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An brief aside about the origins of 
parallel programming models
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Parallel programming environments in the 90’s

A combination of vendors wanting to lock-down applications and the fact that its ”fun” to create new 
programming environments created chaos for application developers



History of MPI
Workstation 

vendors wanted 
into the HPC 

market

PVM was great but 
didn’t support quality 
SW engineering

MPP 
Vendors

Needed a common 
foundation to build a 
parallel SW industry

Fed-up recoding as 
they moved 
between platforms 

User 
Community

After several years of 
informal discussions, the 
MPI forum was created in 
1992.  A draft specification 
was presented one year 
later at SC’93.

1994

Many of us worked in the MPI forum … leadership came from the DOE National Labs.  In particular, the reference 
implementation from Bill Gropp and Rusty Lusk of Argonne national lab called MPIch helped us get it right in the 1.0 
specification and made sure a working implementation of the standard was available right from the beginning. 

Hardware:
By the early 90’s, massively 
parallel processors (MPPs) and 
the new trend with clusters 
convinced even the skeptics that 
the ”killer micros” had won.
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History of OpenMP

SGI

Cray

Merged, 
needed 
commonality 
across 
products

KAI ISV - needed 
larger market

was tired of 
recoding for 
SMPs.  Urged 
vendors to 
standardize.

ASCI

Wrote a 
rough draft 
straw man 
SMP API

DEC

IBM

Intel

HP

Other vendors 
invited to join

1997

Hardware:
late 90’s chipsets made 
multiprocessor servers a mass-
market standard.  And architects 
realized multi-core chips would 
arrive soon. 



The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed 
commonality 
across products

GPU vendor – 
wants to steal 
market share 
from CPU

CPU vendor – 
wants to steal 
market share 
from GPU

Was tired of recoding for 
many core, GPUs.
Pushed vendors to 
standardize.

Wrote a rough draft 
straw man API

Khronos Compute 
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many more

Hardware:
2006 GPUs became fully 
programmable with CUDA.

2009



Key Lesson for you ….
• Application developers in HPC are the community 

that really matters …. You have MUCH MORE 
power than you think, but only:
– You are willing to speak with One Voice.   
– You refuse to be trapped in a walled Garden.
– Venders will try to divide and conquer you.   Hold firm or all 

is lost!
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Please don’t let 
this happen again
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… Back to our previously scheduled 
program
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I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014 

Introduction

11

To support my kayaking habit, I 
work as a parallel programmer

Which means I know how to turn 
math into lines on a speedup plot

P

S
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Preliminaries
• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.
–You will use your laptop to connect to a multiprocessor server.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and 

experiment.
– Embrace active learning!

–Don’t cheat:  Do Not look at the solutions before you complete an exercise … 
even if you get really frustrated.

Download tutorial materials onto your laptop:
git clone https://github.com/tgmattso/ATPESC.git

https://github.com/tgmattso/ATPESC.git


Preliminaries: Using Polarisa for exercises
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Start an interactive job on one node
% qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:eagle -A ATPESC2025 -q ATPESC

% module li                                                       ß to see which modules are loaded
% cc –v                                                             ß to see which compiler cc wraps
% module swap PrgEnv-nvhpc PrgEnv-gnu     ß change from the Nvidia programming environment to gnu

% gcc -fopenmp -O3  pi_loop.c      ß compile for a CPU.  On Polaris, the O3 was needed for good results
% ./a.out

% module swap PrgEnv-nvhpc PrgEnv-gnu     ß change back to Nvidia programming environment  
% cc –mp heat_map_target.c.       
% OMP_TARGET_OFFLOAD=MANDATORY ./a.out.  ß might be needed for tiny programs



Use homebrew to install gnu compilers on your Apple laptop
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• Go to the homebrew web site (brew.sh).  Cut and paste the command near the top of the page to install 
homebrew (in /opt/homebrew):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)”

• Add /opt/homebrew/bin to your path.  I did this by adding the following line to .zshrc

% export PATH=/opt/homebrew/bin:$PATH

• Install the latest gcc compiler 

% brew install gcc

• This will install the compiler in /opt/homebrew/bin.   Check /opt/homebrew/bin to see which gcc compiler 
was installed.  In my case, it installed gcc-13

• Test the compiler (and the openmp option) with a simple hello world program

% gcc-13 –fopenmp hello.c

I tested this on a new 
(July 2023) MacBook 
Air with an Apple M2 

CPU
Warning: by default Xcode uses the name gcc for Apple’s clang compiler.  

Use Homebrew to load a real, gcc compiler. 

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh


OpenMP Compilers on Apple Laptops: MacPorts
• To use OpenMP on your Apple laptop:
• Download Xcode.  Be sure to choose the command line tools that match our OS.
• Download and use MacPorts to install the latest gnu compilers.

sudo port selfupdate

sudo port install gcc13

port select --list gcc

sudo port select –-set gcc mp-gcc13

gcc –fopenmp hello.c
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Update to latest version of 
MacPorts

Grab version 13 gnu 
compilers (5-10 mins)

List versions of gcc on your 
system

Select the mp enabled version of 
the most recent gcc release

Test the installation with a simple 
program

Download tutorial materials onto your laptop:
git clone https://github.com/tgmattso/ATPESC.git

I have not tested this in a long time.   
I greatly prefer homebrew.

But if you prefer MacPorts, this procedure 
should work. 

https://github.com/tgmattso/ATPESC.git


Plan for the OpenMP sessions
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4:00 Introduction: Parallel programming and the OpenMP Common Core
4:30 Working with threads (Including synchronization): the SPMD Pattern
5:30 Worksharing and data sharing: The Loop Parallelism Pattern
~6:30 Dinner

Next Day
8:30 Task-level parallelism in OpenMP: The Divide and Conquer Pattern
10:00 Break
10:30 Beyond the common core: More Worksharing and synchronization … plus threadprivate
12:30 Lunch
1:30 Wrapping up the CPU and transitioning to GPU-programming  
2:30 The loop construct … GPU programming made “simple”
3:30 Break
4:00 Explicit Data Movement and basic principles of GPU optimization
5:30 Detailed control of the GPU … and comparisons to other GPU programming models
6:30 Dinner

Note: How much time people need with the exercises never works out 
as I expect, which is fine. Everything is driven by the needs of the 
students … not some concept I might have of a schedule.

M
on

da
y,

 P
M

Tu
es
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y,

 A
ll 

D
ay



Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor 
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.



Moore's Law: A personal perspective

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer
9000 CPUs 

 one megawatt of electricity.  

1600 square feet of floor space.

First TeraScale* computer: 1997

Intel’s 80 core teraScale Chip 

1 CPU

97 watt

275 mm2

First TeraScale% chip: 2007

%Single Precision TFLOPS running stencil

10 years 
later

*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,
Proceedings of the International Parallel Processing 
Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

Programming Intel's 80 core terascale processor
SC08, Austin Texas, Nov. 2008,  Tim Mattson, 
Rob van der Wijngaart, Michael Frumkin



CPU Frequency (GHz) over time (years)

22Source: James Reinders (from the book “structured parallel programming”)

Dennard scaling assume we can ignore 
threshold voltage and leakage … which do 
NOT shrink much with process technology.

Eventually, those factors came to 
dominate and Dennard scaling ends



Consider power in a chip … 
C = capacitance  … it measures the ability of a circuit to 
store energy:

C = q/V à    q = CV

Work is pushing something (charge or q) across a 
“distance” … in electrostatic terms  pushing q from 0 to V:

V * q = W.     

But for a circuit    q = CV   so 
    

 W = CV2     

power is work over time … or how many times per second 
we oscillate the circuit 

      Power = W* F   à      Power = CV2f

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time



... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations," 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 Source:  Vishwani Agrawal

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor 

f/2

Processor 

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



The best way to master parallel computing … 

start with a simple approach to parallelism and build 
an intellectual foundation by writing parallel code.  

… and the simplest API for parallelism is?  

26
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap



C$OMP TASKGROUP
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OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP:  An API for Writing Parallel Applications

§A set of compiler directives and library routines  for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions …  supports non-uniform memories, vectorization and GPU programming  

#pragma omp atomic seq_cst



The Growth of Complexity in OpenMP
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The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers 
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OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.    
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

30



OpenMP Basic Definitions: Basic Solution Stack

31

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
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em
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Directives,
Compiler

OpenMP library Environment 
variablesPr
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. 
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Application

End User

U
se
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ay
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CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W
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OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment 
variablesPr

og
. 

