Host thread
waits for the 

task region to 
complete

float A[N], B[N]; A, B and N 
mapped to the 

device

the arrays 
A and B 

mapped back to 
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated 
arrays are moved onto the device 

by default before execution

Only the statically allocated arrays 
are moved back to the host after 

the target region completes

18



Default Data Sharing: example
int main(void) {
   int N = 1024;
   double A[N], B[N];

   #pragma omp target 
   {

      for (int ii = 0; ii < N; ++ii) {

         A[ii] = A[ii] + B[ii];

      }

   } // end of target region
}

1. Variables created in host 
memory.

2. Scalar N and stack arrays 
A and B are copied to device 

memory. Execution 
transferred to device.

3. ii is private on the device 
as it’s declared within the 

target region

4. Execution on the device.

5. stack arrays A and B are 
copied from device memory 

back to the host. Host 
resumes execution.

19



Now let’s run code in parallel on the device
int main(void) {
   int N = 1024;
   double A[N], B[N];

   #pragma omp target 
   {
      #pragma omp loop
      for (int ii = 0; ii < N; ++ii) {

         A[ii] = A[ii] + B[ii];

      }

   } // end of target region
}

The loop construct tells the compiler: 
“this loop will execute correctly if 

the loop iterations run in any order.  
You can safely run them 

concurrently.  And the loop-body 
doesn’t contain any OpenMP 

constructs.  So do whatever you 
can to make the code run fast”

20

The loop construct is a declarative construct.   You 
tell the compiler what you want done but you DO 
NOT tell it how to “do it”.     This is new for OpenMP



Exercise: Parallel vector addition on a GPU
• Make a copy of your parallel vadd.c program for a CPU (i.e. save the CPU version)

– vadd.c Adds together two arrays, element by element:              for(i=0;i<N;i++) c[i]=a[i]+b[i];
• Parallelize your vadd program for a GPU
• Time it for large N and save the result.  How does it compare to the CPU version?

– double omp_get_wtime();
– #pragma omp target
– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the 
host.  You can force the OpenMP runtime to use the GPU by 
setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:
 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle  -A ATPESC2024 -q R2035670

Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)  
   cc -mp=gpu program.c



Solution: Simple vector add in OpenMP on GPU
int main()
{

float a[N], b[N], c[N], res[N];
int err=0;

// fill the arrays
#pragma omp parallel for
for (int i=0; i<N; i++){

a[i] = (float)i;
b[i] = 2.0*(float)i;
c[i] = 0.0;
res[i] = i + 2*i;

}

// add two vectors
#pragma omp target
#pragma omp loop

for (int i=0; i<N; i++){
c[i] = a[i] + b[i];

}

// test results
#pragma omp parallel for reduction(+:err)
for(int i=0;i<N;i++){

float val = c[i] - res[i];
val = val*val;
if(val>TOL) err++;

}
printf("vectors added with %d errors\n", err);
return 0;

}



> nsys nvprof ./flow.omp4. flow-params

CUDA Toolkit: nsys
Simple profiling:  nsys nvprof ./exe <params>

Time to copy data onto GPU
Time to copy data back from GPU



Exercise: Parallel vector addition on a GPU
• Run you vector add program using nsys and see if the profiling output matches 

your expectations for vadd.

– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp task
– #pragma omp taskwait
– #pragma single
– #pragma omp target
– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the 
host.  You can force the OpenMP runtime to use the GPU by 
setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:
 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle  -A ATPESC2024 -q R2035670

Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)  
   cc -mp=gpu program.c



Let’s compare/contrast concurrency on a 
CPU and a GPU

25
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CPU/GPU execution modesl

For a CPU, the 
threads are all 
active and able 

to make forward 
progress.

For a GPU, any 
given work-group 

might be in the 
queue waiting to 

execute.



Implicit data movement covers a small subset of 
the cases you need in a real program.

To be more general … we need to manage data 
movement explicitly

29
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Explicit data movement

• Previously, we described the rules for implicit data movement.

• We can explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to be explicitly copied to/from the device:

int main(void) {
   int  ii=0, N = 1024;
   int* A = (int *)malloc(sizeof(int)*N);

   #pragma omp target
   {
     // N, ii and A all exist here
     // The data that A points to (*A , A[ii]) DOES NOT exist here!
   }
}



31

Moving data with the map clause

int main(void) {
   int  N = 1024;
   int* A = malloc(sizeof(int)*N);

   #pragma omp target map(A[0:N])
   {
     // N, ii and A all exist here
     // The data that A points to DOES exist here!
   }
}

Default mapping 
map(tofrom: A[0:N])

Copy at start and end of 
target region.
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OpenMP array notation

• For mapping data arrays/pointers you must use array section notation:
– In C, notation is pointer[lower-bound : length]

– map(to: a[0:N])
– Starting from the element at a[0], copy N elements to the target data region

– Be careful!
– It’s common to confuse this with the Fortran notation: (begin : end).  

– Without the map, OpenMP defines that the pointer itself (a) is mapped as a zero-length array 
section.
– Zero length arrays: a[:0]
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Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device using the 

original values from the host (host to device copy).
– map(from:list):  At the end of the target region, the values from variables in the list are copied 

into the original variables on the host (device to host copy). On entering the region, the initial 
value of the variables on the device is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start of 
region, device to host copy at end).

– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement 
defined from the 
host perspective.
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Exercise: Parallel vector addition on a GPU
• Start from vadd_heap.c

– Vadd_heap.c Adds together two arrays, element by element:       for(i=0;i<N;i++) c[i]=a[i]+b[i];
• Parallelize for a GPU  
– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp task
– #pragma omp taskwait
– #pragma single
– #pragma omp target
– #pragma omp loop
– Plus the clauses 
– private(), firstprivate(), reduction(+:var)
– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count])  map(tofrom:vptr[Lower:Count])

ATPESC/OMP_GPU_Exercises/vadd.c

Default is tofrom:   map(vptr[Lower:Count])
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Solution: vector add with dynamic memory on GPU
int main()
{

float *a = malloc(sizeof(float) * N);
float *b = malloc(sizeof(float) * N);
float *c = malloc(sizeof(float) * N);
float *res = malloc(sizeof(float) * N);
int err=0;

// fill the arrays <<<code not shown>>>>

// add two vectors
#pragma omp target map(to: a[0:N],b[0:N]) map (tofrom: c[0:N])
#pragma omp loop
for (int i=0; i<N; i++){

c[i] = a[i] + b[i];
}

// test results <<<code not shown>>>>

#pragma omp parallel for reduction(+:err)
printf("vectors added with %d errors\n", err);
return 0;

}
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Commonly used clauses on 
target and loop constructs
• The basic construct* is:

#pragma omp target [clause[[,]clause]...]
#pragma omp loop [clause[[,]clause]...]
for-loops 

• The most commonly used clauses are:
– map(to | from | tofrom list)    ß default is tofrom
– private(list)   firstprivate(list)   lastprivate(list)   shared(list) 
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the 

region, not back out “at the end”.
– reduction(reduction-identifier : list) 
– behaves as in the rest of OpenMP

– collapse(n) 
– Combines loops before the distribute directive splits up the iterations between teams



Going beyond simple vector addition … 

Using OpenMP for GPU application 
programming … the heat diffusion problem



5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥! ≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0



5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time 
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.



Method of Manufactured Solution

• Stencil codes are notoriously difficult to know if the answer is “correct”.

• Analytic solutions hard to come by:
– It’s why you’re using a computer to solve the equation approximately after all!

• Method of Manufactured Solution (MMS) is a way to help determine if the code does the correct 
thing.

• An approach often used to find errors in CFD codes and check convergence properties.



Method of Manufactured Solution

• Choose a function for 𝑢(𝑡, 𝑥, 𝑦), substitute into the equation and work through the algebra.

• Ideally like the equation to evaluate to zero so don’t need to consider a right-hand side to the 
equation.

• 𝑢 0, 𝑥, 𝑦 gives the initial conditions.
• Can evaluate boundary conditions, e.g. bottom boundary 𝑢 0,0, 𝑦

• Because 𝑢 is known for all timesteps (it was chosen!), the exact solution is known.

• Compare the computed solution to the known 𝑢 to compute an error.
• Any differences come from approximations in the method, or a bug in your code.



Method of Manufactured Solution

• For the problem of length 𝑙, choose 𝑢:

𝑢 𝑡, 𝑥, 𝑦 = 𝑒
!"#$"%

&" sin "#
$
sin "%

$

• Boundary conditions: 𝑢 is always zero on the boundaries

• Initial value of grid is then 𝑢 0, 𝑥, 𝑦 = sin "#
$
sin "%

$
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Heat program …  

// Loop over time steps

for (int t = 0; t < nsteps; ++t) {

// solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap to get ready for next step

tmp = u;

u = u_tmp;

u_tmp = tmp;

}

• Takes two optional command line 
arguments: <ncells> <nsteps>
– E.g. ./heat 1000 10
– 1000x1000 cells, 10 timesteps 

(the default problem size).

• If no command line arguments are 
provided, it uses a default:
– These two commands both run 

the default problem size of 
1000x1000 cells, 10 timesteps.

– ./heat
– ./heat 1000 10

• A sensible bigger problem is 8000 x 
8000 cells and 10 timesteps.



5-point stencil: solve kernel
void solve(…) {

// Finite difference constant multiplier
const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.
// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] =  r2 * u[i+j*n]         +
r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);

}
}

}



Exercise: parallel stencil (heat)
• Take the provided heat stencil code (heat.c)
• Add OpenMP directives to parallelize the loops on the GPU
• Most of the runtime occurs in the solve() routine.  Focus on that function. The rest of the code is there to 

just support the work inside solve. 

– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp task
– #pragma omp taskwait
– #pragma single
– #pragma omp target
– #pragma omp loop
– Plus the clauses 
– private(), firstprivate(), reduction(+:var), collapse(n)
– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count])  map(tofrom:vptr[Lower:Count])

Default is tofrom:   map(vptr[Lower:Count])

After you get your program 
to work, profile it using nsys



Solution: parallel stencil (heat)
// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u, 
double * restrict u_tmp) {
// Finite difference constant multiplier

const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid
#pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
#pragma omp loop

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.
// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}



Data movement dominates!
for (int t = 0; t < nsteps; ++t) {

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap
tmp = u;
u = u_tmp;
u_tmp = tmp;

}

Typically lots of iterations!

For each iteration, copy to device
(2*N2)*sizeof(TYPE) bytes

solve() routine uses this pragma:
#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes



Finer control over data movement

• Recall that data is mapped to/from device at start/end of target region
– #pragma omp target map(tofrom: A[0:N])

{
…

}

• Inefficient to move data around all the time
• Want to keep data resident on the device between target regions
• Will explain how to interact with the device data environment



Target data directive
• The target data construct creates a target data region 

… use map clauses for explicit data management

one or more target 
regions work within the 

target data region

#pragma omp target data map(to:A[0:N], B[0:M]) map(from: C[0:P])
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the 
device at the beginning of 

the construct

Data is mapped back to 
the host at the end of the 

target data region



Target update details

• #pragma omp target update clause[[[,]clause]...]
• Creates a target task to handle data movement between the host and a device.

• Clause: a motion-clause: 
– to(list) 
– from(list) 



Target update directive
• You can update data between target regions with 

the target update directive.

#pragma omp target data map(to: A[0:N],B[0:M]) map(from: C[0:P])
{
     #pragma omp target
           {do lots of stuff with A, B and C on the device}

     #pragma omp target update from(A[0:N])

     host_do_something_with(A)

     #pragma omp target update to(A[0:N])

     #pragma omp target
           {do lots more stuff with A, B, and C on the device}
}

map A on the 
device to A on the 
host. 

map A on the host 
to A on the device. 

Set up the data 
region ahead of 
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
Compare to map clause with direction inside: map(to: …)



Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
#pragma omp target enter data map(…)
#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.



Target enter/exit data example

void init_array(int *A, int N) {
   for (int i = 0; i < N; ++i)
      A[i] = i;
  #pragma omp target enter data map(to: A[0:N])
}

int main(void) {

   int N = 1024;
   int *A = malloc(sizeof(int) * N);
   init_array(A, N);

   #pragma omp target teams distribute parallel for simd
   for (int i = 0; i < N; ++i)
      A[i] = A[i] * A[i];

 #pragma omp target exit data map(from: A[0:N])
}



Target enter/exit data details

• #pragma omp target enter data clause[[[,]clause]...]
• Creates a target task to handle data movement between the host and a device.

