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Surge of Scientific Machine Learning

 Simulations/ surrogate models

Replace, in part, or guide simulations
with Al-driven surrogate models

e Data-driven models
Use data to build models without
simulations

* Co-design of experiments
Al-driven experiments

Protein-folding

Design infrastructure to facilitate and accelerate
Al for Science (Al4S) applications
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Integrating Al Systems in Facilities

Computing Facility

e )
I

Experimental Facility
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Al-Edge accelerator

Simulations Data-driven Models
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Dataflow Architectures

MEMOe MEMOe

Simple
Convolution
Graph

The GPU way: kernel-by-kernel
Bottlenecked by memory bandwidth
and host overhead
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The Dataflow way: Spatial

Eliminates memory traffic and overhead

Image Courtesy: SambaNova
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ALCF Al Testbed

https://Iwww.alcf.anl.gov/alcf-ai-testbed

* Infrastructure of next-generation machines with hardware accelerators customized for artificial
intelligence (Al) applications.

* Provide a platform to evaluate usability and performance of machine learning based HPC
applications running on these accelerators.

* The goal is to better understand how to integrate Al accelerators with ALCF’s existing and
upcoming supercomputers to accelerate science insights

AAAAAAAAAAAAAAAAAA
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ALCF Al Testbed

ALCF Al Testbed Systems are in production and available for allocations to the research community

https://accounts.alcf.anl.gov/#/allocationRequests

(IPUs)

Argonne Leadership Computing Facility

8 nodes each with 8
Reconfigurable
DataFlow Units (RDU)

4 nodes each
with 16 Intelligent
Processing Units

Groq

NSF https://nairrpilot.org

9 nodes each with
8 GroqChip

Tensor streaming
processors (TSP)

2 CS-2 Wafer scale
engines (WSE)

Upgrading to CS-3

Coming Soon ‘! |
Sambanova SN40L
Inference/Finetuning

AAAAAAAAAAAAAAAA
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ALCF Resources Science Community and Partnerships  About Support Center

https://docs.alcf.anl.gov/ai-testbed
ALCF User Guides ALCF AI Testbed Table of contents

Home How to Get Access
Account and Project > Getting Started
Management _ - How to Contribute to
Data Management > . — s Documentation
Services >

Running Jobs with PBS at the >

ALCF

Polaris >

Theta >

ThetaGPU >

Al Testbed v

Getting Started

Cerebras >
Graphcore >
Groq >
SambaNova >

Data Management ) o
The ALCF Al Testbed houses some of the most advanced Al accelerators for scientific

Cooley >

research.
Aurora/Sunspot
Facility Policies >

The goal of the testbed is to enable explorations into next-generation machine learning

applications and workloads, enabling the ALCF and its user community to help define the

role of Al accelerators in scientific computing and how to best integrate such technologies

with supercomputing resources.
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Getting Started on
ALCF Al Testbed

RN

Available for Allocations

—

 Cerebras CS-2,

e SambaNova Datascale SN30,
. * GroqgRack

e Graphcore Bow Pod64
R AT
' Al Testbed User Guide
S~ Ak

Director’s Discretionary (DD) awards

* Scaling code
* Preparing for future computing competition

 Scientific computing in support of strategic
partnerships.
Allocation Request Form

NAIRR Pilot

aims to connect U.S. researchers and educators
to computational, data, and training resources
needed to advance Al research and research
that employs Al.



https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program%C3%A2%C2%80%C2%8B
https://www.alcf.anl.gov/alcf-ai-testbed
https://www.alcf.anl.gov/alcf-ai-testbed
https://nairrpilot.org/%C3%A2%C2%80%C2%8B

Hands-on

session Friday — August 1, 2025

Track 3 — Machine Learning

8:30 a.m.

Welcome and Introduction

Filippo Simini, ANL

8:40 a.m.

Transition time: splitting into groups (people new to deep learning vs. more experienced

Parallel Session, Part 1 (talk/hands-on):

Main room: Introduction to Deep Learning

Bethany Lusch, ANL

Breakout room: Profiling Deep Learning

Khalid Hossain, ANL

9:40 a.m.

Introduction to Large Language Models (LLMs)

Huihuo Zheng, ANL

10:40 a.m.

Break

11:10 a.m.

Distributed Deep Learning (talk/hands-on)

Nathan Nichols, ANL
Kaushik Velusamy, ANL

12:30 p.m.

Lunch

1:30 p.m.