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case …. 
i.e., lots of threads with “equal cost access” to memory 32
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OpenMP Basic Syntax
• Most of OpenMP happens through compiler directives.

 C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom. 
– It’s OK to have an exit() within the structured block.
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Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

      

     printf(“ hello ”);
     printf(“ world \n”);

}

qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:eagle -A ATPESC2025 -q ATPESC
module swap PrgEnv-nvhpc PrgEnv-gnu     ß change from the Nvidia programming environment to gnu
gcc -fopenmp -O3  pi_loop.c      ß compile for a CPU.  On Polaris, the O3 was needed for good results
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Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

     

     printf(“ hello ”);
     printf(“ world \n”);

}

Switches for compiling and linking

gcc –fopenmp –O3 
#pragma omp parallel

{

#include <omp.h>

}

-O3 isn’t usually needed, but on 
Polaris, it is important for good scaling
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Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int  main()
{

#pragma omp parallel
 {

     printf(“ hello ”);
     printf(“ world \n”);
   }
}

Sample Output:
hello hello world

world

hello  hello world

world

OpenMP include file

Parallel region with 
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads 



A brief digression on the terminology of parallel 
computing

37



Let’s agree on a few definitions: 

• Active task: 
– A task that is available to be scheduled for execution.  When the task is moving through its sequence of 

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution. 

38

• Computer:
– A machine that transforms input values into 

output values. 
– Typically, a computer consists of Control, 

Arithmetic/Logic, and  Memory units.  
– The transformation is defined by a stored 

program (von Neumann architecture).

• Task:  
– A sequence of instructions plus a data 

environment.  A program is composed of 
one or more tasks.



Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element



Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit 
concurrency in a problem to run tasks on 
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems 

Programs

Concurrent 
Programs

Parallel 
Programs If tasks execute in “lock step” they are not 

concurrent, but they are still parallel.  
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap
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OpenMP Execution model: 

Fork-Join Parallelism: 
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential 
program evolves into a parallel program.

Parallel Regions

Initial 
Thread

A Nested 
Parallel 
Region

Sequential Parts
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Thread Creation: Parallel Regions
• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
    pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 
number of threads

Runtime function 
returning a thread ID



Thread Creation: Parallel Regions Example

• Each thread executes the 
same code redundantly.

double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

         int ID = omp_get_thread_num();
    pooh(ID, A);
}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is 
shared between all 

threads.

Threads wait here for all threads to finish before 
proceeding (i.e., a barrier)

44
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Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()

• The number requested may not be the number you actually get.
– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID       = omp_get_thread_num();

             int nthrds = omp_get_num_threads();
    pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 

number of threads

Runtime function to 
return actual 

number of threads 
in the team
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An Interesting Problem to Play With 
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N 
rectangles:

Where each rectangle has width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0

i = 0

N
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Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{   double x, pi, sum = 0.0;

   step = 1.0/(double) num_steps;

   for (int i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
}

See ParProgForPhys/OMP_Exercises/pi.c
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Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{   double x, pi, sum = 0.0;
               
   step = 1.0/(double) num_steps;
               double tdata = omp_get_wtime();
   for (int i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
           tdata = omp_get_wtime() - tdata;
               printf(“ pi = %f in %f secs\n”,pi, tdata);
}

See ATPESC/OMP_Exercises/pi.c

The library routine 
get_omp_wtime() 
is used to find the 

elapsed “wall 
time” for blocks of 

code
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Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:
           #pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads(); 
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

Time in seconds since a fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of threads in the team

git clone https://github.com/tgmattso/ATPESC.git

https://github.com/tgmattso/ATPESC.git
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Hints: the Parallel Pi Program
• Use a parallel construct:
           #pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to 

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– int omp_set_num_threads();
– int omp_get_num_threads(); 
– int omp_get_thread_num();
– double omp_get_wtime();



51

#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{    int i, nthreads;  double pi, sum[NUM_THREADS];
     step = 1.0/(double) num_steps;
     omp_set_num_threads(NUM_THREADS);
    #pragma omp parallel
    {    
              int i, id,numthrds;
              double x;
              id = omp_get_thread_num();
              numthrds = omp_get_num_threads();
              if (id == 0)   nthreads = numthrds;
   for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
    x = (i+0.5)*step;
    sum[id] += 4.0/(1.0+x*x);
   }
     }
     for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD* pi program  

Promote scalar to an array dimensioned by 
number of threads to avoid race condition.

This is a common trick in SPMD programs to 
create a cyclic distribution of loop iterations

Only one thread should copy the number of 
threads to the global value to make sure 
multiple threads writing to the same address 
don’t conflict.  

*SPMD: Single Program Multiple Data
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{    int i, nthreads;  double pi, sum[NUM_THREADS];
     step = 1.0/(double) num_steps;
     omp_set_num_threads(NUM_THREADS);
    #pragma omp parallel
    {    
              int i, id,numthrds, istart, iend;
              double x;
              id = omp_get_thread_num();
              numthrds = omp_get_num_threads();
              istart = id*(num_steps/numthrds );       iend=(id+1)*(num_steps/numthrds);
              if(id == (numthrds-1)) iend = num_steps;
              if (id == 0)   nthreads = numthrds;
   for (i=istart, sum[id]=0.0;i< iend; i++) {
    x = (i+0.5)*step;
    sum[id] += 4.0/(1.0+x*x);
   }
     }
     for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD pi program … an alternative solution  

This is a common trick in SPMD algorithms … 
it’s a blocked distribution with one block per 
thread.  

SPMD: Single Program Multiple Data



Results*

threads 1st 
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default 
optimization level (O2) on Apple OS X 
10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 
4 Gbyte DDR3 memory at 1.333 Ghz.
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SPMD: Single Program Multiple Data
• Run the same program on P processing elements where P can be arbitrarily large. 

MPI programs almost always use this pattern … it is probably the 
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 
data structures. 

Replicate the program.

Add glue code

Break up the data



A brief digression to talk about 
performance issues in parallel 

programs

55
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Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume 

Compute N independent  tasks on one processor

Ideally Cut 
runtime by ~1/P 
(Note: Parallelism 
only speeds-up the 
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume 

Compute N independent  tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results 



Talking about performance

§Speedup: the increased performance 
from running on P processors.  

!"
!#"

!"
!"#$%

"#$%
!&

'()

*%+=

!!" =!"
n Perfect Linear Speedup:   happens when 

no parallel overhead and algorithm is 
100% parallel.  

n Efficiency:  How well does your observed 
speedup compare to the ideal case? 𝜀(𝑃) =

𝑆(𝑃)
𝑃



Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?

• Approximate the runtime as a part that can be sped up with additional processors and a 
part that is fundamentally serial. 

 

!"#$%& '()"
*
+&%,-(./$%&%00"0+&%,-(./!"&(%0*'()" !"##$"$ +=

• If you had an unlimited number of processors:

• If the serial fraction is a  and the parallel fraction is (1- a) then the speedup is: 
 

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

∞→!

• The maximum possible speedup is:
α
!

=! Amdahl’s 
Law



Amdahl’s Law … It’s not just about the maximum speedup

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9

Serial fraction (𝛂) of the program

0.001 0.01 0.05 0.1

𝑆(𝑃, 𝛼) =
1

𝛼 − 1 − 𝛼𝑃
𝑆(𝑃, 𝛼)

𝑃



So now you should understand my silly introduction slide.
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We measure our 
success as parallel 
programmers by how 
close we come to ideal 
linear speedup.

A good parallel 
programmer always 
figures out when you 
fall off the linear 
speedup curve and 
why that has 
occurred.



Internal control variables and how to control the 
number of threads in a team

• We’ve used the following construct to control the number of threads. (e.g. to request 12 threads):
– omp_set_num_threads(12)

• What does omp_set_num_threads() actually do?
– It resets an “internal control variable” the system queries to select the default number of threads to 

request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable … perhaps one that doesn’t require 
re-compilation?  Yes.
– When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and 

sets the appropriate internal control variable to the value of OMP_NUM_THREADS
– For example, to set the initial, default number of threads to request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

61
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Exercise
• Go back to your parallel pi program and explore how well it scales with the number 

of threads. 
• Can you explain your performance with Amdahl’s law?  If not what else might be 

going on?

