
Programming your GPU with
OpenMP

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
tgmattso@gmail.com

The Human Learning Group

This content was created with Tom Deakin and Simon McIntosh-Smith of the University of Bristol

mailto:tgmattso@gmail.com

Plan for the OpenMP sessions

2

3:30 Introduction: Parallel programming and the OpenMP Common Core
4:00 Working with threads (Including synchronization): the SPMD Pattern
5:00 Worksharing and data sharing: The Loop Parallelism Pattern
~6:30 Dinner

Next Day
8:30 Task-level parallelism in OpenMP: The Divide and Conquer Pattern
10:00 Break
10:30 Beyond the common core: More Worksharing and synchronization … plus threadprivate
12:30 Lunch
1:30 Wrapping up the CPU and transitioning to GPU-programming
2:30 The loop construct … GPU programming made “simple”
3:30 Break
4:00 Explicit Data Movement and basic principles of GPU optimization
5:30 Detailed control of the GPU … and comparisons to other GPU programming models
6:30 Dinner

M
on

da
y,

 P
M

Tu
es

da
y,

 A
ll

D
ay

• Start an interactive job on one node
 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle -A ATPESC2024 -q R2035670

• Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)
 cc -mp=gpu program.c

• It might impact performance to match to the specific GPU architecture …
 cc –mp=gpu -gpu=cc80 program.c
 cc –mp=gpu –gpu=sm_80 program .c

• Run a job as you normally would (.i.e. The executable name on a command line … ./a.out) ... For
short jobs you may need to force it to run on the GPU
 OMP_TARGET_OFFLOAD=MANDATORY ./a.out.

• For the GPU, you can profile an execution using the nvprof profile in nsys:
 nsys nvprof ./a.out

• This will generate all sorts of data about the job. What we care most about is the summary of
memory movement at the end of the profile report.

Preliminaries: Systems for exercises, Polaris

3

Hardware is diverse … and its only getting worse!!!

CPU

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well
rounded HPC programmer should know what they are and how they work.

5

You are all OpenMP
experts and know a

great deal about
multithreading

You will
learn about
MPI later
this week

The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well
rounded HPC programmer should know what they are and how they work.

6

The “new”
kid on the
block …
GPUs

You will
learn about
MPI later
this week

You are all OpenMP
experts and know a

great deal about
multithreading

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area

of science than computer science.

• The complexity has grown considerably over the years!

Supports general
multithreading, but
the emphasis was
on parallel loops

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e., lots of threads with “equal cost access” to memory 8

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area

of science than computer science.

• The complexity has grown considerably over the years!

Tasks added to
OpenMP ... supports
irregular parallelism

Target constructs added
to OpenMP ... supports
host-device model

Proc_bind and
Places added to
support thread

affinity for
NUMAsystms

10

OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

10

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

11

Assume a GPU with
unified shared memory

… allocate on host,
visible on device too

int main() {
 int N = . . . ;
 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)
 // and fill with data

 for (int i=0;i<N; i++)
 c[i] = a[i] + b{i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

12

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N)
{
 int i = blockIdx.x * blockDim.x +
threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c,
N);
}

1. Turn source code into a
scalar work-item

2. Map work-items onto an
N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

spaceThis is CUDA code … the sort of code
the OpenMP compiler generates on

your behalf

13

SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

NVIDIA calls this set of
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution scheduled
across a fixed number of

SIMD Lanes (SL)

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

GPU terminology is Broken (sorry about that)

16

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners. 17

Running code on the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{
 target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

18

Default Data Sharing: example
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {

 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

19

Now let’s run code in parallel on the device
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {
 #pragma omp loop
 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

20

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

Exercise: Parallel vector addition on a GPU
• Make a copy of your parallel vadd.c program for a CPU (i.e. save the CPU version)

– vadd.c Adds together two arrays, element by element: for(i=0;i<N;i++) c[i]=a[i]+b[i];
• Parallelize your vadd program for a GPU
• Time it for large N and save the result. How does it compare to the CPU version?

– double omp_get_wtime();
– #pragma omp target
– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the
host. You can force the OpenMP runtime to use the GPU by
setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:
 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle -A ATPESC2024 -q R2035670

Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)
 cc -mp=gpu program.c

Solution: Simple vector add in OpenMP on GPU
int main()
{

float a[N], b[N], c[N], res[N];
int err=0;

// fill the arrays
#pragma omp parallel for
for (int i=0; i<N; i++){

a[i] = (float)i;
b[i] = 2.0*(float)i;
c[i] = 0.0;
res[i] = i + 2*i;

}

// add two vectors
#pragma omp target
#pragma omp loop

for (int i=0; i<N; i++){
c[i] = a[i] + b[i];

}

// test results
#pragma omp parallel for reduction(+:err)
for(int i=0;i<N;i++){

float val = c[i] - res[i];
val = val*val;
if(val>TOL) err++;

}
printf("vectors added with %d errors\n", err);
return 0;

}

> nsys nvprof ./flow.omp4. flow-params

CUDA Toolkit: nsys
Simple profiling: nsys nvprof ./exe <params>

Time to copy data onto GPU
Time to copy data back from GPU

Exercise: Parallel vector addition on a GPU
• Run you vector add program using nsys and see if the profiling output matches

your expectations for vadd.

– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp task
– #pragma omp taskwait
– #pragma single
– #pragma omp target
– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the
host. You can force the OpenMP runtime to use the GPU by
setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:
 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle -A ATPESC2024 -q R2035670

Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)
 cc -mp=gpu program.c

Let’s compare/contrast concurrency on a
CPU and a GPU

25

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution modesl

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

Implicit data movement covers a small subset of
the cases you need in a real program.

To be more general … we need to manage data
movement explicitly

29

30

Explicit data movement

• Previously, we described the rules for implicit data movement.