• clause is one of the following: 
– if(scalar-expression) 
– device(integer-expression)
– map (map-type: list) 



Exercise

• Modify your parallel heat code from the last exercise.
• Use the ‘target data’ family of constructs to control the device data environment. 
• Minimize data movement with map clauses to minimize data movement.
• Question … will the pointer swap on the host still work?

– #pragma omp target 
– #pragma omp target enter data
– #pragma omp target exit data
– #pragma omp target update
– map(to:list) map(from:list) map(tofrom:list)
– #pragma omp teams distribute parallel for simd



Solution:  Pointer swapping in action
#pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

for (int t = 0; t < nsteps; ++t) {

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap
tmp = u;
u = u_tmp;
u_tmp = tmp;

}

#pragma omp target exit data map(from: u[0:n*n])

Copy data to device 
before iteration loop

Update solve() routine to remove map clauses:
#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

Copy data from device 
after iteration loop

Pointer-swap on the host works.  Why?
The pointers (u and u_tmp) are “on the stack” scalars the value of which is a pointer to 

memory.   They are copied onto the device at the target construct.
The association between host and device addresses is fixed with the start of a target data 

region.  Hence, as you swap the pointers, the references to the addresses in device 
memory are swapped ….. i.e. pointer-swapping on the host works.   



Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data 
region or between target enter/exit data directives.



Getting the data movement between host memory and 
device memory is key.

What are the other major issues to consider when 
optimizing performance?



Occupancy:  Keep all the GPU resources busy
• In our “GPU cartoon” we have 16 

multithreaded SIMD processors each with 
16 SIMD lanes …. For a total of 162=256 
processing elements.

• You want all resources busy at all times.  
You do that by keeping excess work for 
the multithreaded SIMD processors … if 
they are other busy on some high latency 
operation, you want a new work-group is 
ready to be scheduled for execution.

• Occupancy having enough work-groups to 
keep the GPU busy.   To support high 
occupancy, you need many more work-
items than SIMD-lanes.
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A multithreaded SIMD 
processor

#pragma omp parallel for
for(int i=0;i<N;i++)
   for(int j=0;j<N;j++)
      for(int k=0;i<N;k++)
        *(C+(i*N+j)) += *(A+(i* N +k)) *  *(B+(k* N +j));

#pragma omp parallel for collapse(2)
for(int i=0;i<N;i++)
   for(int j=0;j<N;j++)
      for(int k=0;i<N;k++)
        *(C+(i*N+j)) += *(A+(i* N +k)) *  *(B+(k* N +j));

Parallelize i-loop 
parallelism O(N)

Parallelize combined i/j-loops 
parallelism O(N2)



Converged Execution:  Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address
• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently 
– Supports the Single Program Multiple Data (SPMD) pattern.  

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

A warp

Start If Else Converge

Time



Converged Execution: Branching

• GPUs tend not to support speculative execution, which means that branch 
instructions have high latency

• This latency can be hidden by switching to alternative work-items/work-groups, 
but avoiding branches where possible is still a good idea to improve performance

• When different work-items executing within the same SIMD ALU array take 
different paths through conditional control flow, we have divergent branches (vs. 
uniform branches)

• Divergent branches are bad news: some work-items will stall while waiting for the 
others to complete

• We can use predication, selection and masking to convert conditional control flow 
into straight line code and significantly improve the performance of code that has 
lots of conditional branches



Branching

Conditional execution

// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking

// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);



Coalesced memory accesses

• Coalesced memory accesses are key for high performance code, 
especially on GPUs

• In principle, it’s very simple, but frequently requires transposing or 
transforming data on the host before sending it to the GPU

• Sometimes this is an issue of Array of Structures vs. Structure of Arrays 
(AoS vs. SoA)



Memory layout is critical to performance

• Structure of Arrays vs. Array of Structures
– Array of Structures (AoS) more natural to code:

struct Point{ float x, y, z, a; };
Point *Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-
items/vector-lanes like 
to access adjacent 
memory locations

– Structure of Arrays (SoA) suits memory coalescence in vector units
struct { float *x, *y, *z, *a; } Points;



Coalescence

• Coalesce - to combine into one
• Coalesced memory accesses are key for high 

bandwidth
• Simply, it means, if thread i accesses memory 

location n then thread i+1 accesses memory 
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good 
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
  some_strange_func(id);

float val4 = memA[loc];
}
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float val1 = memA[id];

0 1 2 3 4 5 6 7
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64 Byte Boundary

Memory access patterns
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64 Byte Boundary

const int c = 3;
float val2 = memA[id + c];

Memory access patterns



float val3 = memA[3*id];

0 1 2 3 4 5 6 7

64 Byte Boundary Strided access results in multiple 
memory transactions (and 

kills throughput)

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns



const int loc = 
  some_strange_func(id);

float val4 = memA[loc];

0 1 2 3 4 5 6 7

64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns



Exercise

• Optimize the stencil ‘solve’ kernel.

• Start with your code with optimized memory movement from the last exercise.

• Experiment with the optimizations we’ve discussed.

• Focus on the memory access pattern.

• Try different input sizes to see the effect of the optimizations.

• Keep an eye on the solve time as reported by the application.



Solution: collapse + swap loop order

// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u, 
double * restrict u_tmp) {

// Finite difference constant multiplier

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid

#pragma omp target
#pragma omp loop collapse(2)

for (int j = 0; j < n; ++j) {

for (int i = 0; i < n; ++i) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.

// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}

Swap the i and j loops so that the i+j*n 
memory accesses are contiguous

Create more work … to better fill the 
processing elements of the GPU



A note about the nowait clause

• Specify dependencies to ensure the target enter data finishes before 
the target region sibling task starts:

 void init_array(int *A, int N) {
    for (int i = 0; i < N; ++i) A[i] = i;
   #pragma omp target enter data map(to: A[0:N]) nowait depend(out: A)
 }

 int main(void) {
    int N = 1024; int *A = malloc(sizeof(int) * N);
    init_array(A, N);

    #pragma omp target teams distribute parallel for simd nowait depend(inout: A)
    for (int i = 0; i < N; ++i) A[i] = A[i] * A[i];

    #pragma omp taskwait

    #pragma omp target exit data map(from: A[0:N]) 
 }



The loop construct is great, but sometimes you 
want more control.
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Our host/device Platform Model and OpenMP

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target 
construct to 
get onto a 

device

Teams construct to create a 
league of teams with one team of 

threads on each compute unit.

Distribute construct to assign 
blocks of loop iterations to teams.

Parallel for simd 
to run each block 
of loop iterations 

on the processing 
elements
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teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk
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Create a league of teams and distribute a loop among them

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial 

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
 for (i=0;i<N;i++)
    …
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Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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#pragma omp target
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for simd
 for (i=0;i<N;i++)
    …



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• loop

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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#pragma omp target
#pragma omp teams
#pragma omp loop
 for (i=0;i<N;i++)
    …



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams

80

#pragma omp target
#pragma omp teams num_teams(3) thread_limit(5)
#pragma omp distribute
#pragma omp parallel for simd
 for (i=0;i<N;i++)
    …

Explicit control 
of number and 
size of teams



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• Combined construct

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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#pragma omp target teams loop 
for (i=0;i<N;i++)
    …



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams

82

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd
 for (j=0;j<M;i++)
    …

Works with 
nested loops 

as well



There is MUCH more … beyond what have time to cover
• Do as much as  you can with a simple loop construct.  It’s portable and as 

compilers improve over time, it will keep up with compiler driven performance 
improvements.

• But sometimes you need more:
– Control over number of teams in a league and the size of the teams
– Explicit scheduling of loop iterations onto the the teams 
– Management of data movement across the memory hierarchy: global vs. shared vs. private …
– Calling optimized math libraries (such as cuBLAS)
– Multi-device programming
– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU 
programming.   But start with loop.  Start with how data on the host maps onto the 
device (i.e. the GPU).   Master that level of GPU programming before worrying 
about the complex stuff.
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This is the end …  well almost the end.  

Let’s wrap up with a few high-level comments 
about the state of GPU programming more 

generally

84



85

SIMT Programming models: it’s more than just OpenMP
• CUDA:
– Released ~2006.   Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.
– Downside: proprietary to NVIDIA

• OpenCL:
– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.
– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.
– Downside: extreme portability means verbose API.  Painfully low level especially for the host-program.

• Sycl:
– C++ abstraction layer implements SIMT model with kernels as lambdas.  Closely aligned with OpenCL.  1st release 2014
– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models: 
– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive 

(rather than prescriptive) semantics.
– Downside: NOT an Open Standard.   Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT.  Semantics are prescriptive which makes it more verbose.  A truly Open 
standard supported by all the key GPU players.   And with the loop construct … its now prescriptive (hence there is no 
longer any reason for OpenACC to exist)

Third party names are the property of their owners

They’ve made it more open, but it still doesn’t add anything you can’t do in OpenMP



Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c), fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}
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Unified shared 
memory … allocate 
on host, visible on 

device too

CUDA kernel as 
function

Enqueue the kernel 
to execute on the 

Grid



Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>
 
int main () {
    int N = ... ;
    float *a, *b, *c;
   sycl::queue q;
    *a = (float *)sycl::malloc_shared(N * sizeof(float), q);
  // ... allocate other arrays (b and c), fill with data

       q.parallel_for(sycl::range<1>{N},
 [=](sycl::id<1> i) {
 c[i] = a[i] + b[i];

 });
        q.wait();
}
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Create a queue 
for SYCL 

commands

Unified shared 
memory … allocate 
on host, visible on 

device too

Kernel as a C++ 
Lambda function

 [=] means capture external 
variables by value.
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Vector addition with OpenACC
•Let’s add two vectors together …. C = A + B

void vadd(int n, 
         const float *a, 
         const float *b, 
         float *restrict c)
{
  int i;
 #pragma acc parallel loop
  for (i=0; i<n; i++)
    c[i] = a[i] + b[i]; 
}
int main(){
float *a, *b, *c;  int n = 10000;
// allocate and fill a and b

    vadd(n, a, b, c);

}

Assure the 
compiler that c is 
not aliased with 
other pointers

Turn the loop 
into a kernel, 

move data to a 
device, and 
launch the 

kernel.

Host waits here 
until the kernel is 
done.  Then the 
output array c  is 
copied back to 

the host.
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Why so many ways to do the same thing?
• The parallel programming model people have failed you … 

– It’s more fun to create something new in your own closed-community that work across vendors to 
create a portable API

• The hardware vendors have failed you …
– Don’t you love my “walled garden”?   It’s so nice here, programmers, just don’t even think of going 

to some other platform since your code is not portable.

• The standards community has failed you …
– Standards are great, but they move too slow.   OpenACC stabbed OpenMP in the back and I’m 

pissed, but their comments at the time were spot-on (OpenMP was moving so slow … they just 
couldn’t wait).

• The applications community failed themselves …
– If you don’t commit to a standard and use “the next cool thing” you end up with the diversity of 

overlapping options we have today.   Think about what happened with OpenMP and MPI.



Summary
• Parallel computing is fun … but it can be hard.
• Fortunately, if you stick to the Big-3 and the core patterns of parallel 

computing for HPC, it’s not too overwhelming
• The big 3: MPI, OpenMP, and “a GPU programming model”
• Key Patterns: SPMD, loop level parallelism, geometric decomposition, divide 

and conquer, and SIMT

• Some day we’ll automate the hard-parts with Machine Programming, 
but that may be 10 years!!!!



To learn more about OpenMP
The OpenMP web site has a great deal of material to help you with OpenMP      www.openmp.org
Reading the spec is painful … but each spec has a collection of examples.  Study the examples, don’t try to read the specs

Since the specs are written ONLY for implementors … programmers need the OpenMP Books to master OpenMP.