– int omp_get_num_threads(); 
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N

An environment variable 
to set the default number 
of threads to request to N



Results*

threads 1st 
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default 
optimization level (O2) on Apple OS X 
10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 
4 Gbyte DDR3 memory at 1.333 Ghz.
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Why Such Poor Scaling?    False Sharing
• If independent data elements happen to sit on the same cache line, each update will cause the 

cache lines to “slosh back and forth” between threads … This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, the array elements are 
contiguous in memory and hence share cache lines … Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM
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#include <omp.h>
  static long num_steps = 100000;         double step;
  #define NUM_THREADS 2
  #define PAD 8         // assume 64 byte L1 cache line size
  void main ()
  {    int i, nthreads;  double pi, sum[NUM_THREADS][PAD] ;
       step = 1.0/(double) num_steps;
       omp_set_num_threads(NUM_THREADS);
       #pragma omp parallel
       {    
            int i, id,nthrds;
            double x;
            id = omp_get_thread_num();
            nthrds = omp_get_num_threads();
            if (id == 0)   nthreads = nthrds;
            for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
                  x = (i+0.5)*step;
     sum[id][0] += 4.0/(1.0+x*x);
            }
       }
       for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;
  }

Pad the array so each 
sum value is in a 

different cache line

Example: Eliminate false sharing by padding the sum array



Results*: PI Program, Padded Accumulator
• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with default 
optimization level (O2) on Apple OS 
X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor 
at 1.7 Ghz and 4 Gbyte DDR3 
memory at 1.333 Ghz.
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order 
constraints and to protect access to shared data
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Synchronization: critical  

• Mutual exclusion: Only one thread at a time can enter a critical region.

float  res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

      id = omp_get_thread_num();

      nthrds = omp_get_num_threads();

      B =  big_SPMD_job(id, nthrds);

      #pragma omp critical 
             res += consume (B);

      
}

Threads wait their turn 
– only one thread at a 
time calls consume()
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Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable 

statement. 

double Arr[8], Brr[8];            int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{    int id, nthrds;

      id = omp_get_thread_num();

      nthrds = omp_get_num_threads();

      if (id==0) numthrds = nthrds; 

      Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier 
      Brr[id] = really_big_and_ugly(id, nthrds, Arr); 
}

Threads wait until all 
threads hit the barrier.  
Then they can go on.
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Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial 

sum.
• If array elements happen to share a cache line, this leads to false sharing.

– Non-shared data in the same cache line so each update invalidates the cache line … in essence 
“sloshing independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads(); 
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical



PI Program with False Sharing

*Intel compiler (icpc) with no 
optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz 
and 4 Gbyte DDR3 memory at 1.333 
Ghz.

threads 1st 
SPMD

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

Recall that promoting sum to an array made 
the coding easy, but led to false sharing and 
poor performance.
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#include <omp.h>
 static long num_steps = 100000;         double step;
 #define NUM_THREADS 2
 void main ()
 {  int nthreads; double  pi=0.0;   step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);
   #pragma omp parallel
   {
        int i, id, nthrds;    double x, sum;
        id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         if (id == 0)   nthreads = nthrds;   
         for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
  x = (i+0.5)*step;
               sum += 4.0/(1.0+x*x);
          }
         #pragma omp critical
    pi += sum * step;
    }
 }

Example: Using a  critical section to remove impact of false sharing 

Sum goes “out of scope” beyond the parallel region … 
so you must sum it in here.   Must protect summation 
into pi in a critical region so updates don’t conflict

No array, so no false sharing. 

Create a scalar local to each 
thread to accumulate partial sums.
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Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) Intel® CoreTM i5 processor at 
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

SPMD 
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53
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#include <omp.h>
 static long num_steps = 100000;         double step;
 #define NUM_THREADS 2
 void main ()
 {  int nthreads; double  pi=0.0;   step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);
   #pragma omp parallel
   {
        int i, id, nthrds;    double x, sum;
        id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         if (id == 0)   nthreads = nthrds;   
         for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
  x = (i+0.5)*step;
               #pragma omp critical
                    sum += 4.0/(1.0+x*x);
          }
     }
 }

Example: Using a  critical section to remove impact of false sharing 

What would happen if you put the 
critical section inside the loop?
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap
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The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for 
 for (I=0;I<N;I++){
  NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made 
“private” to each thread  by default.  

Threads wait here until all 
threads are finished with the 

parallel loop before any proceed 
past the end of the loop
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Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * (N / Nthrds);
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];}
}

#pragma omp parallel 
#pragma omp for   
 for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and 
a worksharing for construct
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable 

by the programmer

DYNAMIC Unpredictable, highly variable 
work per iteration

Least work at runtime : 
scheduling done at 
compile-time

Most work at runtime : 
complex scheduling 
logic used at run-time
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Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double  res[MAX];  int i;
#pragma omp parallel 
{ 
    #pragma omp for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    } 
} 

These are equivalent 

double  res[MAX];  int i;
#pragma omp parallel for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    } 
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Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without 

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
     j = 5;
 for (i=0;i< MAX; i++) {
         j +=2;
         A[i] = big(j); 
    } 

int i,  A[MAX];
    #pragma omp parallel for
 for (i=0;i< MAX; i++) {
         int j = 5 + 2*(i+1);
          A[i] = big(j); 
    } Remove loop 

carried 
dependence

Note: loop index 
“i” is private by 
default
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Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence 
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double  ave=0.0, A[MAX];
   int i;
 for (i=0;i< MAX; i++) {
         ave + = A[i];
   } 
   ave = ave/MAX; 

• How do we handle this case?
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Reduction
• OpenMP reduction clause:   

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy. 
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.  

double  ave=0.0, A[MAX];    int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
         ave + = A[i];
  } 
  ave = ave/MAX; 
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OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions 
and array-sections as reduction variables 

(we just don’t cover those topics here)
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Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
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Example: PI with a loop and a reduction

#include <omp.h>
void main ()
{
     long num_steps = 100000; 
     double pi, sum = 0.0; 
     double step = 1.0/(double) num_steps;

      #pragma omp parallel for reduction(+:sum)
      for (int i=0;i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
      }
      pi = step * sum;
}



Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

SPMD 
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68
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…. Let’s pause a moment and consider 
one of the fundamental issues EVERY 
parallel programmer must grapple with

88
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Load Balancing
• A parallel job isn’t done until the last thread is 

finished

• Example:  Partition a problem into equal sized 
chunks but for work that is unevenly distributed 
spatially.
– Thread 2 has MUCH more work.  The uneven distribution of 

work will limit performance.

• A key part of parallel programming is to design how 
you partition the work between threads so every 
thread has about the same amount of work.  This 
topic is referred to as Load Balancing.

0 1 2 3 4
Thread IDs … box height ∝ amount of work
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• The work in our problem is unevenly distributed spatially.

• A key part of parallel programming is to design how you 
partition the work between threads so every thread has 
about the same amount of work.  

• This topic is referred to as Load Balancing.

• In this case we adjusted the size of each chunk to 
equalize the work assigned to each thread.
– Getting the right sized chunks for a variable partitioning (as done 

here) can be really difficult. 0 1 2 3 4
Thread IDs … box height ∝ amount of work
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic 

distribution)
– The work is spread out and statistically, you are likely to get a good 

distribution of work

 

0
1
2
3

Colors mapped to 4 different Threads
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic 

distribution)
– The work is spread out and statistically, you are likely to get a good 

distribution of work

• Vocabulary review
– Load Balancing … giving each thread work sized so all threads 

take the same amount of time
– Partitioning or decomposition … breaking up the problem 

domain into partitions (or chunks) and assigning different partitions 
to different threads.