• We can explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to be explicitly copied to/from the device:

int main(void) {
 int ii=0, N = 1024;
 int* A = (int *)malloc(sizeof(int)*N);

 #pragma omp target
 {
 // N, ii and A all exist here
 // The data that A points to (*A , A[ii]) DOES NOT exist here!
 }
}

31

Moving data with the map clause

int main(void) {
 int N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target map(A[0:N])
 {
 // N, ii and A all exist here
 // The data that A points to DOES exist here!
 }
}

Default mapping
map(tofrom: A[0:N])

Copy at start and end of
target region.

32

OpenMP array notation

• For mapping data arrays/pointers you must use array section notation:
– In C, notation is pointer[lower-bound : length]

– map(to: a[0:N])
– Starting from the element at a[0], copy N elements to the target data region

– Be careful!
– It’s common to confuse this with the Fortran notation: (begin : end).

– Without the map, OpenMP defines that the pointer itself (a) is mapped as a zero-length array
section.
– Zero length arrays: a[:0]

33

Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device using the

original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list are copied

into the original variables on the host (device to host copy). On entering the region, the initial
value of the variables on the device is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start of
region, device to host copy at end).

– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
defined from the
host perspective.

34

Exercise: Parallel vector addition on a GPU
• Start from vadd_heap.c

– Vadd_heap.c Adds together two arrays, element by element: for(i=0;i<N;i++) c[i]=a[i]+b[i];
• Parallelize for a GPU
– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp task
– #pragma omp taskwait
– #pragma single
– #pragma omp target
– #pragma omp loop
– Plus the clauses
– private(), firstprivate(), reduction(+:var)
– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count]) map(tofrom:vptr[Lower:Count])

ATPESC/OMP_GPU_Exercises/vadd.c

Default is tofrom: map(vptr[Lower:Count])

35

Solution: vector add with dynamic memory on GPU
int main()
{

float *a = malloc(sizeof(float) * N);
float *b = malloc(sizeof(float) * N);
float *c = malloc(sizeof(float) * N);
float *res = malloc(sizeof(float) * N);
int err=0;

// fill the arrays <<<code not shown>>>>

// add two vectors
#pragma omp target map(to: a[0:N],b[0:N]) map (tofrom: c[0:N])
#pragma omp loop
for (int i=0; i<N; i++){

c[i] = a[i] + b[i];
}

// test results <<<code not shown>>>>

#pragma omp parallel for reduction(+:err)
printf("vectors added with %d errors\n", err);
return 0;

}

36

Commonly used clauses on
target and loop constructs
• The basic construct* is:

#pragma omp target [clause[[,]clause]...]
#pragma omp loop [clause[[,]clause]...]
for-loops

• The most commonly used clauses are:
– map(to | from | tofrom list) ß default is tofrom
– private(list) firstprivate(list) lastprivate(list) shared(list)
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the

region, not back out “at the end”.
– reduction(reduction-identifier : list)
– behaves as in the rest of OpenMP

– collapse(n)
– Combines loops before the distribute directive splits up the iterations between teams

Going beyond simple vector addition …

Using OpenMP for GPU application
programming … the heat diffusion problem

5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥! ≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0

5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.

Method of Manufactured Solution

• Stencil codes are notoriously difficult to know if the answer is “correct”.

• Analytic solutions hard to come by:
– It’s why you’re using a computer to solve the equation approximately after all!

• Method of Manufactured Solution (MMS) is a way to help determine if the code does the correct
thing.

• An approach often used to find errors in CFD codes and check convergence properties.

Method of Manufactured Solution

• Choose a function for 𝑢(𝑡, 𝑥, 𝑦), substitute into the equation and work through the algebra.

• Ideally like the equation to evaluate to zero so don’t need to consider a right-hand side to the
equation.

• 𝑢 0, 𝑥, 𝑦 gives the initial conditions.
• Can evaluate boundary conditions, e.g. bottom boundary 𝑢 0,0, 𝑦

• Because 𝑢 is known for all timesteps (it was chosen!), the exact solution is known.

• Compare the computed solution to the known 𝑢 to compute an error.
• Any differences come from approximations in the method, or a bug in your code.

Method of Manufactured Solution

• For the problem of length 𝑙, choose 𝑢:

𝑢 𝑡, 𝑥, 𝑦 = 𝑒
!"#$"%

&" sin "#
$
sin "%

$

• Boundary conditions: 𝑢 is always zero on the boundaries

• Initial value of grid is then 𝑢 0, 𝑥, 𝑦 = sin "#
$
sin "%

$

0 200 400 600 800 10000
200

400
600

800
10000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

x
y

u

Heat program …

// Loop over time steps

for (int t = 0; t < nsteps; ++t) {

// solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap to get ready for next step

tmp = u;

u = u_tmp;

u_tmp = tmp;

}

• Takes two optional command line
arguments: <ncells> <nsteps>
– E.g. ./heat 1000 10
– 1000x1000 cells, 10 timesteps

(the default problem size).

• If no command line arguments are
provided, it uses a default:
– These two commands both run

the default problem size of
1000x1000 cells, 10 timesteps.

– ./heat
– ./heat 1000 10

• A sensible bigger problem is 8000 x
8000 cells and 10 timesteps.

5-point stencil: solve kernel
void solve(…) {

// Finite difference constant multiplier
const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.
// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}
}

}

Exercise: parallel stencil (heat)
• Take the provided heat stencil code (heat.c)
• Add OpenMP directives to parallelize the loops on the GPU
• Most of the runtime occurs in the solve() routine. Focus on that function. The rest of the code is there to

just support the work inside solve.