Research talk: TBD

Sandeep Madireddy, ANL

P

Al Testbed (talk/hands-on)
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SambaNova

Cerebras :
CS2 Cardinal
SN30
Compute  [ec5 000 Cores| 640 PCUS
Units
On-Chip 40 GB L1, + [ >300MB L1 ]
Memory MemoryX 1TB
Process 7/nm 7nm
2 Nodes
. including 8 nodes (8
System Size Memory-X and cards per node)
Swarm-X
Estimated
Performance .4, Fp16)  >660 (BF16)
of a card
(TFlops)
Software Pvtorch SambaFlow,
Stack Support y Pytorch
Interconnect  Ethernet-based Ethernet-based

16  Argonne Leadership Computing Facility

Groq
GrogRack

5120 vector
ALUs

230MB L1

7 nm
9 nodes

(8 cards per
node)

>250 (FP16)
>1000 (INT8)

GrogAPI,
ONNX

™
RealScale

GraphCore
NVIDIA A1
GC200 IPU 00
1472 IPUs 6912 Cuda
Cores
192KB L1
900MB L1 40MB L2
40-80GB
/nm /nm
4 nodes
(16 cards per Several
node) systems
312 (FP16),
>250 (FP16) 456 (FP32)
Tensorflow, Tensorflow,
Pytorch, Pytorch, etc
PopArt y ’
IPU Link NVLink
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Cerebras Wafer Scale Engine (WSE 2)

850,000 |cores optimized for sparse linear algebra
46,225 mm? silicon

2.6 trillion transistors

40 gigabytes of on-chip memory

20 PByte/s memory bandwidth

220 Pbit/s fabric bandwidth

7nm process technology

I
Cerebras WSE-2
46,225mm’ Silicon
2.6 Trillion transistors

850K cores, 40G on-chip SRAM

18 Argonne Leadership Computing Facility Argonneé
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WSE-2 Architecture Basics
SIHBEBRE - sSBHBEB R

+t +t +t +t it it

— < — — —
s-z-z.‘-...-’.‘-.‘-.‘-

The WSE appears as a logical 2D array of
individually programmable Processing Elements

W W i S | S | Flexible compute
nsors <= S| IR IR RE - s R R R < Tensors « 850,000 general purpose CPUs
woow o R  16- and 32-bit native FP and integer data types

« Dataflow programming: Tasks are activated or

. E N ‘ R ﬁ L E N i N ﬁ L triggered by the arrival of data packets
15} 5} L) 5} 5] L) ] L
SHEBED IR B:EBEDE Flexible communication
* Programmable router
“r PE *  Static or dynamic routes (colors)
) 1 « Data packets (wavelets) passed between PEs
—t»|  Fabricrouter - « 1 cycle for PE-to-PE communication

Offramp | | Onramp
v Fast memory

Processor » 40GB on-chip SRAM
: e Data and instructions
Memory » 1 cycle read/write

19 Argonne Leadership Computing Facility Arggﬂﬂﬁkﬁ




Cerebras Wafer-Scale Cluster

Cerebras Wafer-
Scale Cluster

Appliance Mode

Pre-processing,
management

MemoryX

SwarmX

CS-2

20 Argonne Leadership Computing Facility

Input preprocessing servers stream training data
MemoryX - Stores and streams model’s weights

SwarmX — weight broadcasts and gradient across
multiple wafers

Compilation (maps graph to kernels) Execution
(training)

Image Courtesy: Cerebras

AAAAAAAAAAAAAAAAAA



Cerebras CS2 Cluster

Input preprocessing servers stream
training data (16 worker nodes)

AP P A =S e R A S e R e R R e S e S A R R e R e He e S s e T ———
: ! \ Activation
MemoryX SwarmX {* e
MemoryX - Stores and streams _—— , 1P A s
. ‘ Input pre- [= ; > |
model’s weights ) e | et
| Input pre- | [ Act l T :d_
. User invokes | processing LF Ly M e
SwarmX — weight broadcasts and i —" | |
gradient across multiple CS2s | = e |8 ‘ woite ]| «—s | Eroscest |
. . mm‘m [ -Inpul p(e- | 2 | Act 1l «
Compilation (maps graph to kernels) | oo | Ly L
Execution (training) e [ I (1]

Weight Streaming (training) Vs
Pipeline (Inference)
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Cerebras Software stack

Maps PyTorch code to high performance -
kernels O

Reference Models

Polyhederal code generation or hand

written kernels peLe s

Ops Layer API
MLIR based com pi|er Cerebras Graph Compiler
Kernel library Kernel autogen
User does not WOFI'y about Placement & routing engine
distributed compute cs.3
or parallelism ..:.:.:.:.:..
..O.......O..
: : : UL
Achieves Linear scaling OO0
..0..........
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SambaNova Cardinal SN30 RDU

0 7nm TSMC, 868B fransistors
| v 102 km of wire
- SambaNova
CARDINAL .
b 640 MB on-chip,
et ' 1,024 GB external
lm’smnmn ﬁ
e 0 688 TFLOPS (bf16)

Cardinal SN30™
Reconfigurable
Dataflow Unit™ RDU-

Connect™

23 Argonne Leadership Computing Facility

as-a-SERVICE

Pre-frained
Foundation Models

SYSTEMS

DataScale®

SOFTWARE

SambaFlow™

SILICON

RDU

Image Courtesy: SambaNova
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SN40L “Cerulean” Architecture-based RDU