– Granularity … the size of the block of work.  Find grained (small 
chunks) vs coarse grained (large chunks)

– Over-decomposition … when you decompose your problem into 
partitions such that there are many more partitions than threads to 
do the work 

0
1
2
3

Colors mapped to 4 different Threads
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable 

by the programmer

DYNAMIC Unpredictable, highly variable 
work per iteration

Least work at runtime : 
scheduling done at 
compile-time

Most work at runtime : 
complex scheduling 
logic used at run-time
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause … most common cases:

#pragma omp parallel for schedule (static)

Int small = 8; // loop iterations, i.e., width of boxes in the figure

#pragma omp parallel for schedule (static, small)

Thread IDs



We’ll finish with loops by looking one 
more time at synchronization overhead

95
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The nowait clause
• Barriers are really expensive.  You need to understand when they are implied 

and how to skip them when it’s safe to do so. 
double A[big], B[big], C[big];

#pragma omp parallel 
{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier 
#pragma omp for 
 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
 A[id] = big_calc4(id);
}

implicit barrier at the end 
of a parallel region

implicit barrier at the end of a for 
worksharing construct

no implicit barrier 
due to nowait
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap
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Data Environment:   Default storage attributes

• Shared memory programming model: 
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel 

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.
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double A[10];
     int main() {
 int index[10];
    #pragma omp parallel  
       work(index);
 printf(“%d\n”, index[0]);
   }

extern double A[10];
void work(int *index) {
  double temp[10];
  static int count;
  ...
}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread
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Data Sharing:  Changing storage attributes

• One can selectively change storage attributes for constructs using the 
following clauses (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
–firstprivate(list)

• These can be used on parallel and for constructs … other than shared 
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used 

on parallel constructs
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Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
  int i, j;
  double A[N][N], B[N][N], C[N][N];
  init_arrays(N, *A, *B, *C);

  #pragma omp parallel for private(j)
  for (i = 0; i < 1000; i++)
      for( j = 0; j<1000; j++)
                C[i][j] = A[i][j] + B[i][j];
}

• private(var)  creates a new local copy of var for each thread.

OpenMP makes the loop 
control index on the 
parallel loop (i) private by 
default … but not for the 
second loop (j)
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Data Sharing: Private clause

void wrong() {
      int tmp = 0;
#pragma omp parallel for private(tmp)
      for (int j = 0; j < 1000; ++j) 
     tmp += j;
      printf(“%d\n”, tmp);
}

• private(var)  creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not 
initialized

tmp is 0 here

When you need 
to refer to the 

variable tmp that 
exists prior to the 
construct, we call 

it the original 
variable.



Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed
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incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}

Each thread gets its own copy of 
incr with an initial value of 0
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Data sharing: 
A data environment test
• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables:  A = 1,B = 1, C = 1
#pragma omp parallel private(B)  firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals  1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value  it was set to inside the parallel region
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Data Sharing: Default clause
• default(none): Forces you to define the storage attributes for variables that 

appear inside the static extent of the construct … if you fail the compiler will complain.   
Good programming practice!

• You can put the default clause on parallel and parallel + workshare constructs. 

The full OpenMP specification has other versions of the default clause, but they 
are not used very often so we skip them in the common core

#include <omp.h>
int main()
{
     int i, j=5;      double x=0.0, y=42.0;
     #pragma omp parallel for default(none) reduction(*:x)
     for (i=0;i<N;i++){
         for(j=0; j<3; j++)
               x+= foobar(i, j, y);
     }
     printf(“ x is %f\n”,(float)x);
}

The static 
extent is the 
code in the 

compilation unit 
that contains 
the construct.

The compiler would 
complain about j and y, 
which is important since 

you don’t want j to be 
shared
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Exercise: Mandelbrot set area
• The supplied program (mandel.c) computes the area of 

a Mandelbrot set. 

• The program has been parallelized with OpenMP, but 
we were lazy and didn’t do it right.

• Find and fix the errors. 

• Once you have a working version,  try to optimize the 
program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the 
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0. 

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp critical
int omp_get_num_threads(); 
int omp_get_thread_num();
double omp_get_wtime();

#pragma omp parallel private (list) 
#pragma omp parallel shared (list)
#pragma omp parallel firstprivate (list)
#pragma omp parallel default(none)
#pragma omp for reduction(op:list)



The Mandelbrot Set  Area Program (original code)
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
int numoutside = 0;
int main(){
   int i, j;
   int num=0;
   double C_real, C_imag;
   double area, error, eps  = 1.0e-5;
#pragma omp parallel for private(eps)
   for (i=0; i<NPOINTS; i++) {
     for (j=0; j<NPOINTS; j++) {
       C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
       C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
       testpoint(C_real, C_imag);
     }
   }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
   error=area/(double)NPOINTS;
}
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void testpoint(double C_real, double C_imag){
       double zr, zi;
       int iter;
       double temp;

       zr=C_real;     zi=C_imag;
       for (iter=0; iter<MXITR; iter++){
         temp = (zr*zr)-(zi*zi)+C_real;
         zi = zr*zi*2+C_imag;
         zr = temp;
         if ((zr*zr+zi*zi)>4.0) {
                  numoutside++;
                  break;  // exit the loop
         }
       }
       return 0;
}



The Mandelbrot Set  Area Program
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
   int i, j;
   int num=0;
   double C_real, C_imag;
   double area, error, eps  = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
   for (i=0; i<NPOINTS; i++) {
     for (j=0; j<NPOINTS; j++) {
       C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
       C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
       testpoint(C_real, C_imag);
     }
   }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
   error=area/(double)NPOINTS;
}
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void testpoint(double C_real, double C_imag){
       double zr, zi;
       int iter;
       double temp;

       zr=C_real;     zi=C_imag;
       for (iter=0; iter<MXITR; iter++){
         temp = (zr*zr)-(zi*zi)+C_real;
         zi = zr*zi*2+C_imag;
         zr = temp;
         if ((zr*zr+zi*zi)>4.0) {
           #pragma omp critical
                  numoutside++;
           break;  // exit the loop
         }
       }
       return 0;
}

• eps was not initialized
• Data race on j, C_real, and C_imag
• Protect updates of numoutside
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Data Sharing: Private and the original variable

int tmp;
void danger() {
      tmp = 0;
#pragma omp parallel private(tmp)
      work();
     printf(“%d\n”, tmp);
}

• The original variable’s value is unspecified if it is referenced outside of the 
construct
– Implementations may reference the original variable or a copy ….. a dangerous 

programming practice!
– For example, consider what would happen if the compiler inlined work()?

extern int tmp;
void work() {
      tmp = 5;
}

unspecified which 
copy of tmptmp has unspecified value
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• Introduction to OpenMP
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• Parallel Loops
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• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap



Concurrency vs. Parallelism
• Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, they can be 

described as logically making forward progress at the same time.

• Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010PE = Processing Element

The fundamental execution model of Multithreading
A collection of active threads, scheduled fairly, that share an address space and execute concurrently.   

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time



Consider two threads: a producer/consumer pair
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#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) { 
  flag = 0;  answer=0;
  #pragma omp parallel shared(flag,answer) num_threads(2)
  {
   int id = omp_get_thread_num();
   if (id == 0) {
    answer = 42;
    flag = 1;
   }

   else if (id == 1){
   while (flag == 0)  { }

     if(answer!=42) err++;
   }
  }
 }
 return 0;
}

Thread zero produces the answer and 
then sets a flag to communicate the 
answer to another thread

Thread one “spins" in a while loop 
until the flag is non-zero which 
indicates that answer is available. 

In the jargon of concurrent 
programming, this is called 
a “spin lock”

Put this in a file sync.c and compile as:     gcc –fopenmp –O3 sync.c 

The program went through a few loop iterations and then hangs …. Why?

One thread produces a result 
that a different thread consumes
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Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write 
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may 
ALL have different values.

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾
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Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write 
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may 
ALL have different values.

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory 
consistency model 

(or “memory model” 
for short) provides 
the rules needed to 

answer this 
question. 
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Memory Models …
l The fundamental issue is how do the values of variables across the memory hierarchy interact with 

the statements  executed by two or more threads?
l Two options:

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

!

! !

! !

!

1. Sequential Consistency

- Threads execute and the 
associated loads/stores 
appear in some order defined 
by the semantically allowed 
interleaving of program 
statements.

- All threads see the same 
interleaved order of loads 
and stores 

2. Relaxed Consistency

- Threads execute and the 
associated loads/stores 
appear in some order 
defined by the semantically 
allowed interleaving of 
program statements.

- Threads may see 
different orders of loads 
and stores

Most (if not all) multithreading programming models assume relaxed consistency.  Maintaining 
sequential consistency across the full program-execution adds too much synchronization overhead. 



Why did this program fail?

116

#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) { 
  flag = 0;  answer=0;
  #pragma omp parallel shared(flag,answer) num_threads(2)
  {
   int id = omp_get_thread_num();
   if (id == 0) {
    answer = 42;
    flag = 1;
   }

   else if (id == 1){
   while (flag == 0)  { }

     if(answer!=42) err++;
   }
  }
 }
 return 0;
}

The compiler can 
reorder statements, so 
flag is set to 1 before 
answer is set to  42

Thread 1 can load flag from the register file.   
It may not even go to cache (let alone 

memory) to see an updated value.