– double omp_get_wtime();
– #pragma omp parallel
– #pragma omp for
– #pragma omp parallel for
– #pragma omp task
– #pragma omp taskwait
– #pragma single
– #pragma omp target
– #pragma omp loop
– Plus the clauses
– private(), firstprivate(), reduction(+:var), collapse(n)
– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count]) map(tofrom:vptr[Lower:Count])

Default is tofrom: map(vptr[Lower:Count])

After you get your program
to work, profile it using nsys

Solution: parallel stencil (heat)
// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u,
double * restrict u_tmp) {
// Finite difference constant multiplier

const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid
#pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
#pragma omp loop

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.
// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}

Data movement dominates!
for (int t = 0; t < nsteps; ++t) {

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap
tmp = u;
u = u_tmp;
u_tmp = tmp;

}

Typically lots of iterations!

For each iteration, copy to device
(2*N2)*sizeof(TYPE) bytes

solve() routine uses this pragma:
#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes

Finer control over data movement

• Recall that data is mapped to/from device at start/end of target region
– #pragma omp target map(tofrom: A[0:N])

{
…

}

• Inefficient to move data around all the time
• Want to keep data resident on the device between target regions
• Will explain how to interact with the device data environment

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A[0:N], B[0:M]) map(from: C[0:P])
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

Target update details

• #pragma omp target update clause[[[,]clause]...]
• Creates a target task to handle data movement between the host and a device.

• Clause: a motion-clause:
– to(list)
– from(list)

Target update directive
• You can update data between target regions with

the target update directive.

#pragma omp target data map(to: A[0:N],B[0:M]) map(from: C[0:P])
{
 #pragma omp target
 {do lots of stuff with A, B and C on the device}

 #pragma omp target update from(A[0:N])

 host_do_something_with(A)

 #pragma omp target update to(A[0:N])

 #pragma omp target
 {do lots more stuff with A, B, and C on the device}
}

map A on the
device to A on the
host.

map A on the host
to A on the device.

Set up the data
region ahead of
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
Compare to map clause with direction inside: map(to: …)

Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
#pragma omp target enter data map(…)
#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.

Target enter/exit data example

void init_array(int *A, int N) {
 for (int i = 0; i < N; ++i)
 A[i] = i;
 #pragma omp target enter data map(to: A[0:N])
}

int main(void) {

 int N = 1024;
 int *A = malloc(sizeof(int) * N);
 init_array(A, N);

 #pragma omp target teams distribute parallel for simd
 for (int i = 0; i < N; ++i)
 A[i] = A[i] * A[i];

 #pragma omp target exit data map(from: A[0:N])
}

Target enter/exit data details

• #pragma omp target enter data clause[[[,]clause]...]
• Creates a target task to handle data movement between the host and a device.

• clause is one of the following:
– if(scalar-expression)
– device(integer-expression)
– map (map-type: list)

Exercise

• Modify your parallel heat code from the last exercise.
• Use the ‘target data’ family of constructs to control the device data environment.
• Minimize data movement with map clauses to minimize data movement.
• Question … will the pointer swap on the host still work?

– #pragma omp target
– #pragma omp target enter data
– #pragma omp target exit data
– #pragma omp target update
– map(to:list) map(from:list) map(tofrom:list)
– #pragma omp teams distribute parallel for simd

Solution: Pointer swapping in action
#pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

for (int t = 0; t < nsteps; ++t) {

solve(n, alpha, dx, dt, u, u_tmp);

// Pointer swap
tmp = u;
u = u_tmp;
u_tmp = tmp;

}

#pragma omp target exit data map(from: u[0:n*n])

Copy data to device
before iteration loop

Update solve() routine to remove map clauses:
#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

Copy data from device
after iteration loop

Pointer-swap on the host works. Why?
The pointers (u and u_tmp) are “on the stack” scalars the value of which is a pointer to

memory. They are copied onto the device at the target construct.
The association between host and device addresses is fixed with the start of a target data

region. Hence, as you swap the pointers, the references to the addresses in device
memory are swapped ….. i.e. pointer-swapping on the host works.

Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data
region or between target enter/exit data directives.

Getting the data movement between host memory and
device memory is key.

What are the other major issues to consider when
optimizing performance?

Occupancy: Keep all the GPU resources busy
• In our “GPU cartoon” we have 16

multithreaded SIMD processors each with
16 SIMD lanes …. For a total of 162=256
processing elements.

• You want all resources busy at all times.
You do that by keeping excess work for
the multithreaded SIMD processors … if
they are other busy on some high latency
operation, you want a new work-group is
ready to be scheduled for execution.

• Occupancy having enough work-groups to
keep the GPU busy. To support high
occupancy, you need many more work-
items than SIMD-lanes.

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A multithreaded SIMD
processor

#pragma omp parallel for
for(int i=0;i<N;i++)
 for(int j=0;j<N;j++)
 for(int k=0;i<N;k++)
 *(C+(i*N+j)) += *(A+(i* N +k)) * *(B+(k* N +j));

#pragma omp parallel for collapse(2)
for(int i=0;i<N;i++)
 for(int j=0;j<N;j++)
 for(int k=0;i<N;k++)
 *(C+(i*N+j)) += *(A+(i* N +k)) * *(B+(k* N +j));

Parallelize i-loop
parallelism O(N)

Parallelize combined i/j-loops
parallelism O(N2)

Converged Execution: Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address
• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently
– Supports the Single Program Multiple Data (SPMD) pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

A warp

Start If Else Converge

Time

Converged Execution: Branching

• GPUs tend not to support speculative execution, which means that branch
instructions have high latency

• This latency can be hidden by switching to alternative work-items/work-groups,
but avoiding branches where possible is still a good idea to improve performance

• When different work-items executing within the same SIMD ALU array take
different paths through conditional control flow, we have divergent branches (vs.
uniform branches)

• Divergent branches are bad news: some work-items will stall while waiting for the
others to complete

• We can use predication, selection and masking to convert conditional control flow
into straight line code and significantly improve the performance of code that has
lots of conditional branches

Branching

Conditional execution

// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking

// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Coalesced memory accesses

• Coalesced memory accesses are key for high performance code,
especially on GPUs