5nm TSMC sambaNovar 3-tier Dataflow Memory

STEMS

Cerulean SN40L RDU

520 MB

102B Transistors @ On-Chip Memory

1,040 RDU Cores 64 GB
High Bandwidth Memory
3-tier Memory System with SRAM, HBM, and DDR
638 TFLOPS (bf16) § =B ¥ Y
High Capacity Memory

On-Chip SRAM Dataflow enabled by

[8 GBEEsipetsec] large On-Chip Memory
High throughput
inference with caching 25.6 TB/s
RDU High Bandwidth
Memory [1 TB] Low Latency

Model Switching

1600 GB/S (E.g., <0.01s for llama3.1 8B)

RDU High Capacity DDR
Memory [24 TB]

Image Courtesy: SambaNova
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SN30 RDU Chip and Architecture overview

4 ) 4
TILEO TILE 1
N ) y e RDU broken up into 8-tiles
( N ( A o 160 PMU and PCUs per tile
TILE 2 TILE 3 o Additional sub-components like coalescing units (CU) for
> <> < connectivity to other tiles and off-chip components, switches
TILE 4 TLE 5 fo set up communication between PMU, PCUs, and CU
’ N 7 J e Tile resource management: Combined or independent mode
TILE 6 ] TILE 7 o Combined: Combine adjacent to form a larger logical tile for
\ . J one application
Virtual Memory Manager o Independent: Each tile controlled independently, allows
Top-Level Interconnect running different applications on separate tiles concurrently.

| DDR | e Direct access to TBs of DDR4 off-chip memory

‘ ‘ o Memory-mapped access to host memory

DRAM [ Host }
(TBs) Scale-Out e Scale-out communication support

Image Courtesy: SambaNova
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Cardinal SN30: Tile

. ., . / Software-Driven Architecture \
Tiled architecture with reconfigurable SIMD pipelines, distributed scratchpads, and
TILE O TILE 1 programmed switches
. J U Y, L’ - B B B
e N\ N .7 Inter] _ ¢
7 ° nterieaving o
TILE 2 TILE 3 .’ 9
compute and

memory units

« Routing data
through the
TILE 7 TILE 8 AN compute elements
. y, y, \‘\ ''''
V Virtual Memory Manager I « Dataflow
\ Efficiency +
Top-Level Interconnect
. poR N rcle NI 20BN R e SR N Compute

Scale- Capacity
Out

‘ ‘ ! . ! ! Capability +
i A . PM t Pattern
Host @ E;:Jlesm G %2?§§fion . Switch Efgfn?gnw gw La rge Memory
DRAM ni n ni
| (TBs) I

Image Courtesy: SambaNova
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SambaFlow Software Architecture

O

l

[ Samba PyTorch API ]

Graph Compiler

i [ Kernel Library ] l i :[ Samba Runtime ]
! Kernel Compiler . .
| l Compilation Path | | Run Path !
[ PEF ] — Runtime
¥ ¥

__RDUs | [cPU |

27 Argonne Leadership Computing Facility
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Graphcore Intelligence Processing Unit (IPU)

CPU GPU IPU

Desicnad for SIMD/SIMT architecture. Massively parallel MIMD architecture.
Pa ra"ellsm scalar grocessin Designed for large blocks High performance/efficiency
b & of dense contiguous data for future ML trends

S{amL
“aammn
B NE
© EEEEE ©

Processor -

Memory Off-chip Model and Data spread across off-chip and Main Model & Data in tightly coupled
. memory small on-chip cache and shared memory large locally distributed SRAM
Bandwidth
(2TB/s for A100 HBM) (~65 TB/s for Bow IPU)

Slide Courtesy: Graphcore
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Bulk Synchronous Parallel (BSP)

* The IPU uses the bulk-synchronous parallel
(BSP) model of execution where the
execution of a task is split into steps.

Tiles

* Each step consists of the following phases:

T
I
—Ilocal tile compute, I
I

—global cross-tile synchronization,
— data exchange

Sync  Compute Exchange Waiting

31 Argonne Leadership Computing Facility

Time
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IPU-Tiles™

[ 1 ] | 1] L 1] [ ] ] 1] BE | |
= 1] L L] L L L] BB L L |
. e E =z =z T T as T . BI | I P Ll
1472 independent IPU-Tiles™ each with an | mm mm =m =m =m s =
IPU-Core™ and In-Processor-Memory™ | 1] 1] 1 1] e - -
1] L] | 1} [ 1] 1] 1] | ]
I -m L L L L HE - L L ]
5 | z e i T T 5 :
IPU-Core i 28 T a8 58 T
B N - B I L L} 1] L 1] L 1] L1} 1]
. Lo SEE SRR ol oMo e i i
1472 independent IPU-Core™ | = ] 1] ] e =
| mm aa H 2= aa am
| iz = & == 2t s
8832 independent program threads | am = an H F
executing in parallel I EE BE —H - - -
s == == H- -
| 13 mE 1] 1] T 1]
In-Processor-Memory™ L—— -2 -= mn—— Sl un un - T
. T ° am am aa ==
[ 1] .. 1] ] ] mm 1]
L 1Y am L] =le] -m
900MB In-Processor-Memory™ per |PU - H HE HH - - a=
BOSEESHS SRS SEs =i |
65TB/s memory bandwidth per IPU r = .. mm um ua |
an s =m - - =a |
-n -n uE L] {1 ] L L |
[ 1] [ 1] { 1] 1] [ | ] { | |
-m mE L 1 ] -m -m FE |
u |
=
- |
® N |
[ 4
| i ;
1] =n T um T . ] T |
L] L] | 1} L 1] | { 1] { || an | 1}
T T T T T T T T |
L] L] L 1} L 1} I { 1] L L { || {1}
28 2= a= = as =s a= a= I ™
== == o= She | mmmn == o= ] | IPU-Exchange
i T H R e e R —
EE EE EE EE EE EE EE EE sz i 11 TB/s all to all IPU-Exchange™
H s uE =m us En . us | Non-blocking, any communication pattern
=41 [ L] { [} | [} mi L 1] | ] [ [}
am me L1} L1} L 1] L] | | ] L 1} |
L L] L L uE nE { 1] { 1] am L L}
] 1] 1 am 1] ] (T 1] |
mm L] L} L) L L] L L am L L}
] ] u 1 s am ] 1 | PCle
L L wE L 1L} am -m L L a-m L L}
1} [ 1] 1] (]| (1] am L 1] { 1] s B9 . 9 =N
-n e -m -m e L L e L L)
£= —Es S SR —Ee o —as
-+ - . e . L - L 64 GB/s bidirectional bandwidth to host
[ || -n | |} E am { || -m £l
[ 1] [ | ] L 1} | |} am =l [ | | L 1}
(L] L] {1} | 1} -m = [ | ] | 1}
mm - am am ua am =m am P p—— 5
5 5 T o 53 T T T | IPU-Links™
& = 2 = = 2= o = b o e o
== 10 PU-Lins
EE EE EE EE EE EE EE EE 320GB/s chip to chip bandwidth
- HH HH HH 2= HH H- -

Slide Courtesy: Graphcore
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GRAPHCORE SOFTWARE

NLP/TRANSF ORMERS o m®
FRONTENDS Jupyter INFERENCE DEPLOYMENT
IMAGE CLASSIFICATION/CNNS o TOOLKIT
JUPYTER NOTEBOOKS
OBJECT DETECTION . -
1F ( ) @ ONNX"HALO o~
FRAMEWORKS
LARGE MODELS ..
Keras /33 PaddiePaddie
MLPERF
CONDITIONAL SPARSITY XLA POPART+ POPDIST
POPVISION TOOLS
FW BACKENDS
GNNS
PARTITIONER POPIR POPIT

ML APPLICATIONS

POPLIBS GCL POPLAR

TUTORIALS
POPLAR® SYSTEM MONITORING

GRAPH COMPILER PROMETHEUS
9 GRAFANA G

GC DEVICE ACCESS LAYER JOB DEPLOYMENT

CODE EXAMPLES GRAPH ENGINE

DOCUMENTATION

VIDEOS

NATIVE IPU CODERS PROGRAM DRIVERS

IPUOF DRIVER PCle DRIVER K& siurm SLURM

DEVELOPER ECOSYSTEM POPLAR® SDK SYSTEM SOFTWARE

APPS PORTFOLIO

&



Groq LPU Overview

SRAM Memory

Massive concurrency

>' | >'
80 TB/s of BW —
| HEE |

Networking
480 GB/s bandwidth
Extensible network scalability

Z?OM_B capa'(‘jlty / Multiple topologies
Stride insensitive ( Input / Output
Groq TruePoint™ Matrix |3 g ||t
- o = 2 04[], =
4x Engines ;EEE: [ SI1E 5|5 8|82 Biﬁﬂ“‘ﬂx Data Switch
_ XEaeaEaOr Sg |E118|lE|l3]2 el Shift, Transpose, Permuter for
750 TOP/s int8 4= s uiaialala 15 |2 e][Z]| %] = D41 improved data movement and
188 TFLOP/s fp16 xBAnEoaa K 5|8 O Jsell™ data reshapes
320x320 fused dot product a a
| Instruction Control Unit I
Cle Input / Outpu —
Programmable e JLewfowew /) 000 .
Vector Unit Instruction Control
5 120?/(: ?rAL[J" fs — Multiple instruction queues for
, ector s for

) instruction parallelism
high performance

Courtesy: Groq a
34 Argonne Leadership Computing Facility Arggﬂﬂg OOOOOOO




Groq LPU Building Blocks

Build different types of specialized SIMD units

MXM VXM SXM MEM
Matrix Vector Data Reshapes On-chip SRAM
operations Operations

Courtesy: Groq
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Groq LPU Building Blocks

Lay out SIMD units across chip area

MXM SXM EM SXM MXM

Courtesy: Groq
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Groq LPU Building Blocks

High-bandwidth “Stream Registers” for passing data between units

Data Flow

Instruction I l.llll..l.lll.llll .