Regardless of how the compiler orders 
stores to answer and flag, thread 1 may 

see a different order than thread 0

Two issues:
(1) Can flag = 1 while answer = 0?                                    (2) Can thread 1 fail to see updates to flag? 



Why did this program fail?
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#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 for (int i=0; i<COUNT; i++) { 
  flag = 0;  answer=0;
  #pragma omp parallel shared(flag,answer) num_threads(2)
  {
   int id = omp_get_thread_num();
   if (id == 0) {
    answer = 42;
    flag = 1;
   }

   else if (id == 1){
   while (flag == 0)  { }

     if(answer!=42) err++;
   }
  }
 }
 return 0;
}

The compiler can 
reorder statements, so 
flag is set to 1 before 
answer is set to  42

Thread 1 can load flag from the register file.   
It may not even go to cache (let alone 

memory) to see an updated value.

Regardless of how the compiler orders 
stores to answer and flag, thread 1 may 

see a different order than thread 0

Two issues:
(1) Can flag = 1 while answer = 0?                                    (2) Can thread 1 fail to see updates to flag? 

We need to enforce ordering 
constraints between the concurrent 
threads … we need to consider the 

memory model and put the right 
synchronization constructs in place.



Memory Models: Happens-before and synchronized-with relations

• Multithreaded execution … concurrency in action
– The compiler doesn’t understand instruction-ordering across threads … 

loads/stores to shared memory across threads can expose ambiguous 
orders of loads and stores

– Instructions between threads are unordered except when specific ordering 
constraints are imposed, i.e., synchronization.

– Synchronization lets us force that some instructions happens-before other 
instructions

• Two parts to synchronization:
– A synchronize-with relationship exists at statements in 2 or more threads 

at which memory order constraints can be established. 
– Memory order: defines the view of loads/stores on either side of a 

synchronized-with operations.
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• Single thread execution:
– Program order ... Loads and stores appear to occur in the order defined 

by the program’s semantics.  If you can’t observe it, however, compilers 
can reorder instructions to maximize performance.

Thread 1Thread 0

synchronize-with

Memory orders defined at the 
synchronize-with statements 

define happens-before 
relationships between 

Loads/stores in the black/red 
sections of threads 0 and 1.



Atomic Operations and Synchronized-with

• An atomic operation can only be observed in one of two states
– The operation has not happened yet
– The operation has happened and is complete (no side-effects remain to be resolved)

• For example, on an atomic load or store operation, the load or store 
has happened and is complete, or it has not occurred.  
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Thread 1Thread 0

synchronize-with

• A synchronized-with relationship is established 
between a pair of atomic operations.

• The variables involved are visible to the programmer 
(such as with atomic constructs) or the variables are 
internal to a high level synchronization construct 
(barrier, critical, locks, etc).

#pragma omp atomic write
      y = New_value;

#pragma omp atomic read
      New_value = y;



Memory orders
• Memory orders establish which loads and stores can be 

moved around synchronized-with relations.

• The key construct is flush. … flush defines a point in a 
program at which a thread is guaranteed to see a 
consistent view of memory.  

• The default case for flush (i.e., no additional clauses) is a 
strong flush:

– Previous read/writes by this thread have 
completed and are visible to other threads

– No subsequent read/writes by this thread 
have occurred
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Thread 1Thread 0

synchronize-with
#pragma omp flush
#pragma omp atomic write
      y = New_value;#pragma omp flush

#pragma omp atomic read
      Loc_value = y; Sync 

Source
Sync 
Sink

Memory orders defined at the synchronize-with 
statements define happens-before relationships between 
Loads/stores in the black/red sections of threads 0 and 1.

A strong flush on its own does NOT define a 
synchronization point.  The flush only addresses 

memory orders.

To synchronize threads, you need a 
synchronized-with relation which in this case, comes 

from an atomic write paired with an atomic read
Black operations on Thread 1 happen-before Red 

operations on thread 0.



Memory orders
• Memory orders establish which loads and stores can be 

moved around synchronized-with relations.

• The strong flush by itself is expensive as it impacts all the 
shared variables visible to a thread.

• There are more focused forms of memory order
The 2 most fundamental memory orders are:
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Thread 1Thread 0

synchronize-with
#pragma omp flush release 
#pragma omp atomic write
      y = New_value;#pragma omp flush acquire 

#pragma omp atomic read
      Loc_value = y; Sync 

Source
Sync 
Sink

– Acquire: Reads/writes that follow the 
read-with-acquire cannot happen-before 
the read-with-acquire operation.

– Release: Reads/Writes prior to the 
write-with-release must happen-before 
the write-with-release. Black operations on Thread 1 

happen-before Red 
operations on thread 0.



Memory orders
• Memory orders establish which loads and stores can be 

moved around synchronized-with relations.

• The strong flush by itself is expensive as it impacts all the 
shared variables visible to a thread.

• There are more focused forms of memory order
The 2 most fundamental memory orders are:
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Thread 1Thread 0

synchronize-with
#pragma omp atomic write release
      y = New_value;#pragma omp atomic read acquire

      Loc_value = y;
Sync 

Source
Sync 
Sink

– Acquire: Reads/writes that follow the 
read-with-acquire cannot happen-before 
the read-with-acquire operation.

– Release: Reads/Writes prior to the 
write-with-release must happen-before 
the write-with-release. Black operations on Thread 1 

happen-before Red 
operations on thread 0.

We can combine the flush and the atomic constructs



#include <stdio.h>
#include <omp.h>
#define COUNT 1000000
int main()
{
 int answer = 0, flag= 0,err=0;
 #pragma omp parallel shared(flag,answer) num_threads(2)
 {
  int id = omp_get_thread_num();
  if (id == 0) {
   answer = 42;

       #pragma omp atomic write release
       flag = 1;
  }
  else if (id == 1){
       int fetch = 0;

  while (fetch == 0)  { 
         #pragma omp atomic read acquire
           fetch = flag;
       }
    if(answer!=42) err++;
  }
 }
 return 0;
}

producer/consumer program correctly synchronized
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Other Memory orders in OpenMP
• Other OpenMP memory orders

– acq_rel: Applies acquire and release 
memory order constraints at a single point 
in a program’s execution. 

– seq_cst:  sequential consistency.  All data 
accessible to a thread are written to 
memory, subsequent writes are set to load 
from memory (akin to the strong flush)
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Thread 1Thread 0

synchronize-with

Black operations on Thread 1 
happen-before Red 

operations on thread 0.

#pragma omp atomic write seq_cst
      y = New_value;#pragma omp atomic read seq_cst

      New_value = y;

The most important memory order to use is seq_cst.  

It can be more expensive, but it is the safest case.
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Keep it simple … let OpenMP take care of Flushes for you
• A flush operation is implied by OpenMP constructs … 
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions

WARNING:
If you find yourself wanting to write code with explicit flushes, stop and get help.  It is very difficult to manage 

flushes on your own.  Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where you really need them. 

• OpenMP programs that: 
• Do not use non-sequentially consistent atomic constructs; 
• Do not rely on the accuracy of a false result from omp_test_lock and omp_test_nest_lock; and 
• Correctly avoid data races  

… behave as though operations on shared variables were simply interleaved in an order consistent 
with the order in which they are performed by each thread. The relaxed consistency model is 
invisible for such programs, and any explicit flushes in such programs are redundant. 

This has not been a detailed 
discussion of the full OpenMP 

memory model. The goal was to 
explain how memory models work  
and to understand the subset of 
features people commonly use.
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Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:
– Data Structures are sparse or involve indirect memory references
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP 
is difficult.

p = listhead ;
while (p) { 
  process(p);
  p=p->next;
} 
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Exercise: Traversing linked lists  
• Consider the program linked.c
– Traverses a linked list computing a sequence of Fibonacci numbers at each node.

• Parallelize this program selecting from the following list of constructs:
#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main().  You 
don’t need to make any changes to the “list functions”
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Linked Lists with OpenMP (without tasks)
• See the file solutions/linked_notasks.c

while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds
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Linked Lists with OpenMP (without tasks)

while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much 
code to add 
and three 

passes through 
the data, this is 

really ugly.