• In principle, it’s very simple, but frequently requires transposing or
transforming data on the host before sending it to the GPU

• Sometimes this is an issue of Array of Structures vs. Structure of Arrays
(AoS vs. SoA)

Memory layout is critical to performance

• Structure of Arrays vs. Array of Structures
– Array of Structures (AoS) more natural to code:

struct Point{ float x, y, z, a; };
Point *Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-
items/vector-lanes like
to access adjacent
memory locations

– Structure of Arrays (SoA) suits memory coalescence in vector units
struct { float *x, *y, *z, *a; } Points;

Coalescence

• Coalesce - to combine into one
• Coalesced memory accesses are key for high

bandwidth
• Simply, it means, if thread i accesses memory

location n then thread i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
 some_strange_func(id);

float val4 = memA[loc];
}

0 1 2 3 4 5 6 7 GPU Threads

64 Byte Boundary GPU Memory64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

float val1 = memA[id];

0 1 2 3 4 5 6 7

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

64 Byte Boundary

Memory access patterns

0 1 2 3 4 5 6 7

0x1200x11c0x1180x114 0x124 0x128 0x12c 0x130 0x134 0x138 0x13c 0x140 0x144 0x148

64 Byte Boundary

const int c = 3;
float val2 = memA[id + c];

Memory access patterns

float val3 = memA[3*id];

0 1 2 3 4 5 6 7

64 Byte Boundary Strided access results in multiple
memory transactions (and

kills throughput)

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

const int loc =
 some_strange_func(id);

float val4 = memA[loc];

0 1 2 3 4 5 6 7

64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

Exercise

• Optimize the stencil ‘solve’ kernel.

• Start with your code with optimized memory movement from the last exercise.

• Experiment with the optimizations we’ve discussed.

• Focus on the memory access pattern.

• Try different input sizes to see the effect of the optimizations.

• Keep an eye on the solve time as reported by the application.

Solution: collapse + swap loop order

// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u,
double * restrict u_tmp) {

// Finite difference constant multiplier

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0*r;

// Loop over the nxn grid

#pragma omp target
#pragma omp loop collapse(2)

for (int j = 0; j < n; ++j) {

for (int i = 0; i < n; ++i) {

// Update the 5-point stencil, using boundary conditions on the edges of the domain.

// Boundaries are zero because the MMS solution is zero there.
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

r * ((i > 0) ? u[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}

Swap the i and j loops so that the i+j*n
memory accesses are contiguous

Create more work … to better fill the
processing elements of the GPU

A note about the nowait clause

• Specify dependencies to ensure the target enter data finishes before
the target region sibling task starts:

 void init_array(int *A, int N) {
 for (int i = 0; i < N; ++i) A[i] = i;
 #pragma omp target enter data map(to: A[0:N]) nowait depend(out: A)
 }

 int main(void) {
 int N = 1024; int *A = malloc(sizeof(int) * N);
 init_array(A, N);

 #pragma omp target teams distribute parallel for simd nowait depend(inout: A)
 for (int i = 0; i < N; ++i) A[i] = A[i] * A[i];

 #pragma omp taskwait

 #pragma omp target exit data map(from: A[0:N])
 }

The loop construct is great, but sometimes you
want more control.

74

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

75

teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk

76

Create a league of teams and distribute a loop among them

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
 for (i=0;i<N;i++)
 …

77

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

78

#pragma omp target
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for simd
 for (i=0;i<N;i++)
 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• loop

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

79

#pragma omp target
#pragma omp teams
#pragma omp loop
 for (i=0;i<N;i++)
 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

80

#pragma omp target
#pragma omp teams num_teams(3) thread_limit(5)
#pragma omp distribute
#pragma omp parallel for simd
 for (i=0;i<N;i++)
 …

Explicit control
of number and
size of teams

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• Combined construct

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

81

#pragma omp target teams loop
for (i=0;i<N;i++)
 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

82

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd
 for (j=0;j<M;i++)
 …

Works with
nested loops

as well

There is MUCH more … beyond what have time to cover
• Do as much as you can with a simple loop construct. It’s portable and as

compilers improve over time, it will keep up with compiler driven performance
improvements.

• But sometimes you need more:
– Control over number of teams in a league and the size of the teams
– Explicit scheduling of loop iterations onto the the teams
– Management of data movement across the memory hierarchy: global vs. shared vs. private …
– Calling optimized math libraries (such as cuBLAS)
– Multi-device programming
– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU
programming. But start with loop. Start with how data on the host maps onto the
device (i.e. the GPU). Master that level of GPU programming before worrying
about the complex stuff.

83

This is the end … well almost the end.

Let’s wrap up with a few high-level comments
about the state of GPU programming more

generally

84

85

SIMT Programming models: it’s more than just OpenMP
• CUDA:
– Released ~2006. Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.
– Downside: proprietary to NVIDIA

• OpenCL:
– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.
– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.
– Downside: extreme portability means verbose API. Painfully low level especially for the host-program.

• Sycl:
– C++ abstraction layer implements SIMT model with kernels as lambdas. Closely aligned with OpenCL. 1st release 2014
– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models:
– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive

(rather than prescriptive) semantics.
– Downside: NOT an Open Standard. Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT. Semantics are prescriptive which makes it more verbose. A truly Open
standard supported by all the key GPU players. And with the loop construct … its now prescriptive (hence there is no
longer any reason for OpenACC to exist)

Third party names are the property of their owners

They’ve made it more open, but it still doesn’t add anything you can’t do in OpenMP

Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c), fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

86

Unified shared
memory … allocate
on host, visible on

device too

CUDA kernel as
function

Enqueue the kernel
to execute on the

Grid

Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>

int main () {
 int N = ... ;
 float *a, *b, *c;
 sycl::queue q;
 *a = (float *)sycl::malloc_shared(N * sizeof(float), q);
 // ... allocate other arrays (b and c), fill with data

 q.parallel_for(sycl::range<1>{N},
 [=](sycl::id<1> i) {
 c[i] = a[i] + b[i];

 });
 q.wait();
}

87

Create a queue
for SYCL

commands

Unified shared
memory … allocate
on host, visible on

device too

Kernel as a C++
Lambda function

 [=] means capture external
variables by value.