Flow Data Flow

Instruction Dispatch

<t »

144 Instruction Dispatch Paths

Courtesy: Groq
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Flat memory hierarchy
(no L1,L2, L3, etc)

Software-controlled memory

No dynamic hardware caching
Compiler aware of all data locations 5
at any given point in time =

< =
MEM > MEM >
[88 SRAM banks] = [88 SRAM banks] =

Memory exposed to software as a
set of physical banks that are |
directly addressed

quad[10] quad[9] quad(8] quad(7] quad[6] quad|[5] quad(4] quad(3] quad[2] quad(l] quad(0]
o E I ™ I A p . > B

Large on-chip memory capacity (220
MiB) at very high-bandwidth (80 TBps)

Achieves high compute efficiency
even at low operational intensity

Courtesy: Groq A
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- ‘ GroqRack™
‘ GrogNode

‘ GrogCard™ i

GroqChip ™

| The purpose-built
| Language Processing
| Unit™ Inference Engine

AL AE R AR AR IR T Y |~

Dell Servers

= EXCEPTIONAL.

at sequential processing. The LPU™ Inference Engine is
designed to scale and is more power-efficient, with greater

performance, than a GPU for Al applications like LLMs.

Courtesy: Groq A
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Groq Hardware Architecture

Function Instruction 1
o e | Modelimport |

Sync
Notify |

SRAM

230MB capacity > >

80 TB/s BW

Grog TruePoint™ Matrix p
750 TOPJs int8, 188 TFLOP/s fp16 ( it Otk

Programmable Vector Units
5,120 Vector ALUs D

Config
Repeat n,d

MEM Read a,s
Write a,s
Gather s, map
Scatter s, map E e s
Countdown d ’ Multichip Partition ‘
Step a
Iterations n

Layout & Vectorization ‘

7 Tensor Parallelism
% Pipeline Parallelism

Instruction

VXM unary operation
Flow

binary operation
type conversions g
Tari | Mapping to ISA l Ak

Exp
RSqrt

Memory
Memory

=
H
§
$
>

Matrix Multiply Unit

5
2
=
5
3
g
§
H

Switch eXecution Module

MXM I w i
i | Live State Plan ‘ i

SXM Shift up/down N ’

Shift, Transpose, Permuter O]  pae [ imput/ouwput )
\

Data Switch Ex] "‘:| [ Instruction Control Unit ]

Permute map

Distribute map
Rotate stream
Transpose sglé

Instruction Schedule ‘ I 3 i

Statically Scheduled Network
480 GB/s chip-to-chip (C2C) bandwidth %g c2¢c Deskew ’

144 Instruction Send

Receive

Assemble ‘

Dispatch Paths
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HPC Software ecosystem on Al Accelerators

@erebras ‘ » Cerebras Software Language
Slsomoatos [ wes o

« Poplar C/C++ API
GRAFHCORE ‘ oplar L/t
. BSP
9{' Oq" . Grog Runtime API
e C/C++

Argonne Leadership !
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Tools on Al Accelerators

Terminal

Source-code linked with Settings

PE selectable by click and coordinate
Draggable and zoomable Routes

instruction trace

Expandable and
collapsible
large panels o Y Pre—

\\
8 selectAl

.
Filter routes /:

2fcsiang_samples_38_fmecsjaritacts

&)
HSRARRRRRRRN
ERBEREERRNN
SRARERRRERN
ST BhEGEN
wRRRRRRRRN

jesssnsnmn
Ccecc e
v e ie e

Instruction Trace @ &

Inline help tooltips [
Instructions — [
Tasks
Statistics
Micro-threads

Export data

Cerebras SDK

(4,8] FABICSMAXATOR (12 12) ALL

Dark mode

Color and format
filters

+<— Wavelet traces

© sewctease. (3,21

'\ Current fabric

and PE

SambaTune on SambaNova
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GRAPH DATA

Plot graph data of any numerical data points
from the host or IPU processor systems,

such as board temperature, power
consumption and IPU utilisation.

HOST EXECUTION ANALYSIS

Understand the execution of IPU-targeted
software on your host system processors.
Identify any bottlenecks between CPUs and
IPUs across a visual interactive timeline.

REPORT COMPARISONS

Open two reports at once to compare their
memory, execution, liveness and operations.
Visualise where efficiencies can be made
with different model parameters.

IPU MEMORY ANALYSIS

Capture memory information from your ML
models when executed on IPUs. Inspect
variable placement, size and liveness
throughout the execution.