There has got 
to be a better 
way to do this

• See the file solutions/linked_notasks.c



#pragma omp parallel firstprivate(p)
   {
      int id = omp_get_thread_num();
      int nthreads = omp_get_num_threads();
      int count = 0;
      while(p!=NULL && count < id){
         count ++;
         p = p->next;
      }
      while (p != NULL) {
         processwork(p);
         int count = 0;
         while(p!=NULL && count < nthreads){
            count ++;
            p = p->next;
         }
      }
   }

Solutions from other people
• A much more elegant solution based on the SPMD pattern 
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Each thread has its own copy 
of the list pointer set to the 

head of the list

Each thread advances its list pointer by 
a number equal to the thread ID

Increment the thread’s list 
pointer by the number of 

threads



#pragma omp parallel firstprivate(p)  
   {
       int i = 0;
       int thread_num = omp_get_thread_num();
       int num_threads = omp_get_num_threads();
       while (p != NULL)
       {
 if(i % num_threads == thread_num)
  processwork(p);
  p = p->next;
               ++i;
       }
   }

Solutions from other people
• A particularly elegant, SPMD solution
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Each thread has its own copy 
of the list pointer set to the 

head of the list

Each of the threads traverses the list, 
but only one thread processes the work 
for any give node using the modulus of 
the count with the number of threads
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Linked Lists with OpenMP
while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct 

node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

#pragma omp parallel firstprivate(p)
   {
      int id = omp_get_thread_num();
      int nthreads = omp_get_num_threads();
      int count = 0;
      while(p!=NULL && count < id){
         count ++;
         p = p->next;
      }
      while (p != NULL) {
         processwork(p);
         int count = 0;
         while(p!=NULL && count < nthreads){
            count ++;
            p = p->next;
         }
      }
   }

#pragma omp parallel firstprivate(p) default(none)
   {
       int i = 0;
       int thread_num = omp_get_thread_num();
       int num_threads = omp_get_num_threads();
       while (p != NULL)
       {
              if(i % num_threads == thread_num)
 processwork(p);
               p = p->next;
               ++i;
       }
   }

With so much code to add and multiple passes through the data, all of these approaches are kind of  ugly.

There has got to be a better way to handle irregular problems



What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each 
task.
– The thread that encounters the task construct may execute 

the task immediately.
– The threads may defer execution until later

Serial Parallel
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What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task 
construct will package up the code block and its data 
for execution

• Tasks can be nested: i.e., a task may itself generate 
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the 
other threads wait at a barrier and execute the tasks
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Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread 
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a 
nowait clause).

#pragma omp parallel  
{ 
 do_many_things();
      #pragma omp single
 {     exchange_boundaries();   }
 do_many_other_things();

} 

*This used to be called the “master thread”.  The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.    



Task Directive

#pragma omp parallel
{ 
  #pragma omp single
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
  #pragma omp task
     billy(); 
   } 
}

One Thread 
packages tasks

Create some threads

Tasks executed by 
some thread in some 
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

                     structured-block    
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Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:
– “I think “ “race” “car”  “s are fun”
– “I think “ “car” “race”  “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).    

• This is called a “Race Condition”.  It occurs when the result of a program depends on 
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.  They produce 
race conditions.  Programs containing data races are undefined (in OpenMP but also 
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

138This exercise comes from Ruud van der Pas of Oracle



Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{  printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 139



Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct 

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct 
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are 
to new storage that is created and initialized with the value of the existing storage of 
that name when the task is encountered
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Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be 

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel 
construct are shared by default

#pragma omp parallel shared(A) private(B)
{
   ...
#pragma omp task
   {
       int C;
       compute(A, B, C);
   }
}

A is shared
B is firstprivate
C is private
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Exercise: Traversing linked lists  
• Consider the program linked.c
– Traverses a linked list computing a sequence of Fibonacci numbers at each node.

• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main().  You 
don’t need to make any changes to the “list functions”
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Parallel Linked List Traversal
#pragma omp parallel
{ 
  #pragma omp single
   { 
    p = listhead ;
    while (p) { 
       #pragma omp task firstprivate(p)       
             {         
               process (p);
             }
       p=next (p) ;
     } 
   } 
}

makes a copy of p 
when the task is 
packaged

Only one thread 
packages tasks

143
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When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)
– all tasks generated inside a region must complete at the next barrier encountered by the threads

in that region.  Common examples:
– Tasks generated inside a single construct:  all tasks complete before exiting the barrier on the 

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of 

the parallel region.   

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.  

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .
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Example
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#pragma omp parallel
{ 
  #pragma omp single 
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
     #pragma omp taskwait
  #pragma omp task
     billy(); 
   } 
}

fred() and daisy() 
must complete before 
billy() starts, but 
this does not include 
tasks created inside 
fred() and daisy()

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier
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Example
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#pragma omp parallel
{ 
  #pragma omp single nowait 
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
     #pragma omp taskwait
  #pragma omp task
     billy(); 
   } 
}

The barrier at the end of the 
single is expensive and not 
needed since you get the 
barrier at the end of the 
parallel region.   So use 
nowait to turn it off.

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier
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Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(2n) recursive 
implementation!

int fib (int n)
{
   int x,y;
   if (n < 2) return n;

   x = fib(n-1);
   y = fib (n-2);
   return (x+y);
}

int main()
{
   int NW = 5000;
   fib(NW);
}
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Parallel Fibonacci

148

• Binary tree of tasks

• Traversed using a recursive 
function

• A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait)

• x,y are local, and so by default 
they are  private to current task

– must be shared on child tasks so they 
don’t create their own firstprivate 
copies at this level! 

int fib (int n)
{   int x,y;
   if (n < 2) return n;

#pragma omp task shared(x)
   x = fib(n-1);
#pragma omp task shared(y)
   y = fib (n-2);
#pragma omp taskwait
   return (x+y);
}

Int main()
{  int NW = 5000;
   #pragma omp parallel
   { 
       #pragma omp single
             fib(NW);
   }
} 148



Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be 
solved directly

n 3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work only at the 

leaves
¨ Do work as you 

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve
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Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works.  Think about the 
computation you want to do at the leaves.  If you go all the way down to one 
iteration per leaf-node, won’t you just swamp the system with tasks?



Program: OpenMP tasks  
#include <omp.h>
  static long num_steps = 100000000;
  #define MIN_BLK  10000000
  double pi_comp(int Nstart,int Nfinish,double step)
  {   int i,iblk;
      double x, sum = 0.0,sum1, sum2;
      if (Nfinish-Nstart < MIN_BLK){
         for (i=Nstart;i< Nfinish; i++){
            x = (i+0.5)*step;
            sum = sum + 4.0/(1.0+x*x); 
         }
      }
      else{
         iblk = Nfinish-Nstart;
         #pragma omp task shared(sum1)
              sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step);
         #pragma omp task shared(sum2)
               sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step);
         #pragma omp taskwait
            sum = sum1 + sum2;
     }return sum;
} 151

int main ()
 {
   int i;
   double step, pi, sum;
    step = 1.0/(double) num_steps;
    #pragma omp parallel  
    {
        #pragma omp single
            sum =    

pi_comp(0,num_steps,step);
     }
      pi = step * sum;
 }  



Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st SPMD SPMD 
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52
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Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number 

and granularity of tasks
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The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for 
 for (I=0;I<N;I++){
  NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each 
thread  by default.  You could do this 
explicitly with a “private(I)” clause
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Loop Worksharing Constructs:  The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.
– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks 
down to size “chunk” as the calculation proceeds.

– schedule(runtime)
– Schedule  and chunk size taken from the OMP_SCHEDULE environment variable (or the 

runtime library) … vary schedule without a recompile!
– Schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.  
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Schedule Clause When To Use

STATIC Pre-determined and predictable by the 
programmer

DYNAMIC Unpredictable, highly variable work per 
iteration

GUIDED Special case of dynamic to reduce 
scheduling overhead

AUTO When the runtime can “learn” from 
previous executions of the same loop

Loop Worksharing Constructs:  The schedule clause

Least work at 
runtime : 
scheduling done 
at compile-time

Most work at 
runtime : 
complex 
scheduling logic 
used at run-time



#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
  for (int j=0; j<M; j++) {
         .....
  } 
} 
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Nested Loops

• Will form a single loop of length NxM and then parallelize that.
• Useful if N is O(no. of threads) so parallelizing the outer loop makes 

balancing the load difficult.

Number of loops 
to be 
parallelized, 
counting from 
the outside

• For perfectly nested rectangular loops we can parallelize multiple loops 
in the nest with the collapse clause: 
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Sections Worksharing Construct
• The Sections worksharing construct gives a different structured block to each thread.  