8888

Vector addition with OpenACC
•Let’s add two vectors together …. C = A + B

void vadd(int n,
 const float *a,
 const float *b,
 float *restrict c)
{
 int i;
 #pragma acc parallel loop
 for (i=0; i<n; i++)
 c[i] = a[i] + b[i];
}
int main(){
float *a, *b, *c; int n = 10000;
// allocate and fill a and b

 vadd(n, a, b, c);

}

Assure the
compiler that c is
not aliased with
other pointers

Turn the loop
into a kernel,

move data to a
device, and
launch the

kernel.

Host waits here
until the kernel is
done. Then the
output array c is
copied back to

the host.

89

Why so many ways to do the same thing?
• The parallel programming model people have failed you …

– It’s more fun to create something new in your own closed-community that work across vendors to
create a portable API

• The hardware vendors have failed you …
– Don’t you love my “walled garden”? It’s so nice here, programmers, just don’t even think of going

to some other platform since your code is not portable.

• The standards community has failed you …
– Standards are great, but they move too slow. OpenACC stabbed OpenMP in the back and I’m

pissed, but their comments at the time were spot-on (OpenMP was moving so slow … they just
couldn’t wait).

• The applications community failed themselves …
– If you don’t commit to a standard and use “the next cool thing” you end up with the diversity of

overlapping options we have today. Think about what happened with OpenMP and MPI.

Summary
• Parallel computing is fun … but it can be hard.
• Fortunately, if you stick to the Big-3 and the core patterns of parallel

computing for HPC, it’s not too overwhelming
• The big 3: MPI, OpenMP, and “a GPU programming model”
• Key Patterns: SPMD, loop level parallelism, geometric decomposition, divide

and conquer, and SIMT

• Some day we’ll automate the hard-parts with Machine Programming,
but that may be 10 years!!!!

To learn more about OpenMP
The OpenMP web site has a great deal of material to help you with OpenMP www.openmp.org
Reading the spec is painful … but each spec has a collection of examples. Study the examples, don’t try to read the specs

Since the specs are written ONLY for implementors … programmers need the OpenMP Books to master OpenMP.

Start here … learn the basics and
build a foundation for the future

Learn advanced features in
OpenMP including tasking and
GPU programming (up to version 4.5)

Programming your
GPU with OpenMP

Tom Deakin and Tim Mattson

MIT Press

Learn all the details of GPU
programming with OpenMP
(up to version 5.2)

http://www.openmp.org/

Backup ... and a bit of extra content
• The future of parallel programming
• The Jacobi solver case study
• Writing functions to call from inside a kernel

92

If you care about power, the world is heterogeneous?

Specialized
processors doing

operations suited to
their architecture
are more efficient

than general
purpose processors.

0

5

10

15

20

25

30
SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2. IEEE International
Symposium on Computer Architecture and High Performance Computing, 2020

Intel® MovidiusTM MyriadTM 2 VPU

Intel® Xeon® E5-2697v2 CPU,
3.5 GHz, 12 cores

Nvidia® K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs,
FPGAs, and a wide range of accelerators

GF
LO

PS
/W

at
t

Offload vs. Heterogeneous computing
• Offload: The CPU moves work to an accelerator and waits for the answer.

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

Ru
n

Ti
m

e

CPU only

Offload

Heterogeneous
Computing

Example: Single-cell RNA-Seq benchmark (SCANPY)
• SCANPY … a widely used tool for studying gene expression. All data are elapsed time in seconds

• We started with results from an Nvidia blog (Example 2 from link), optimized code for one socket of Intel® Xeon® 8380
CPU and then “simulated” heterogeneous computing result by taking the faster of CPU and GPU execution times.

Pipeline stages 64 vCPUs
n1-highmem-64
(off-the-shelf Python)

A100 40Gb
(Clara Parabricks)

ICX-1s, 40 cores
(optimized by Intel)

“Simulated”
heterogeneous:
A100 & ICS-1s 40 cores

Data Loading & Preprocessing 1120 475 15.7 15.7

PCA 44 17.8 5.0 5.0

T-SNE 6509 37 205.6 37

K-means (single iteration) 148 2 7.1 2

KNN 154 62 59.8 59.8

UMAP 2571 21 84.5 21

Louvain clustering 1153 2.4 6.0 2.4

Leiden clustering 6345 1.7 28.4 1.7

Reanalysis of subgroup 255 17.9 22.5 17.9

Rest 39 49.2 49.0 49.0

End-to-End runtime 18338 686 483.6 211.5

https://github.com/clara-parabricks/rapids-single-cell-examples

Lessons learned:
• Be careful comparing

unoptimized python to
hand-tuned CUDA code

• GPUs are great. So are
CPUs if you fully utilize all
the cores and vector units.

• What you really want is the
best of both worlds. You
want heterogeneous
computing!

This column shows the potential of heterogenous computing. We ignored extra
communication and synchronization overhead, so actual runtimes would be slightly greater.

Clara Parabricks: Nvidia solution
stack built on RAPIDS for
healthcare applications

Third party names are the property of their owners

Source: Github repository as of Dec 16, 2020 - Example 2: Single-cell RNA-seq of 1.3 Million Mouse Brain Cells comparing CPU (n1-highmem-64 64 vCPUs) vs GPU (n1-highmem-
16. https://github.com/clara-parabricks/rapids-single-cell-examples. Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
1S Ice Lake: See Backup for workloads and configurations. Results may vary.

github repository as of Dec 16, 2020

See Backup for workloads and
configurations. Results may vary.