PopVision on GraphCore

Argonne &
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Training Performance

1000
Number of _8
System Devices Throughput >
O —~
— @ 100
Nvidia A100 64 193 3 8
| 55
Gaudi 2 16 170 25 4
O)v
SambaNova =
o
SN30 16 212 ; . I I
Graphcore Bow- 1
Q v Q V) %
PodEa 16 266 v,@ S %é‘b @\Q &
‘\&(b © OA(O QO\ {bg
Cerebras CS-2 2 320 S > & @
O o ?
P

Used GPT-2 XL 1.5B parameter model, OWT dataset
- same sequence length 1k, custom software stack, half-precision

- Runs on A100s used Megatron-Deepspeed, out-of-box runs with no additional optimizations
- 16 SN30 RDUs, 2 CS-2s, and 16 IPUs match the performance on 64 A100s

Emani et al. “Toward a Holistic Performance Evaluation of Large Language Models Across Diverse Al Accelerators”,
Heterogeneity in Computing Workshop (HCW) at IPDPS24.
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Inference Performance ]

SambaNova SN40L achieves has the best performance among all the accelerators we benchmarked

Nvidia GH200 > H100 > A100 (in terms of throughput)
MI300X and GH200 are comparable
Habana Gaudi’s performance is between A100 and H100

The performance of AMD MI250 saturates for large batch sizes ,
LLaMA-3-8B: Comparison Across Accelerators

! for Input & Output Length 1024 (fp16)
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16 32 64
Batch Size
#Devices Hardware Framework
® 8 SN40L Sambaflow 4 1 Gaudi2 DS + 1 MI250 vLLM
® 1 GH200 TRT-LLM * 1 A100 TRT-LLM ¥ 1 MI300X vLLM

Krishna et. al. ‘LLM-Inference-Bench: Inference Benchmarking of Large Language Models on Al Accelerators’ PMBS24 ® 1 H100 TRT-LLM
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Advancing Science through Al Accelerators
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Al for Science and HPC applications on Al Testbed

(Credit: Candle)

Tokomak Fusion Reactor operations
(Credit: K. Felker)

3.30401

Imaging Sciences-Braggs Peak
(Credit: Z. Liu) and more..
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Protein-folding (Image: NCI)
——

Nuclide
Decomposed

©

S 9
o ©

U234
U235
U238
Pu238

le-2-1le-1eV

le-1-1le+0eV
le+0 - le+l eV [C

Energy
Decomposed

le+5- le+b eV @

le+6 - le+7 eV

Monte Carlo Particle Transport for

Reactor Simulation (Credit: J. Tramm)
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Genome-scale Language Models (GenSLMs)

Goal:

« How new and emergent variants of pandemic causing

viruses, (specifically SARS-CoV-2) can be identified
and classified.

* |dentify mutations that are VOC (increased severity

First:Year
0.0025 1 Data:Split

and transmissibility) . models have
* Extendable to gene or protein synthesis. ZZ:;MW
Approach 0.0010 1

0.0005 1

 Adapt Large Language Models (LLMs) to learn the /,\;\\\

. 2019-09 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 202é-09
evo u t I O n . Month of Pandemic

— B.1.2 B.1.429 — B.1.617.2 — AY.122 — AY.44 — BA.11 BA.1.15 — AY.26 AY.100 AY.39

o Pretrain 25|V| _ ZSB models On raW nucleotides With B.A1 AY.25.1 AY.43 AY.4 BA.1 AY.103 AY.25 AY.3 AY. 119 AY.47
large sequence lengths.
e Scale on GPUs, CS2s, SN30.

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics

Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,
DOI: https://doi.org/10.1101/2022.10.10.511571

. . . Argonne &
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GenSLM 13B Training Performance

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics
Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022

Svstem Number of Throughput Imbrovement Energy
Y Devices (tokens/sec) P Efficiency
NVIDIA A100 8 1150 1.0 1.0
SambaNova SN30 8 9795 8.5 5.6
Cerebras CS-2 1 29061 25 6.5

Note: We are utilizing only 40% of the CS wafer-scale engine for this problem

"Toward a Holistic Performance Evaluation of Large Language Models Across Diverse Al Accelerators”, M.Emani et al.,
HCW workshop, IPDPS 2024
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Accelerating Drug Design and Discovery with Machine Learning

App|IC8tI0n COde Slmple SMILES Tl'anSfOrmer Initial Performance Comparison Between
Inference on a Polaris (A100) Node and
GrogNode
. 2.8

C(=0)NO)

O ‘7 .
SST-screen 0

Inference distribution Polaris (4xA100/node) Groq (8xChips/node)

o.bo 005 0.10 0.15 020 025
Weight

Speed Up

Courtesy: Archit Vasan

(SMILES) - Representation for Molecules

@
= ﬁ? éf} :JIEL *Simplified Molecular Input Line Entry System
éé:y foadlt ° 5

Hydroxamic acld 4
yu mv >4

Bert based encoder model to identify compounds with
High perf bindi ffinit dicti ith . AT . . .
e ransformer-based surropate modol high binding affinity directly on the SMILES string
Archit Vasan®, Ozan Gokdemir*!, Alexander Brace*!, Arvind Ramanathan*!, in p ut .