#pragma omp parallel
{

   #pragma omp sections
   {
   #pragma omp section
            x_calculation();
   #pragma omp section
 y_calculation();
   #pragma omp section
 z_calculation();
   }

}

By default, there is a barrier at the end of the “omp sections”.  Use the “nowait” clause to turn off the barrier.



Array Sections with Reduce
#include <stdio.h> 
#define N 100 
void init(int n, float (*b)[N]); 
int main(){ 
int i,j; float a[N], b[N][N]; init(N,b); 
for(i=0; i<N; i++) a[i]=0.0e0; 

#pragma omp parallel for reduction(+:a[0:N]) private(j) 
for(i=0; i<N; i++){ 
   for(j=0; j<N; j++){ 
          a[j] += b[i][j]; 
   } 
} 
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]); 
return 0; 
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Works the same as any other reduce … a 
private array is formed for each thread, 
element wise combination across threads 
and then with original array at the end



Exercise
• Go back to your parallel mandel.c program.
• Using what we’ve learned in this block of slides can you improve the runtime?
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Optimizing mandel.c
 wtime = omp_get_wtime();

#pragma omp parallel for collapse(2) schedule(runtime) firstprivate(eps) private(j,c)
 for (i=0; i<NPOINTS; i++) {
  for (j=0; j<NPOINTS; j++) {
   c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
   c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
   testpoint(c);
  }
 }
 wtime = omp_get_wtime() - wtime;
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$ export OMP_SCHEDULE=“dynamic,100”
$ ./mandel_par

default schedule 0.48 secs
schedule(dynamic,100) 0.39 secs
collapse(2) schedule(dynamic,100) 0.34 secs

Four threads on a dual core Apple laptop (Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) 
and the gcc version 9.1.  Times are the minimum time from three runs   
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order constraints 
between threads and to protect access to shared data

Covered in this section

Covered earlier
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Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a memory 
location (the update of X in the following example)

#pragma omp parallel

{ 
         double tmp, B;

        B =  DOIT();

         

 #pragma omp atomic 
 X += big_ugly(B);

}

#pragma omp parallel

{ 
        double B; 

        B =  DOIT();

         

 #pragma omp atomic 
 X +=  big_ugly(B);

}
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Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a 
memory location (the update of X in the following example)

#pragma omp parallel

{ 
        double B, tmp;

        B =  DOIT();

        tmp = big_ugly(B);

 #pragma omp atomic 
 X +=  tmp;

}

Atomic only protects the 
read/update of X



The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need to protect a 

memory operation so it occurs atomically:
 # pragma omp atomic [read | write | update | capture]
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• Atomic can protect loads
 # pragma omp atomic read
  v = x; 

• Atomic can protect stores
 # pragma omp atomic write
  x = expr; 

• Atomic can protect updates to a storage location (this is the default behavior … i.e. when you don’t 
provide a clause)
 # pragma omp atomic update
  x++;  or ++x;  or x--;  or –x;  or 
  x binop= expr; or x = x binop expr;

This is the 
original OpenMP 

atomic



The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated update operation:

 # pragma omp atomic capture
  statement or structured block
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• Where the statement is one of the following forms:
  v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr;

• Where the structured block is one of the following forms:
  {v = x;  x binop = expr;} {x  binop = expr;     v = x;}

{v=x;    x=x binop expr;} {X = x binop expr;   v = x;}
{v = x;   x++;} {v=x;     ++x:}
{++x;     v=x:} {x++;      v = x;}
{v = x;    x--;} {v= x;     --x;}
{--x;        v = x;} {x--;        v = x;}

The capture semantics in atomic were added to map onto common hardware 
supported atomic operations and to support modern lock free algorithms
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Synchronization: Lock Routines
• Simple Lock routines:
– A simple lock is available if it is unset.

– omp_init_lock(), omp_set_lock(), 
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the thread 

executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(), 

omp_test_nest_lock(), omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock, 
so you don’t need to use a flush on the lock variable.

A lock implies a memory 
fence (a “flush”) of all 
thread visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on 
intended use (e.g. contended, uncontended, speculative, unspeculative) 



 int i, ix, even_count = 0, odd_count = 0;
 omp_lock_t odd_lck,   even_lck;
 omp_init_lock(&odd_lck);
 omp_init_lock(&even_lck);

 #pragma omp parallel for private(ix) shared(even_count, odd_count)
 for(i=0; i<N; i++){
  ix = (int) x[i];  //truncate to int

  if(((int) x[i])%2 == 0) {      
     omp_set_lock(&even_lck);
      even_count++;

     omp_unset_lock(&even_lck);
  }
  else{     

     omp_set_lock(&odd_lck);
      odd_count++;

     omp_unset_lock(&odd_lck);
  }
 }
 omp_destroy_lock(&odd_lck);
 omp_destroy_lock(&even_lck);

}
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Synchronization: Simple Locks Example
• Count odds and evens in an input array(x)  of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates, 
but in parallel for each case.



Exercise
• In the file hist.c, we provide a 

program that generates a large array 
of random numbers and then 
generates a histogram of values.

• This is a ”quick and informal” way to 
test a random number generator … if 
all goes well the bins of the 
histogram should be the same size.

• Parallelize the filling of the histogram  
You must assure that your program 
is race free and gets the same result 
as the sequential program. 

• Using everything we’ve covered 
today, manage updates to shared 
data in multiple ways.  Try to 
minimize the time to generate the 
histogram.  

• Time ONLY the assignment to the 
histogram.    Can you beat the 
sequential time?
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#define   num_trials   1000000 // number of x values
#define   num_buckets  50    // number of buckets in hitogram
static long xlow     = 0.0;   // low end of x range
static long xhi     = 100.0;  // High end of x range

int main (){
 double x[num_trials];   // array used to assign counters in the historgram
 long  hist[num_buckets]; // the histogram
 double bucket_width;    // the width of each bucket in the histogram
 double time;

 seed(xlow, xhi);  // seed the random number generator over range of x
 bucket_width = (xhi-xlow)/(double)num_buckets;

 // fill the array. << code not shown >>

 // initialize the histogram << code not shown >>

 // Assign x values to the right histogram bucket
 time = omp_get_wtime();
 for(int i=0;i<num_trials;i++){

  
   long ival = (long) (x[i] - xlow)/bucket_width;

   hist[ival]++; 

 }

 time = omp_get_wtime() - time;
  
   // compute statistics and output results << code not shown >>

 return 0;
}

Only focus 
on this part of 
the program
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Histogram Program: Critical section

• A critical section means that only one thread at a time can update a histogram bin … 
but this effectively serializes the loops and adds huge overhead as the runtime 
manages all the threads waiting for their turn for the update.

#pragma omp parallel for
 for(i=0;i<NVALS;i++){
     ival = (int)  x[i];
     #pragma omp critical   
          hist[ival]++;
}

Easy to write and 
correct, but terrible 
performance
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Histogram program: one lock per histogram bin
• Example: conflicts are rare, but to play it safe, we must assure mutual exclusion for 

updates to histogram elements.

#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
       omp_init_lock(&hist_locks[i]);    hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
     ival = (int)  x[i];
     omp_set_lock(&hist_locks[ival]);   
          hist[ival]++;
     omp_unset_lock(&hist_locks[ival]);
   }

 #pragma omp parallel for
for(i=0;i<NBUCKETS; i++)
  omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual 
exclusion on update 
to hist array
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Histogram program: reduction with an array

• We can give each thread a copy of the histogram, they can fill them in parallel, and 
then combine them when done

#pragma omp parallel for reduction(+:hist[0:Nbins])
 for(i=0;i<NVALS;i++){
     ival = (int)  x[i];
     hist[ival]++;
}

Easy to write and correct, Uses a lot of 
memory on the stack, but its fast … 
sometimes faster than the serial method.   

sequential 0.0019 secs
critical 0.079 secs
Locks per bin 0.029 secs
Reduction, replicated histogram array 0.00097 secs

1000000 random values in X sorted into 50 bins. Four threads on a dual core Apple laptop 
(Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) and the gcc version 9.1.   Times are 
for the above loop only (we do not time set-up for locks, destruction of locks or anything else)
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap
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Data Sharing: Threadprivate
• Makes global data private to a thread
– Fortran: COMMON  blocks
– C: File scope and static variables, static class members