Redacted

Imagine
mixing the
best of the

CPU and GPU
numbers.

What would
the

performance
look like?

https://github.com/clara-parabricks/rapids-single-cell-examples
https://github.com/clara-parabricks/rapids-single-cell-examples
https://github.com/clara-parabricks/rapids-single-cell-examples

Five Epochs of Distributed Computing*

96

Epoch
starting date

Defining limitations Application Interaction time and
Network performance

Capability

First
1970

Rare connections
to expensive
computers

FTP, telnet, email 100 ms
Low bandwidth high
latency

People to
computers

Second
1984

I/O wall, disks
can’t keep up

RPC,
Client Server

10 ms
10 mbps

Computer
to computer

Third
1990

Networking wall MPP HPC, three-
tier datacenter
networks

1 ms
100 mbs à 1 Gbs

Services to
services

Fourth
2000

Dennard scaling
wall … per core
plateau

Web search,
planet-scale
services

100 𝜇s
10 Gbps
flash

People to
people

Fifth
2015

Per socket wall
… accelerators
take off

Machine
Learning, data
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to
insights

*The five Epochs of distributed computing, Amin Vahdat of Google: SIGCOMM Lifetime achievement award keynote, 2020.

The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

Cloud

X
X
X

X
X
X

X
X

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X

The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in

memory) backed by a
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS,
and Actors

SPMDFork-join

Distributed memory, local
memory owned by individual

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Laptop/server and cluster models work
well together.

An impenetrable wall separates them
from the cloud-native world

The sixth Epoch of Distributed Computing

10
1

Epoch
starting date

Defining limitations Application Interaction time and Network
performance

Capability

First
1970

Rare connections to
expensive computers

FTP, telnet, email 100 ms
Low bandwidth high latency

People to
computers

Second
1984

I/O wall, disks can’t
keep up

RPC,
Client Server

10 ms
10 mbps

Computer to
computer

Third
1990

Networking wall MPP HPC, three-tier
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to
services

Fourth
2000

Dennard Scaling Wall
… per core plateau

Web search, planet-scale
services

100 𝜇s
10 Gbps
flash

People to
people

Fifth
2015

Per socket wall …
accelerators take off

Machine Learning, data
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to
insights

Sixth
2025

Speed of light Dynamic, real-time AI,
integrated from data-center
to the edge with SDE*

100 ns
10 Tbs

People to
experiences

* SDE: Software defined Everything, i.e. software defined networking, software defined infrastructure, software
defined servers ... All at the same time … to dynamically construct systems to meet the needs of workloads.

Networking technology… replace generic data
center network with a cluster of cliques

102

SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC

A clique: A graph where every vertex is
connected to every other vertex

A Clique: a network of diameter
one with

O(¼N2) bisection bandwidth

Combine with next generation
optical networks to hit latencies

of 100 ns

Latencies every engineer should know …

103

L1 cache reference 1.5 ns
L2 cache reference 5 ns
Branch misprediction 6 ns
Uncontended mutex lock/unlock 20 ns
L3 cache reference 25 ns
Main memory reference 100 ns
“Far memory”/Fast NVM reference 1,000 ns (1us)
Read 1 MB sequentially from memory 12,000 ns (12 us)
SSD Random Read 100,000 ns (100 us)
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us)
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms)
Read 1 MB sequentially from disk 10,000,000 ns (10 ms)
Disk seek 10,000,000 ns (10 ms)
Send packet California→Netherlands→California (150 ms)

Source: The Datacenter as a Computer:
Designing Warehouse-Scale Machines, Luiz
Andre Barroso, Urs Holzle, Parthasarathy
Ranganathan, 3rd edition, Morgan & Claypool,
2019.

SSD NI
C

SSD NI
C

SSD NI
C

SSD NI
C

SSDNI
C

SSDNI
C

SSDNI
C

SSDNI
C

A cluster of nodes with a Clique
network topology and low latency
optical network…

Yields one hop network latencies
on par with DRAM access
latencies.

Take out the big stuff & you’re left with lots of µs overheads

104Source: Fig 1 from “Attack of the Killer Microseconds”, Barroso, Marty, Patterson, and Ranganathan, Comm ACM vol 60, # 4, p. 48, 2017

All those SW overheads add up … like bricks that combine to build a networking-wall …
turning a 2 µs network into a 100 µs network…

Computer Scientists need to rethink system SW stacks to minimize latencies … fast
RDMA, reduce sync contention, low latency interrupt handlers, and more …. All to hit

O(µs) latencies.

In the sixth Epoch of Distributed Computing, cloud
and cluster overlap … or even merge!

Cloud HPC Cluster

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

X

X
X
X
X
X

Chip-to-chip optical
networks push latency down
and bandwidth up

Data Streaming Accelerator
reduces tail latency.

P4/P5/P6 + Infrastructure
Processing Units drive down
latency and reduces jitter

With Low Latencies, high bandwidths and stable performance, we can do loosely synchronous and synchronous
applications in the cloud. The economics of the cloud vs dedicated HPC clusters means the cloud will dominate HPC

HPC applications will need to change to deal with reliability and network inhomogeneities.

The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in

memory) backed by a
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS,
and Actors

SPMDFork-join

Distributed memory, local
memory owned by individual

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Advances in networking technology plus
low-overhead software stacks optimized

to reduce tail-latency will shatter this wall

The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in

memory) backed by a
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS,
and Actors

SPMDFork-join

Distributed memory, local
memory owned by individual

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

There will always be a need for top-end scalable systems in
supercomputer centers, but economics will push the bulk of

scientific computing into the cloud.

