Argonne &

NATIONAL LABORATORY

Introduction to GPU “Low-level” Programming

How does that even work?

Thomas Applencourt, Nathan Nichols ({apl,nnichols}@anl.gov)
July 28, 2025

Disclaimer

- “If it's simple, it's always false. If it's not, it's unusable” Paul Valéry
- “Trust, but verify” Russian proverb

- “Stay awhile and listen..” Deckard Cain '

'And sorry in advance for the 2h long lecture

............... 1172

ToC

1. Introduction

2. Programming Model for the GPUs Kernel
3. Execution Model

4. Programming Model APl / Runtime

5. Summary

6. Example and Q&A

............... 272

Introduction

Non-Goals of this lecture

- | will not teach you CUDA?, HIP3, Level Zero*

- You are all smart, if you need to learn it you can find super nice tutorial
online

2Compute Unified Device Architecture,
3Heterogeneous-Compute Interface
“But maybe | will teach you some OpenCL - Open Compute Language...

............... 3/72

Goal of this Lecture: How This code is Implemented

OpenMp>:®
1 #pragma omp target parallel for map(to: B[O:N]) map(from: A[O:N])

2 for (int 1=0; i < N; i++)
3 A[i]l = B[i];

I'm going to ask someone at the end, so listen carefully!

*Open Multi-Processing... Wait what?!
®| use OpenMP - as example because after me, you have the chance, the privilege!, to get a
OpenMP tutorial. But same goes for Kokkos, SYCL, Python

472

Goal of this Lecture

- Give you some foundation to understand the difference and similitude
between multiple low-level programming models (“Any fool can know. The
point is to understand.” Ernest Kinoy)

- Make clear the layering approach of current toolchains

nnnnnnnnnnnnnnn

5/72

Some big questions

- Why the “need” to use CUDA for NVIDIA hardware, HIP for AMD, and LO for
Intel?’

= IR‘)NTli R

(a) Level Zero (b) CuDA (c) HIP

’But then how can OpenCL be portable?

................ 6/72

GPU-programming consist on three things:

- Programming Model for the GPUs Kernel (OpenCL C, CUDAC, ...).
- Execution Model (SPMD / “MPI-like")
- Programming Model for the “CPU Runtime” (CUDA, L0, OpenCL)®

8This is the only thing who matter, this rest is trivial

............... 7172

Programming Model for the GPUs
Kernel

GPU is a different Hardware

- GPU Doesn’t execute the same machine code as your CPU

- You need and additional compiler® to lower your high-level language to GPU
machine code

or compiler backend

............... 8/72

Old School: Double Source Approach

- Host Code:

- Written in C/C++/Python for CPU tasks like memory management and kernel
launches.

- Device Code:

- Written in GPU-specific languages like CUDA C/C++ HIP C, or OpenCL C™®
- Contains the GPU kernels.

1°pTX, SPIR-V, ...

................ 9/72

GPU program

// CUDA/HIP

extern __shared__ float array[];

__global__ void cuda_or_hip_hello() {
printf("Hello World from GPU!\n");

// OpenCL

__kernel void hello_world() {
printf("Hello World from GPU!\n");
local int a;

© 0N e W N

[
(=]

So much difference!

- Please note the __global__, Oor __kernel, those are not standard C keyword.

- What can you put in device code has limitation depending on the Hardware /
Compiler

- No dynamic allocation, no throw, no recursion, no virtual Functions, ...

10/72

Compiling: Simple first steps

CUDA C (*cu) | PTX |—— SASS —— Nvidia HW |

HIP Kernel

Language Syntax —— HSA IL —— AMDGCN AMD HW

OpenCL C [SPIR-V |

genASM

SPIR-V is an Open-Source Standard"

"The other are not, just saying

nnnnnnnnnnnnnnn

1/72

Compiling: Simple first steps

CUDAC (*cu)— PIX | SASS |—— Nvidia HW|

HIP Kernel
Language Syntax

— HSAIL —— AMDGCN —> AMD HW |

OpenCL C —— SPIR-V [—— genASM |——{ Intel HW |

SPIR-V is an Open-Source Standard'

2The others are not, just saying

nnnnnnnnnnnnnnn

12/72

Double Source Compilation Process

- Separate Compilation:

- Host code -> x86/ARM machine code.
- Device code -> Intermediate code (PTX, SPIR-V) -> GPU-specific machine code.

- Potentially Linking: Combines host and device code into the final executable
(see next slide single source).

................ 13/72

Hiding Compilation: Emergence of Single Source

© 0N O U e W N

// OMP
printf("Hello World CPU!\n"); // CPU code
#pragma omp target // GPU code

printf("Hello World GPU!\n");
// SYCL

printf("Hello World CPU!\n"); // CPU code
Q.single_task([1(){printf(Hello World!Nn");}}.wait(); // GPU code

Compiler is smart enough to understand which code will be executed on the CPU,
and which one on the GPU.