• Different from making them PRIVATE
– with PRIVATE global variables are masked. 
– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN or at time of definition 
(using language-defined initialization capabilities)
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A Threadprivate Example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
    counter++;
    return (counter);
}

Use threadprivate to create a counter for each thread.
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Data Copying: Copyin

parameter (N=1000)
      common/buf/A(N)
!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array
      call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

 … Now each thread sees threadprivate array A initialized 
 … to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin clause. 
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Exercise: Monte Carlo Calculations 
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, find optimal 
values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is proportional to 

ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4
l Compute π by randomly choosing points; π is 

four times the fraction that falls in the circle

2 * r

N= 10      π = 2.8

N=100      π = 3.16

N= 1000    π = 3.148



180

Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
– random.c: a simple random number generator
– random.h: include file for random number generator

• Create a parallel version of this program.
• Run it multiple times with varying numbers of threads.
• Is the program working correctly?   Is there anything wrong?
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Parallel Programmers love Monte Carlo algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{
   long i;      long Ncirc = 0;       double pi, x, y;
   double r = 1.0;   // radius of circle. Side of squrare is 2*r 
   seed(0,-r, r);  // The circle and square are centered at the origin
   #pragma omp parallel for private (x, y) reduction (+:Ncirc)
   for(i=0;i<num_trials; i++)
   {
      x = random();         y = random();
      if ( x*x + y*y) <= r*r)   Ncirc++;
    }

    pi = 4.0 * ((double)Ncirc/(double)num_trials);
    printf("\n %d trials, pi is %f \n",num_trials, pi);
}

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing.

Add two lines and you have a 
parallel program.
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Random Numbers: Linear Congruential Generator (LCG)
• LCG: Easy to write, cheap to compute, portable, OK quality

l If you pick the multiplier and addend correctly, LCG has a period of PMOD.
l Picking good LCG parameters is complicated, so look it up (Numerical Recipes is 

a good source).  I used the following:
u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;



183

LCG code

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
double random ()
{
    long random_next; 

    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
    random_last = random_next;

   return ((double)random_next/(double)PMOD);
}

Seed the pseudo random 
sequence by setting 
random_last
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Running the PI_MC program with LCG generator

!"!!!!#

!"!!!#

!"!!#

!"!#

!"#

#
# $ % C ' (

)G+,-,.L0,123045

)G+6,C,12304576
13489,#
)G+,C,12304576
13849,$
)G+6,C,12304576
13849,%

Log 10  R
elative error

Log10 number of samples

Run the same 
program the 
same way and 
get different 
answers!  

That is not 
acceptable!

Issue: my LCG 
generator is not 
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.
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Exercise: Monte Carlo pi (cont)

• Create a threadsafe version of the monte carlo pi program

• Do not change the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your parallel random number 

generator have to know any details of the generator or make any changes to how the generator 
is called?
– The random number generator must be thread-safe

• Verify that the program is thread safe by running multiple times for a fixed number 
of threads.

• Any concerns with the program behavior?



186

LCG code: threadsafe version

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{
    long random_next; 

    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
    random_last = random_next;

   return ((double)random_next/(double)PMOD);
}

random_last carries state between 
random number computations,

To make the generator threadsafe, 
make random_last threadprivate so 
each thread has its own copy.
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Thread Safe Random Number Generators

Log
10  R

elative error

Log10 number of samples

Thread safe version gives the 
same answer each time you 
run the program.

But for large number of 
samples, its quality is lower 
than the one thread result!

Why?

!"!!!!#

!"!!!#

!"!!#

!"!#

!"#

#
# $ % C ' ( )G+,-,.L0

123045
)G+,C,1230456T
13849,#
)G:,C,1230456T
13849,$
)G+,C,1230456T
13849,%
)G+,C,1230456T
123045,64;0
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Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random numbers of length 

equal to the period of the RNG

l In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l Grab arbitrary seeds and you may generate overlapping sequences  
u E.g. three sequences … last one wraps at the end of the RNG period.

l Overlapping sequences = over-sampling and bad statistics … lower quality or even wrong answers!

Thread 1
Thread 2

Thread 3
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Parallel random number generators
• Multiple threads cooperate to generate and use random numbers.
• Solutions:
– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin” as if dealing a 

deck of cards.
– Block method … pick your seed so each threads gets a distinct 

contiguous block.

• Other than “replicate and pray”, these are difficult to implement.  Be 
smart … get a math library that does it right.

If done right, can 
generate the 
same sequence 
regardless of the 
number of 
threads …

Nice for 
debugging, but 
not really needed 
scientifically.

Intel’s Math kernel Library supports a wide range of 
parallel random number generators.

For an open alternative, the state of the art is the Scalable Parallel 
Random Number Generators Library (SPRNG): http://www.sprng.org/ 

from Michael Mascagni’s group at Florida State University.

http://www.sprng.org/
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MKL Random Number Generators (RNG)

#define BLOCK 100
double  buff[BLOCK]; 
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val); 

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, 
                      BLOCK, buff, low, hi)

vslDeleteStream( &stream );

l MKL includes several families of RNGs in its vector statistics library.
l Specialized to efficiently generate vectors of random numbers

Initialize a 
stream or 
pseudo 
random 
numbers

Select type of RNG 
and set seed

Fill buff with BLOCK pseudo rand.  
nums, uniformly distributed with values 
between lo and hi.

Delete the stream when you are done
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Wichmann-Hill Generators (WH)

• WH is a family of 273 parameter sets each defining a non-overlapping and 
independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG stream so each 
thread gets a unique WG RNG. 

VSLStreamStatePtr stream; 

#pragma omp threadprivate(stream)

                                        …

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);
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Independent Generator for each thread

!"!!!#

!"!!#

!"!#

!"#

#
# $ % & ' (

)*H,-.
/01.23
)*4H$
/01.235
)*4H&
/01.235

Log
10  R

elative error

Log10 number of samples
Notice that once 
you get beyond 
the high error, 
small sample 
count range, 
adding threads 
doesn’t 
decrease quality 
of random 
sampling.
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#pragma omp single
      {   nthreads = omp_get_num_threads();
     iseed = PMOD/MULTIPLIER;     // just pick a seed
     pseed[0] = iseed;
      mult_n = MULTIPLIER;
     for (i = 1; i < nthreads; ++i)
     {
 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);
 pseed[i] = iseed;
 mult_n = (mult_n * MULTIPLIER) % PMOD;
     }

   }
   random_last = (unsigned long long) pseed[id];

Leap Frog Method
• Interleave samples in the sequence of pseudo random numbers:
– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of threads.

One thread 
computes offsets 
and strided 
multiplier

LCG with Addend = 0 just 
to keep things simple 

Each thread stores offset starting 
point into its threadprivate “last 
random” value
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Same sequence with many threads.
• We can use the leapfrog method to generate the same 

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the 
y values (WH+1).  Also used the leapfrog method to deal out iterations among threads.
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Outline
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• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Worksharing Revisited
• Synchronization Revisited: Options for Mutual exclusion
• Threadprivate and the joys of “random” numbers
• Recap



OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.    
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items
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There is Much More to OpenMP than the Common Core

• Synchronization mechanisms
– locks, synchronizing flushes and several forms of atomic

• Data environment
– lastprivate, threadprivate, default(private|shared)

• Fine grained task control
– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs
– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device (such as a GPU)
– target, teams distribute parallel for, target data …

• … and much more.  The OpenMP 5.0 specification is over 618 pages!!! 
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Don’t become overwhelmed.   Master the common core and move on to other 
constructs when you encounter problems that require them.



Resources
• www.openmp.org has a wealth of helpful resources
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Including a 
comprehensiv
e collection of 
examples of 

code using the 
OpenMP 

constructs

http://www.openmp.org/


To learn OpenMP:
• An exciting new book that Covers the 

Common Core of OpenMP plus a few key 
features beyond the common core that 
people frequently use

• It’s geared towards people learning 
OpenMP, but as one commentator put it 
… everyone at any skill level should 
read the memory model chapters.

• Available from MIT Press

199www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/


Books about OpenMP
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A great book that covers 
OpenMP features beyond 

OpenMP 2.5



Books about OpenMP
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The latest book on OpenMP … 

Came out in early November 2023.

A book about how to use OpenMP to 
program a GPU.



202

Background references

l A book about how to “think 
parallel” with examples in 
OpenMP, MPI and java

A great book that  explores key 
patterns with Cilk, TBB, 
OpenCL, and OpenMP (by 
McCool, Robison, and Reinders)