Thomas Brettin*, Rick Stevens*!, Venkatram Vishwanath*
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Monte Carlo with Single Cycle Latency: leveraging the

cerebras cs-2 for acceleration of a latency-bound HPC simulation
workload

le-2-1le-1eV
Challenge: We examine the feasibility of performing continuous energy led - 140 eV
Monte Carlo (MC) particle transport on the Cerebras WSE-2 Al 1e+0 - 1e+1 eV
accelerator by porting XSBench to the Cerebras “CSL” programming model.
The MC algorithm has traditionally been bandwidth/latency-bound, making nergy
the WSE-2’s 40 GB of 1-cycle SRAM an attractive architecture. The critical Decomposed
challenge is to decompose data and tasks across the WSE-2’s ~750,000
distributed memory processing elements (PEs), each having only 48 KB of
memory.

le+5-1e+6 eV

Outcome: let6 - 1e+7 eV
e Developed several novel algorithms for decomposing data

Ee———

n o0 N Nuclide

N o o Decomposed
ecompos
S
> o5 2

.......... > ()X [N TITPH TRPRF LR DURRN PRURE SRRRN PR

MC cross section data decomposition across a 2D grid of
WSE-2 processing elements. This diagram shows the third

structures across the WSE-2’s 2D network grid, for flowing particles phase of our algorithm where particles are exchanged in a
(tasks) through the WSE_Z’ and for performing dynamic load round-robin manner to visit all nuclides in the row.
balancing. Transistor Monte Carlo
e Developed a method for exploiting the WSE-2’s hardware random Count XS Lookup
number generation capabilities to accelerate kernel by 65%. [Trillion] FOM
o WSE-2 was found to run 130x faster than a highly optimized [Lookups/s]
CUDA version of the kernel run on an NVIDIA A100 GPU.

A100 GPU 0.0542 04 6.43E+07
Computational Physics Communications Cerebras CS-2 2.6 228 8 36E+09

https://doi.org/10.1016/j.cpc.2023.109072
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https://doi.org/10.1016/j.cpc.2023.109072

Observations, Challenges and Insights

* Significant speedup achieved for a wide-gamut of scientific ML applications
- Easier to deal with larger resolution data and to scale to multi-chip systems

 Room for improvement exists
- Porting efforts and compilation times
- Coverage of DL frameworks, support for performance analysis tools, debuggers

* Profiling studies to really understand the unique HW and SW capabilities

* Limited capability to support low-level HPC kernels
* Workin progress to improve coverage

* Performance/$ is interesting too!
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Ongoing Efforts
e Evaluate emerging Al models (MoE variants, reasoning models etc)

* Evaluate new Al accelerators offerings and incorporate promising solutions as part of
the testbed

* Integrate Al testbed systems with the PBSPro scheduler to facilitate effective job
scheduling across the accelerators

* Understand how to integrate Al accelerators with ALCF’s existing and upcoming
supercomputers to accelerate science insights

AAAAAAAAAAAAAAAAAA
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Useful Links

ALCF Al Testbed
e Overview: https://www.alcf.anl.eov/alcf-ai-testbed
e Guide: https://docs.alcf.anl.gov/ai-testbed/

* Training:
https://www.alcf.anl.gov/ai-testbed-training-workshops

* Allocation Request: Allocation Request Form

e Support: support@alcf.anl.gov

71 Argonne Leadership Computing Facility
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https://accounts.alcf.anl.gov/#/allocationRequests
mailto:support@alcf.anl.gov

Getting started with ALCF Al Testbed
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-

Getting Started on
ALCF Al Testbed

RN

Available for Allocations

—

 Cerebras CS-2,

e SambaNova Datascale SN30,
. * GroqgRack

e Graphcore Bow Pod64
R AT
' Al Testbed User Guide
S~ Ak

Director’s Discretionary (DD) awards

* Scaling code
* Preparing for future computing competition

 Scientific computing in support of strategic
partnerships.
Allocation Request Form

NAIRR Pilot

aims to connect U.S. researchers and educators
to computational, data, and training resources
needed to advance Al research and research
that employs Al.
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Al Testbed Community Engagement

Full Program My Schedule Contributors Organizations Search

Richard Kuzma i i Nick della Cioppa

p " (5 ' ) ‘ % ~
Bill Arnold hg It L Saugat Kandel . Jacob Merson (RP{)

Sid Raskar

Presentation

—

Programming Novel Al Accelerators for Scientific Computing

l \‘ A \ Description: Scientific applications are increasingly adopting Artificial Intelligence (Al) techniques to advance
Eshaan Arakoni |_Siby Plathottam (ANL) science. There are specialized hardware accelerators designed and built to run Al applications efficiently. With

a wide diversity in the hardware architectures and software stacks of these systems, it is challenging to