Start here … learn the basics and 
build a foundation for the future

Learn advanced features in 
OpenMP including tasking and 
GPU programming (up to version 4.5)

Programming your 
GPU with OpenMP

Tom Deakin and Tim Mattson

MIT Press

Learn all the details of GPU 
programming with OpenMP 
(up to version 5.2) 

http://www.openmp.org/


Backup ... and a bit of extra content
• The future of parallel programming
• The Jacobi solver case study
• Writing functions to call from inside a kernel
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If you care about power, the world is heterogeneous?

Specialized 
processors doing 

operations suited to 
their architecture 
are more efficient 

than general 
purpose processors. 
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SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2.   IEEE International 
Symposium on Computer Architecture and High Performance Computing, 2020  

Intel® MovidiusTM MyriadTM 2 VPU

Intel® Xeon® E5-2697v2 CPU, 
3.5 GHz, 12 cores

Nvidia® K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs, 
FPGAs, and a wide range of accelerators
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Offload vs. Heterogeneous computing
• Offload:  The CPU moves work to an accelerator and waits for the answer.   

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running? 

On a CPU

On an Accelerator

Ru
n 

Ti
m

e

CPU only

Offload

Heterogeneous 
Computing



Example: Single-cell RNA-Seq benchmark (SCANPY)
• SCANPY … a widely used tool for studying gene expression.  All data are elapsed time in seconds

• We started with results from an Nvidia blog (Example 2 from link), optimized code for one socket of Intel® Xeon® 8380 
CPU and then “simulated” heterogeneous computing result by taking the faster of CPU and GPU execution times.

Pipeline stages 64 vCPUs
n1-highmem-64
(off-the-shelf Python)

A100 40Gb 
(Clara Parabricks) 

ICX-1s, 40 cores 
(optimized by Intel)

“Simulated” 
heterogeneous: 
A100 & ICS-1s 40 cores

Data Loading & Preprocessing 1120 475 15.7 15.7

PCA 44 17.8 5.0 5.0

T-SNE 6509 37 205.6 37

K-means (single iteration) 148 2 7.1 2

KNN 154 62 59.8 59.8

UMAP 2571 21 84.5 21

Louvain clustering 1153 2.4 6.0 2.4

Leiden clustering 6345 1.7 28.4 1.7

Reanalysis of subgroup 255 17.9 22.5 17.9

Rest 39 49.2 49.0 49.0

End-to-End runtime 18338 686 483.6 211.5

https://github.com/clara-parabricks/rapids-single-cell-examples

Lessons learned:
• Be careful comparing 

unoptimized python to 
hand-tuned CUDA code

• GPUs are great.  So are 
CPUs if you fully utilize all 
the cores and vector units.

• What you really want is the 
best of both worlds.   You 
want heterogeneous 
computing!

This column shows the potential of heterogenous computing.  We ignored extra 
communication and synchronization overhead, so actual runtimes would be slightly greater.

Clara Parabricks: Nvidia solution 
stack built on RAPIDS for 
healthcare applications 

Third party names are the property of their owners

Source: Github repository as of Dec 16, 2020 - Example 2: Single-cell RNA-seq of 1.3 Million Mouse Brain Cells comparing CPU (n1-highmem-64 64 vCPUs) vs GPU (n1-highmem-
16. https://github.com/clara-parabricks/rapids-single-cell-examples. Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
1S Ice Lake: See Backup for workloads and configurations. Results may vary.

github repository as of  Dec 16, 2020

See Backup for workloads and 
configurations.  Results may vary.

Redacted

Imagine 
mixing the 
best of the 

CPU and GPU 
numbers.  

What would 
the 

performance 
look like?

https://github.com/clara-parabricks/rapids-single-cell-examples
https://github.com/clara-parabricks/rapids-single-cell-examples
https://github.com/clara-parabricks/rapids-single-cell-examples


Five Epochs of Distributed Computing*
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Epoch
starting date

Defining limitations Application Interaction time and 
Network performance

Capability

First
1970

Rare connections 
to expensive 
computers

FTP, telnet, email 100 ms
Low bandwidth high 
latency

People to 
computers

Second
1984

I/O wall, disks 
can’t keep up

RPC, 
Client Server

10 ms
10 mbps

Computer 
to computer

Third
1990

Networking wall MPP HPC, three-
tier datacenter 
networks

1 ms
100 mbs à 1 Gbs

Services to 
services

Fourth
2000

Dennard scaling 
wall … per core 
plateau

Web search, 
planet-scale 
services

100 𝜇s
10 Gbps
flash

People to 
people

Fifth
2015

Per socket wall 
… accelerators 
take off

Machine 
Learning, data 
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to 
insights

*The five Epochs of distributed computing, Amin Vahdat of Google: SIGCOMM Lifetime achievement award keynote, 2020. 



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous



The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application, 
makes the following eight assumptions. All prove to be false in the long 
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

Cloud

X
X
X

X
X
X

X
X

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Laptop/server and cluster models work 
well together.   

An impenetrable wall separates them 
from the cloud-native world



The sixth Epoch of Distributed Computing

10
1

Epoch
starting date

Defining limitations Application Interaction time and Network 
performance

Capability

First
1970

Rare connections to 
expensive computers

FTP, telnet, email 100 ms
Low bandwidth high latency

People to 
computers

Second
1984

I/O wall, disks can’t 
keep up

RPC, 
Client Server

10 ms
10 mbps

Computer to 
computer

Third
1990

Networking wall MPP HPC, three-tier 
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to 
services

Fourth
2000

Dennard Scaling Wall 
… per core plateau

Web search, planet-scale 
services

100 𝜇s
10 Gbps
flash

People to 
people

Fifth
2015

Per socket wall … 
accelerators take off

Machine Learning, data 
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to 
insights

Sixth
2025

Speed of light Dynamic, real-time AI, 
integrated from data-center 
to the edge with SDE*

100 ns
10 Tbs 

People to 
experiences

* SDE:  Software defined Everything, i.e. software defined networking, software defined infrastructure, software 
defined servers ... All at the same time  … to dynamically construct systems to meet the needs of workloads.