§ Application task-groups à microservices
§ Data structures à distributed object store
§ Durable store: Persistent cloud store (e.g. S3)

§ Application task-groups à processes
§ Data structures à process memory
§ Durable Store: Cluster file system

§ Applications task-groups à threads
§ Data structures à process heap
§ Durable store: local file system

One codebase à many systems

Application Program:
High-level Algebra + Core Patterns

Application Program source code:

Software generator
Hardware cost

model

Cloud Native HPC Laptop/ServerHPC Cluster

§ Performance, Productivity AND Portability … the database
people “did it” with relational algebras and SQL.

§ We can do it too with algebras over distributed data
structures … that is a set of operators over values
expressed in terms of our distributed data structures.

§ If we get it right, we’ll have … declarative semantics that a
software generator can turn into laptop, cluster or cloud
programs.

Intention Adaptation

InventionData Data

Data

*

*This is the logo of the machine programming research program I help lead inside Intel Labs

109

The Three Pillars of Machine Programming (MP)

Justin Gottschlich, Intel Labs
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel Labs
Michael Carbin, MIT
Martin Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenenbaum, MIT
Tim Mattson, Intel Labs

Intention

Invention DataData

Data

Adaptation

• MP is the automation of software development
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaptation: Evolve in a changing hardware/software world

Summarized ~90 works.

Key efforts by Berkeley,
Google, Microsoft, MIT,
Stanford, UW and others.

ACM SIGPLAN Workshop on Machine Learning and Programming Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

oneAPI: A bridge to our heterogeneous/Distributed Future

oneAPI languages
Sycl, OpenMP, TBB + common high-level APIs

Partitioned Global Address Space
OpenSHMEM or MPI 3 one-sided communication

Distributed Data Structures
A collection of distributed data containers for common structures

Machine Programming
Radical portability across distributed systems

Research

A foundation of solid
oneAPI engineering

My vision for how we bring oneAPI into a future dominated by power-optimized heterogenous chips
organized into distributed systems.

The key to making this work … the programmer is in
control and chooses the level of abstraction based on the
programming task.

Summary

• Parallel computing is fun … but it can be hard.
• Fortunately, if you stick to the Big-3 and the core patterns of parallel

computing for HPC, it’s not too overwhelming
• The big 3: MPI, OpenMP, and “a GPU programming model”
• Key Patterns: SPMD, loop level parallelism, geometric decomposition, divide

and conquer, and SIMT

• Some day we’ll automate the hard-parts with Machine Programming,
but that may be 10 years!!!!

SCANPY workload details and system configuration

• The following was done to optimize the
SCANPY benchmark

• Data preprocessing - used warm file cache and
multi-threaded using Numba JIT

• PCA, K-means, KNN – Used the Intel extension for
scikit-learn.

• t-SNE - Used optimized version from Intel’s oneDAL
Library.

• Parallelized quadtree building, sorting and
summarization steps using Morton codes.

• UMAP - optimized the UMAP code using
AVX512/AVX2. Used MKL for eigenvalue
computation.

• Louvain and Leiden algorithms – collaborated with
Katana Graph to get well optimized versions
and integrated them into SCANPY.

ame Intel® Xeon® Platinum 8380
Time Jan 20, 2022
Manufacturer Intel Corporation
Product Name Intel® Xeon® Platinum 8380

BIOS Version
SE5C6200.86B.0020.P23.21032613
09

OS
Rocky Linux release 8.5 (Green
Obsidian)

Kernel 4.18.0-240.22.1.el8_3.crt6.x86_64
Microcode 0xd000270
IRQ Balance enabled

CPU Model
Intel(R) Xeon(R) Platinum 8380
CPU @ 2.30GHz

Base Frequency 2.3GHz
Maximum
Frequency 3.4GHz
All-core
Maximum
Frequency 2.5GHz
CPU(s) 40
Thread(s) per
Core 2
Core(s) per
Socket 40

Socket(s) 1
NUMA Node(s) 1
Prefetchers
Turbo Enabled
PPIN(s)
Power & Perf
Policy Performance
TDP 270 watts
Frequency Driver
Frequency
Governer Performance
Frequency (MHz)
Max C-State

Installed

Intel® Xeon® Platinum 8380
40c D1 DDR4
16*16GB@3200MHz -
Mellanox HDR

Huge Pages Size 2048 kB
Transparent
Huge Pages Always
Automatic
NUMA Balancing Enabled

Backup ... and a bit of extra content

• The future of parallel programming
• The Jacobi solver case study
• Writing functions to call from inside a kernel

113

Our running example: Jacobi solver

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

 Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

 Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

 Xnew = (b-(L+U)xold)/D

• Advantage: we can easily test if the answer is correct by multiplying our
final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for diagonally
dominant matrices

114

Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b >>>

while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

 // test convergence
 conv = 0.0;

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

 // swap pointers for next
 // iteration
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)

115

Jacobi Solver (Parallel Target/loop, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
#pragma omp loop
for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

116

Jacobi Solver (Parallel Target/loop, 2/2)
//

 // test convergence
 //

 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(tofrom:conv)
#pragma omp loop private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;

 }
 conv = sqrt((double)conv);
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

This worked but the performance was
awful. Why?

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB.

117

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))
 { iters++;
 xnew = iters % s ? x2 : x1;
 xold = iters % s ? x1 : x2;

 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
 #pragma omp loop private(i,j)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }
// test convergence
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(tofrom:conv)
 #pragma loop reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to
device
2*Ndim*sizeof(TYPE) bytes

118

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

119

Jacobi Solver (Par Target Data, 1/2)
#pragma omp target data map(tofrom:xold[0:Ndim],xnew[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;

#pragma omp target
#pragma omp loop private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

120

Jacobi Solver (Par Target Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp loop private(tmp) firstprivate(xnew,xold) reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
// end target region
 conv = sqrt((double)conv);

 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target
data region

18.37 secs

Third party names are the property of their owners. 121

Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program
address

• Each work-item has its own instruction address counter and register
state
– Each work-item is free to branch and execute independently
– Supports the SPMD pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