© Add to Schedule

Time:
Sunday, 17 November 2024

understand the differences between these accelerators, their capabilities, programming approaches, and how 8:30am - 5pm EST

P

& ) -~ : L x they perform, particularly for scientific applications. In this tutorial, we will cover an overview of the Al
) ' \ accelerators landscape focusing on SambaNova, Cerebras, Graphcore, Groq, and Habana systems along with Location: B201
architectural features and details of their software stacks. We will have hands-on exercises to help attendees
understand how to program these systems by learning how to refactor codes and compile and run the models Basic and Introductory Topics for Expanding Broader Engagement,
on these systems. The tutorial will provide the attendees with an understanding of the key capabilities of Machine Learning, Deep Learning and Artificial Intelligence for HPC.
emerging Al accelerators and their performance implications for scientific applications Software Tools for Accelerators (Co-processors, GPGPUs, FPGA, etc),

NEXT PRESENTATION > @ STARTS IN 118:23:07

Programming Your GPU With OpenMP: A "Hands-On"

@ Introduction

Murali Emani
Argonne National Laboratory (ANL)

¥
Chase Phelps J |/ Devesh Seethi ~_mattgaughenbaugh Sarat Sreepathi " Bryce Allen

w'\"'\ "
-

R
‘i

Tags:

Yue Shi Lai 4 ¢ priyanka

Varuni Sastry 9 Sia Rezaei

e Altraining workshops
https://www.alcf.anl.gov/ai-testbed-training-workshops

Leighton Wilson
Cerebras Systems

e ATPESC Training Tutorial at SC24 on Programming Novel Al accelerators for

Scientific Computing in collaboration with Cerebras, Intel
* Introduction to Al-driven Science on Supercomputers  Habana, Graphcore, Groq and SambaNova

Next tutorial at ISC25, June 13, 2025 Argonne &
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Recent Publications

75

LLM-Inference-Bench: Inference Benchmarking of Large Language Models on Al Accelerators

Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus, Aditya Tanikanti, Ken Raffenetti, Valerie Taylor, Murali
Emani, Venkatram Vishwanath, "LLM-Inference-Bench: Inference Benchmarking of Large Language Models on Al Accelerators," 2024
IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High-Performance Computer Systems
(PMBS), Atlanta, GA, USA, 2024.

Toward a Holistic Performance Evaluation of Large Language Models Across Diverse Al Accelerators

Murali Emani, Sam Foreman, Varuni Sastry, Zhen Xie, William Arnold, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, Sanjif
Shanmugavelu, Darshan Gandhi, Hengyu Zhao, Dun Ma, Kiran Ranganath, Rick Weisner, Jiunn-yeu Chen, Yuting Yang, Natalia Vassilieva,
Bin C Zhang, Sylvia Howland, Alexander Tsyplikhin. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW)

GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics

Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez
Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Sam Foreman,

Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, lan Foster,
James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan

** Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,

DOI: https://doi.org/10.1101/2022.10.10.511571

A Comprehensive Evaluation of Novel Al Accelerators for Deep Learning Workloads

Murali Emani, Zhen Xie, Sid Raskar, Varuni Sastry, William Arnold, Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka,
Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy
Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, Matthew Boyd, 13th IEEE International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022
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Recent Publications

Enabling real-time adaptation of machine learning models at x-ray Free Electron Laser facilities with high-speed training optimized
computational hardware

Petro Junior Milan, Honggian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee, Frontiers in Physics

DOI: https://doi.org/10.3389/fphy.2022.958120

Intelligent Resolution: Integrating Cryo-EM with Al-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-
Transcription Machinery in Action*

Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, David Har
dy,Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tanveer Raza,J
essica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotla, lan Foster, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah A. Harris, Arvind Ramanathan,
International Journal of High-Performance Computing (IJHPC’22) DOI: https://doi.org/10.1101/2021.10.09.463779

Stream-Al-MD: Streaming Al-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms

Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram,
Hyunseung Yoo, Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the Platform for
Advanced Scientific Computing Conference (PASC'21). DOI: https://doi.org/10.1145/3468267.3470578

Bridging Data Center Al Systems with Edge Computing for Actionable Information Retrieval

Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan
Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and lan Foster, 3rd Annual workshop on Extreme-scale Event-in-
the-loop computing (XLOOP), 2021

Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture

Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas
Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Fiinalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021
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This research was funded in part and used resources of the Argonne Leadership Computing

Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-ACO02-
06CH11357.

Murali Emani, Michael Papka, William Arnold, Varuni Sastry, Sid Raskar, Krishna Teja-Chitty

Venkata, Rajeev Thakur, Ray Powell, John Tramm, and many others have contributed to this
material.

Our current Al testbed system vendors — Cerebras, Graphcore, Grogq, Intel Habana and
SambaNova. There are ongoing engagements with other vendors.
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