Networking technology… replace generic data 
center network with a cluster of cliques
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SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC

A clique:  A graph where every vertex is 
connected to every other vertex

A  Clique: a network of diameter 
one with 

O(¼N2) bisection bandwidth

Combine with next generation 
optical networks to hit latencies  

of 100 ns



Latencies every engineer should know … 
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L1 cache reference 1.5 ns 
L2 cache reference 5 ns 
Branch misprediction 6 ns 
Uncontended mutex lock/unlock 20 ns 
L3 cache reference 25 ns 
Main memory reference 100 ns 
“Far memory”/Fast NVM reference 1,000 ns (1us) 
Read 1 MB sequentially from memory 12,000 ns (12 us) 
SSD Random Read 100,000 ns (100 us) 
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us) 
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms) 
Read 1 MB sequentially from disk 10,000,000 ns (10 ms) 
Disk seek 10,000,000 ns (10 ms) 
Send packet California→Netherlands→California (150 ms) 

Source: The Datacenter as a Computer: 
Designing Warehouse-Scale Machines, Luiz 
Andre Barroso, Urs Holzle, Parthasarathy 
Ranganathan, 3rd edition, Morgan & Claypool, 
2019.

SSD NI
C

SSD NI
C

SSD NI
C

SSD NI
C

SSDNI
C

SSDNI
C

SSDNI
C

SSDNI
C

A cluster of nodes with a Clique 
network topology and low latency 
optical network…

Yields one hop network latencies 
on par with DRAM access 
latencies.



Take out the big stuff & you’re left with lots of µs overheads

104Source: Fig 1 from “Attack of the Killer Microseconds”, Barroso, Marty, Patterson, and Ranganathan, Comm ACM vol 60, # 4, p. 48, 2017

All those SW overheads add up … like bricks that combine to build a networking-wall … 
turning a 2 µs network into a 100 µs network…

Computer Scientists need to rethink system SW stacks to minimize latencies … fast 
RDMA, reduce sync contention, low latency interrupt handlers, and more …. All to hit 

O(µs) latencies. 



In the sixth Epoch of Distributed Computing, cloud 
and cluster overlap … or even merge!

Cloud HPC Cluster

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

X

X
X
X
X
X

Chip-to-chip optical 
networks push latency down 
and bandwidth up

Data Streaming Accelerator 
reduces tail latency.

P4/P5/P6 + Infrastructure 
Processing Units drive down 
latency and reduces jitter

With Low Latencies, high bandwidths and stable performance, we can do loosely synchronous and synchronous 
applications in the cloud.    The economics of the cloud vs dedicated HPC clusters means the cloud will dominate HPC

HPC applications will need to change to deal with reliability and network inhomogeneities.   



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Advances in networking technology plus 
low-overhead software stacks optimized 

to reduce tail-latency will shatter this wall



The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in 

memory) backed by a 
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS, 
and Actors

SPMDFork-join

Distributed memory,  local 
memory owned by individual 

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

There will always be a need for top-end scalable systems in  
supercomputer centers, but economics will push the bulk of 

scientific computing into the cloud.



§ Application task-groups à  microservices
§ Data structures à distributed object store
§ Durable store: Persistent cloud store (e.g. S3)

§ Application task-groups à processes
§ Data  structures à process memory
§ Durable Store: Cluster file system

§ Applications task-groups à threads
§ Data  structures à process heap
§ Durable store: local file system

One codebase à many systems

Application Program:
High-level Algebra + Core Patterns  

Application Program source code:

Software generator
Hardware cost 

model

Cloud Native HPC Laptop/ServerHPC Cluster

§ Performance, Productivity AND Portability … the database 
people “did it” with relational algebras and SQL.

§ We can do it too with algebras over distributed data 
structures … that is a set of operators over values 
expressed in terms of our distributed data structures.

§ If we get it right, we’ll have … declarative semantics that a 
software generator can turn into laptop, cluster or cloud 
programs.

Intention Adaptation

InventionData Data

Data

*

*This is the logo of the machine programming research program I help lead inside Intel Labs
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The Three Pillars of Machine Programming (MP)

Justin Gottschlich, Intel Labs
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel Labs
Michael Carbin, MIT
Martin Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenenbaum, MIT
Tim Mattson, Intel Labs

Intention

Invention DataData

Data

Adaptation

• MP is the automation of software development
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaptation: Evolve in a changing hardware/software world

Summarized ~90 works.

Key efforts by Berkeley, 
Google, Microsoft, MIT, 
Stanford, UW and others.

ACM SIGPLAN Workshop on Machine Learning and Programming  Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf



oneAPI:  A bridge to our heterogeneous/Distributed Future

oneAPI languages
Sycl, OpenMP, TBB + common high-level APIs

Partitioned Global Address Space
OpenSHMEM or MPI 3 one-sided communication

Distributed Data Structures
A collection of distributed data containers for common structures 

Machine Programming
Radical portability across distributed systems

Research

A foundation of solid 
oneAPI engineering

My vision for how we bring oneAPI into a future dominated by power-optimized heterogenous chips 
organized into distributed systems.  

The key to making this work … the programmer is in 
control and chooses the level of abstraction based on the 
programming task.



Summary

• Parallel computing is fun … but it can be hard.
• Fortunately, if you stick to the Big-3 and the core patterns of parallel 

computing for HPC, it’s not too overwhelming
• The big 3: MPI, OpenMP, and “a GPU programming model”
• Key Patterns: SPMD, loop level parallelism, geometric decomposition, divide 

and conquer, and SIMT

• Some day we’ll automate the hard-parts with Machine Programming, 
but that may be 10 years!!!!



SCANPY workload details and system configuration

• The following was done to optimize the 
SCANPY benchmark

• Data preprocessing - used warm file cache and 
multi-threaded using Numba JIT 

• PCA, K-means, KNN – Used the Intel extension for 
scikit-learn.

• t-SNE - Used optimized version from Intel’s oneDAL 
Library.

• Parallelized quadtree building, sorting and 
summarization steps using Morton codes.

• UMAP - optimized the UMAP code using 
AVX512/AVX2. Used MKL for eigenvalue 
computation.