122

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

123

Coalescence
• Coalesce - to combine into one
• Coalesced memory accesses are

key for high bandwidth
• Simply, it means, if thread i

accesses memory location n then
thread i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
 some_strange_func(id);

float val4 = memA[loc];
}

124

Jacobi Solver (Target Data/branchless/coalesced mem, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;
#pragma omp target
 #pragma omp loop private(j)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

We replaced the original code with a
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])
125

//
 // test convergence
 conv = 0.0;
#pragma omp target map(tofrom: conv)
 #pragma omp loop private(tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
conv = sqrt((double)conv);
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Above plus
target data
region

18.37 secs

Above plus
reduced
branching

13.74 secs

Above plus
improved mem
access

7.64 secs

Jacobi Solver (Target Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners. 126

127

A more complicated example:
Jacobi iteration: OpenACC (GPU)
#pragma acc data copy(A), create(Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma acc parallel loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma acc parallel loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j]i];
 }
 }
 iter ++;
}

Create a data region on
the GPU. Copy A once

onto the GPU, and
create Anew on the

device (no copy from
host)

Copy A back out to host
… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

128

A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma target
 #pragma omp teams loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma omp target
 #pragma omp teams loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j]i];
 }
 }
 iter ++;
}

Create a data
region on the
GPU. Map A
and Anew onto

the target device

Copy A back out to host
… but only once

129

Backup ... and a bit of extra content

• The future of parallel programming
• The Jacobi solver case study
• Writing functions to call from inside a kernel

129

Defining a function to be called from inside a kernel
#include mm_utils.h

#pragma omp declare target
void ddot(double *C, double *A, double *B, int i, int j, int Mdim, int Pdim){
 for(int k=0;k<Pdim;k++){
 /* C(i,j) = sum(over k) A(i,k) * B(k,j) */
 *(C+(i*Mdim+j)) += *(A+(i*Pdim+k)) * *(B+(k*Mdim+j));
 }

}
#pragma omp end declare target

void mm_gpu(int Ndim, int Mdim, int Pdim, TYPE *A, TYPE *B, TYPE *C){
 int i, j, k;

#pragma omp target teams map(tofrom:C[0:Ndim*Mdim]) map(to:B[0:Pdim*Mdim],A[0:Ndim*Pdim])
#pragma omp loop collapse(2)
 for (i=0; i<Ndim; i++){
 for (j=0; j<Mdim; j++){
 ddot(C, A, B, i, j, Mdim, Pdim);

 }

Tell OpenMP
to compile this
function for the
GPU (and the

CPU)

This is in my file mm_gpu.c

Call inside a
target region, and
the GPU version

is called.

Call on the host,
and a CPU

version is called

131

==PROF== Connected to process 3522427
(/home/tgmattso/ParProgForPhys/OMP_GPU_Exercises/Solutions/a.out)
==PROF== Profiling "nvkernel_main_F1L28_3" - 0: 0%....50%....100% - 11 passes
==PROF== Disconnected from process 3522427
vectors added with 0 errors
[3522427] a.out@127.0.0.1
 nvkernel_main_F1L28_3 (108, 1, 1)x(128, 1, 1), Context 1, Stream 16, Device
0, CC 8.0
 Section: GPU Speed Of Light Throughput
 ----------------------- ------------- ------------
 Metric Name Metric Unit Metric Value
 ----------------------- ------------- ------------
 DRAM Frequency cycle/nsecond 1.21
 SM Frequency cycle/nsecond 1.10
 Elapsed Cycles cycle 9,206,395
 Memory Throughput % 1.92
 DRAM Throughput % 0.01
 Duration msecond 8.35
 L1/TEX Cache Throughput % 1.68
 L2 Cache Throughput % 2.03
 SM Active Cycles cycle 9,153,430.62
 Compute (SM) Throughput % 1.74
 ----------------------- ------------- ------------
 OPT This kernel grid is too small to fill the available resources on this
device, resulting in only 0.1 full waves across all SMs. Look at Launch Statistics
for more details.

 Section: Launch Statistics
 -------------------------------- --------------- ---------------
 Metric Name Metric Unit Metric Value
 -------------------------------- --------------- ---------------
 Block Size 128
 Function Cache Configuration CachePreferNone
 Grid Size 108
 Registers Per Thread register/thread 50
 Shared Memory Configuration Size Kbyte 65.54
 Driver Shared Memory Per Block Kbyte/block 1.02
 Dynamic Shared Memory Per Block Kbyte/block 1.63
 Static Shared Memory Per Block byte/block 0
 Threads thread 13,824
 Waves Per SM 0.11
 -------------------------------- --------------- ---------------

 OPT If you execute __syncthreads() to synchronize the
threads of a block, it is recommended to have more than the
achieved 1 blocks per multiprocessor. This way, blocks that
aren't waiting for __syncthreads() can keep th3e hardware
busy.

 Section: Occupancy
 ------------------------------- ----------- ------------
 Metric Name Metric Unit Metric Value
 ------------------------------- ----------- ------------
 Block Limit SM block 32
 Block Limit Registers block 9
 Block Limit Shared Mem block 24
 Block Limit Warps block 16
 Theoretical Active Warps per SM warp 36
 Theoretical Occupancy % 56.25
 Achieved Occupancy % 6.25
 Achieved Active Warps Per SM warp 4.00
 ------------------------------- ----------- ------------

 OPT Estimated Speedup:
88.89%

 This kernel's theoretical occupancy (56.2%) is limited
by the number of required registers. The difference between
calculated theoretical (56.2%) and measured achieved occupancy
(6.2%) can be the result of warp scheduling overheads or
workload imbalances during the kernel execution. Load imbalances
can occur between warps within a block as well as across blocks
of the same kernel. See
the CUDA Best Practices Guide
(https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#occupancy) for more details on optimizing
occupancy.

ncu –set=detailed ./a.out cc –mp=gpu vadd.c