• Louvain and Leiden algorithms – collaborated with 
Katana Graph to get well optimized versions 
and integrated them into SCANPY.

ame Intel® Xeon® Platinum 8380
Time Jan 20, 2022
Manufacturer Intel Corporation
Product Name Intel® Xeon® Platinum 8380

BIOS Version
SE5C6200.86B.0020.P23.21032613
09

OS
Rocky Linux release 8.5 (Green 
Obsidian)

Kernel 4.18.0-240.22.1.el8_3.crt6.x86_64
Microcode 0xd000270
IRQ Balance enabled

CPU Model
Intel(R) Xeon(R) Platinum 8380 
CPU @ 2.30GHz

Base Frequency 2.3GHz
Maximum 
Frequency 3.4GHz
All-core 
Maximum 
Frequency 2.5GHz
CPU(s) 40
Thread(s) per 
Core 2
Core(s) per 
Socket 40

Socket(s) 1
NUMA Node(s) 1
Prefetchers
Turbo Enabled
PPIN(s)
Power & Perf 
Policy Performance
TDP 270 watts
Frequency Driver
Frequency 
Governer Performance
Frequency (MHz)
Max C-State

Installed

Intel® Xeon® Platinum 8380
40c D1 DDR4 
16*16GB@3200MHz -
Mellanox HDR

Huge Pages Size 2048 kB
Transparent 
Huge Pages Always
Automatic 
NUMA Balancing Enabled



Backup ... and a bit of extra content

• The future of parallel programming
• The Jacobi solver case study
• Writing functions to call from inside a kernel
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Our running example: Jacobi solver 

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that   Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

  Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

  Dx=b-(L+U)x  à  x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

  Xnew = (b-(L+U)xold)/D  

• Advantage: we can easily test if the answer is correct by multiplying our 
final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for diagonally 
dominant matrices
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Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b               >>>
 
while((conv > TOL) && (iters<MAX_ITERS))
   {
     iters++;

for (i=0; i<Ndim; i++){
         xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
             if(i!=j)
               xnew[i]+= A[i*Ndim + j]*xold[j];
         }
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
     }
  

     // test convergence
     conv = 0.0;

for (i=0; i<Ndim; i++){
         tmp  = xnew[i]-xold[i];
         conv += tmp*tmp;
     }
     conv = sqrt((double)conv);
    
    // swap pointers for next
    // iteration
  TYPE* tmp = xold;
  xold = xnew;
  xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)
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Jacobi Solver (Parallel Target/loop, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
   {
     iters++;
#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
                        map(to:A[0:Ndim*Ndim], b[0:Ndim])
#pragma omp loop
for (i=0; i<Ndim; i++){
         xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
             if(i!=j)
               xnew[i]+= A[i*Ndim + j]*xold[j];
         }
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
     }
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Jacobi Solver (Parallel Target/loop, 2/2)
//

     // test convergence
     //

 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
   map(tofrom:conv)
#pragma omp loop private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

 tmp  = xnew[i]-xold[i];
 conv += tmp*tmp;

     }
     conv = sqrt((double)conv);
  TYPE* tmp = xold;
  xold = xnew;
  xnew = tmp;
} // end while loop

This worked but the performance was 
awful.  Why?

System Implementation Ndim = 4096
NVIDA® 
K20X™ 
GPU

Target dir per 
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3. 
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3.  NVIDIA® Tesla® K20X, 6GB.
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Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))
   { iters++;
     xnew = iters % s ? x2 : x1;
     xold   = iters % s ? x1 : x2;

     #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] )
       #pragma omp loop private(i,j)

for (i=0; i<Ndim; i++){
           xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
               if(i!=j)
                 xnew[i]+= A[i*Ndim + j]*xold[j];
           }
           xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
       }
// test convergence
     conv = 0.0;
     #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
                                        map(tofrom:conv)
        #pragma loop reduction(+:conv)

for (i=0; i<Ndim; i++){
            tmp  = xnew[i]-xold[i];
            conv += tmp*tmp;
        }
     conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device 
2*Ndim*sizeof(TYPE) bytes 

For each iteration, copy  to 
device 
2*Ndim*sizeof(TYPE) bytes 
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Target data directive
• The target data construct creates a target data region 

… use map clauses for explicit data management

one or more target 
regions work within the 

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the 
device at the beginning of 

the construct

Data is mapped back to 
the host at the end of the 

target data region
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Jacobi Solver (Par Target Data, 1/2)
#pragma omp target data map(tofrom:xold[0:Ndim],xnew[0:Ndim]) \
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
   {  iters++;

#pragma omp target 
#pragma omp loop private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
         xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
             if(i!=j)
               xnew[i]+= A[i*Ndim + j]*xold[j];
         }
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
     }
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Jacobi Solver (Par Target Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp loop private(tmp) firstprivate(xnew,xold)  reduction(+:conv)
                                

for (i=0; i<Ndim; i++){
         tmp  = xnew[i]-xold[i];
         conv += tmp*tmp;
     }
// end target region
 conv = sqrt((double)conv);

  TYPE* tmp = xold;
  xold = xnew;
  xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA® 
K20X™ 
GPU

Target dir per loop 131.94 secs
Above plus target 
data region

18.37 secs

Third party names are the property of their owners. 121



Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program 
address

• Each work-item has its own instruction address counter and register 
state
– Each work-item is free to branch and execute independently 
– Supports the SPMD pattern.  

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled
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A warp

Start Branch1 Branch2 Branch3 Converge

Time



Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);
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Coalescence
• Coalesce - to combine into one
• Coalesced memory accesses are 

key for high bandwidth
• Simply, it means, if thread i 

accesses memory location n then 
thread i+1 accesses memory 
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good 
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
  some_strange_func(id);

float val4 = memA[loc];
}
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Jacobi Solver (Target Data/branchless/coalesced mem, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
   {  iters++;
#pragma omp target  
       #pragma omp loop private(j)

for (i=0; i<Ndim; i++){
         xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
               xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
         }
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
     }
  

We replaced the original code with a 
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])
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//
     // test convergence
     conv = 0.0;
#pragma omp target map(tofrom: conv)
 #pragma omp loop private(tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
         tmp  = xnew[i]-xold[i];
         conv += tmp*tmp;
     }
conv = sqrt((double)conv);
  TYPE* tmp = xold;
  xold = xnew;
  xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA® 
K20X™ 
GPU

Target dir per 
loop

131.94 secs

Above plus 
target data 
region

18.37 secs

Above plus 
reduced 
branching

13.74 secs

Above plus 
improved mem 
access

7.64 secs

Jacobi Solver (Target Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3. 
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3.  NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners. 126



127

A more complicated example:
Jacobi iteration: OpenACC (GPU)
#pragma acc data copy(A), create(Anew)
while (err>tol && iter < iter_max){
   err = 0.0;
   #pragma acc parallel loop reduction(max:err)
   for(int j=1; j< n-1; j++){
      for(int i=1; i<M-1; i++){
         Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
                             A[j-1][i] + A[j+1][i]);
         err = max(err,abs(Anew[j][i] – A[j][i]));
       }
    }
    #pragma acc parallel loop
    for(int j=1; j< n-1; j++){
      for(int i=1; i<M-1; i++){
         A[j][i] = Anew[j]i];
       }
    }
    iter ++;
}

Create a data region on 
the GPU.  Copy A once 

onto the GPU, and 
create Anew on the 

device (no copy from 
host)

Copy A back out to host 
… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012
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A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){
   err = 0.0;
   #pragma target
   #pragma omp teams loop reduction(max:err)
   for(int j=1; j< n-1; j++){
      for(int i=1; i<M-1; i++){
         Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
                             A[j-1][i] + A[j+1][i]);
         err = max(err,abs(Anew[j][i] – A[j][i]));
       }
    }
    #pragma omp target
    #pragma omp teams loop
    for(int j=1; j< n-1; j++){
      for(int i=1; i<M-1; i++){
         A[j][i] = Anew[j]i];
       }
    }
    iter ++;
}

Create a data 
region on the 
GPU.  Map  A 
and Anew onto 

the target device

Copy A back out to host 
… but only once
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Backup ... and a bit of extra content

• The future of parallel programming
• The Jacobi solver case study
• Writing functions to call from inside a kernel

129



Defining a function to be called  from inside a kernel
#include mm_utils.h

#pragma omp declare target
void ddot(double *C, double *A, double *B, int i, int j, int Mdim, int Pdim){
 for(int k=0;k<Pdim;k++){
   /* C(i,j) = sum(over k) A(i,k) * B(k,j) */
   *(C+(i*Mdim+j)) += *(A+(i*Pdim+k)) *  *(B+(k*Mdim+j));
 }

}
#pragma omp end declare target

void mm_gpu(int Ndim, int Mdim, int Pdim, TYPE *A, TYPE *B, TYPE *C){
 int i, j, k;

#pragma omp target teams map(tofrom:C[0:Ndim*Mdim]) map(to:B[0:Pdim*Mdim],A[0:Ndim*Pdim])
#pragma omp loop  collapse(2)
 for (i=0; i<Ndim; i++){
  for (j=0; j<Mdim; j++){
    ddot(C, A, B, i, j, Mdim, Pdim);

  }

Tell OpenMP 
to compile this 
function for the 
GPU (and the 

CPU)

This is in my file mm_gpu.c

Call inside a 
target region, and 
the GPU version 

is called.

Call on the host, 
and a CPU 

version is called



131



==PROF== Connected to process 3522427 
(/home/tgmattso/ParProgForPhys/OMP_GPU_Exercises/Solutions/a.out)
==PROF== Profiling "nvkernel_main_F1L28_3" - 0: 0%....50%....100% - 11 passes
==PROF== Disconnected from process 3522427
vectors added with 0 errors
[3522427] a.out@127.0.0.1
 nvkernel_main_F1L28_3 (108, 1, 1)x(128, 1, 1), Context 1, Stream 16, Device 
0, CC 8.0
  Section: GPU Speed Of Light Throughput
  ----------------------- ------------- ------------
  Metric Name        Metric Unit Metric Value
  ----------------------- ------------- ------------
  DRAM Frequency      cycle/nsecond     1.21
  SM Frequency       cycle/nsecond     1.10
  Elapsed Cycles          cycle   9,206,395
  Memory Throughput          %     1.92
  DRAM Throughput           %     0.01
  Duration            msecond     8.35
  L1/TEX Cache Throughput       %     1.68
  L2 Cache Throughput         %     2.03
  SM Active Cycles         cycle 9,153,430.62
  Compute (SM) Throughput       %     1.74
  ----------------------- ------------- ------------
  OPT  This kernel grid is too small to fill the available resources on this 
device, resulting in only 0.1 full waves across all SMs. Look at Launch Statistics 
for more details.   

  Section: Launch Statistics
  -------------------------------- --------------- ---------------
  Metric Name              Metric Unit   Metric Value
  -------------------------------- --------------- ---------------
  Block Size                          128
  Function Cache Configuration           CachePreferNone
  Grid Size                           108
  Registers Per Thread       register/thread        50
  Shared Memory Configuration Size      Kbyte      65.54
  Driver Shared Memory Per Block    Kbyte/block       1.02
  Dynamic Shared Memory Per Block    Kbyte/block       1.63
  Static Shared Memory Per Block     byte/block        0
  Threads                  thread      13,824
  Waves Per SM                         0.11
  -------------------------------- --------------- ---------------

  OPT  If you execute __syncthreads() to synchronize the 
threads of a block, it is recommended to have more than the 
achieved 1 blocks per multiprocessor. This way, blocks that 
aren't waiting for __syncthreads() can keep th3e hardware 
busy.                             

  Section: Occupancy
  ------------------------------- ----------- ------------
  Metric Name           Metric Unit Metric Value
  ------------------------------- ----------- ------------
  Block Limit SM             block      32
  Block Limit Registers         block       9
  Block Limit Shared Mem         block      24
  Block Limit Warps           block      16
  Theoretical Active Warps per SM     warp      36
  Theoretical Occupancy           %     56.25
  Achieved Occupancy             %     6.25
  Achieved Active Warps Per SM      warp     4.00
  ------------------------------- ----------- ------------

  OPT  Estimated Speedup: 
88.89%                       

     This kernel's theoretical occupancy (56.2%) is limited 
by the number of required registers. The difference between 
calculated theoretical (56.2%) and measured achieved occupancy 
(6.2%) can be the result of warp scheduling overheads or 
workload imbalances during the kernel execution. Load imbalances 
can occur between warps within a block as well as across blocks 
of the same kernel. See 
the CUDA Best Practices Guide 
(https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#occupancy) for more details on optimizing 
occupancy. 

ncu –set=detailed ./a.out cc –mp=gpu vadd.c