- You can use a subset of C/C++/Python as a GPU kernel™

Remember previous limitation: no recursion*, no exceptions, no syscall, no io...

14/72

Compiling: A Better(?) method - LLVM example

| PTX |—— sass |

[+ ——{LLyM IR}——] AMDGCN™ |

SPIR-V |—> genASM

(you have bridge between SPIR-V and PTX)

"or nobody generate AMDGCN and everybody HSA IL, not clear...

............... 15/72

- Two compilation path, always
- Can do it at runtime (JIT) or at compile time (AQT)
- GPU is fast, because it's stupid and have restriction

Argonne & 16/72

Execution Model

Execution Model

Kernel Language: GPU programming 101

Memory Hierarchy in GPUs

Overview of GPU Memory Architecture

- Compute Device:
- Comprises multiple Compute Units (CU), each containing several Processing
Elements (PE).
- Private Memory:
- Dedicated to each PE, storing element-specific data.
- Local Memory:
- Shared among PEs within the same CU, facilitating intra-unit communication.
- Global/Constant Memory:
- Global Memory: Large, accessible by all PEs, used for cross-CU data sharing.
- Constant Memory: Read-only, stores constants and configuration data.
- Memory Caches:
- Intermediate cache layers improve access times for frequently used data.

................ 17/72

GPU Memory Architecture

Argonne &

NATIONAL LABORATORY

‘Compute Device

Compute Unit 1

Private
Memory 1

Compute Unit N

Private
Memory 1

Private
Memory M

Local
Memory 1

Local
Memory 1

Global/Constant Memory Data Cache

Global Memory

Constant Memory

Compute Device Memory

18/72

<<
o
)
(®)

Execution Hierarchy

19/72

NATIONAL LARORATORY

Argonne &

Execution Hierarchy: HIP

avefront

Block

YYVYVYYY YYVYVYVY Y

] 1

Argonne & 20/72

Execution Hierarchy: OpenCL

NDRange

Work-Group Work-Group

Sub-Group

ub-Group

YYVYVYYY V‘VV‘VV‘V“VV" V“VV“VV‘V‘VV’

Argonne & 1/72

Execution Hierarchy in GPU Programming

- NDRange/Grid:
- Defines the total computation space as a grid of threads.
- Specifies the overall dimensions and workload size.
- Work-Group/Block:
- Divides the NDRange into manageable chunks.
- Each work-group operates independently, using shared local memory.
- Sub-Group/Warp/Wavefront:
- Smaller units within a work-group that execute in lockstep.
- Optimize data sharing and access patterns within the group.
- Work-Items/Threads:
- The fundamental execution units in a GPU.
- Each thread has private resources and can access shared local memory.

................ 22/72

Key Points to Understanding the Execution Hierarchy

- Efficient Parallelism:
- Optimize work-group sizes for load balancing.
- Prevent resource underutilization with proper grid/block sizing.

- Data Locality:
- Maximize shared memory usage to reduce global memory access.
- Align data structures with hardware capabilities.

- Synchronization:
- Use synchronization within work-groups to manage dependencies.
- Minimize unnecessary synchronization to avoid bottlenecks.

- Memory Access Patterns:
- Coalesced memory access enhances efficiency.
- Optimize data layout for better performance.

- Scalability:
- Design for scalability across different GPU architectures.

Argomne® . Ensure kernels can adapt to varying numbers of compute units. 23/72

Launching Kernel

A
P Work-group
NDRange(N=2) .~ '
4 —= g IR 1I Work-item Work item
: =T PEO PE1
1 S
1 =1
! g! cu
Y z
1
E ! vl | workitem Work item
E |1 PE2 PE3
=N :
&) : . -
| €--——==== —————— >
| Local size (x)
1
1
¥
________________ >
Global size (x) 15

BFrom “Design of OpenCL Framework for Embedded Multi-core Processors”

Argonne & /72

Index Space

From “An Introduction to the OpenCL Programming Model” by Jonathan A.
Thompson

Work item Work Group

Local Size(0)

(1)9zIS &30

Global Size(1)

- 25/72
Global Size(0)

Synchronization Possibilities

Synchronization T
between work
items possible

Cannot
synchronize

outside work-group —

work-group
work-item

From An Introduction to the OpenCL Programming Model by Jonathan A. Thompson

Implementing atomic synchronization mechanisms is an advanced topic

................ 26/72

GPU in a Nutshell

- Just think of the GPU as a CPU with lots of threads executing SIMD instruction

- GPU cannot allocate memory
- GPU programs are pretty boring:

- Use Shared Local Memory'® when possible to not read from the Main Memory

- Be careful of register pressure

- “Nothing Special” memory access"

- GPU are fast because they force you to NOT synchronize between threads that
live in difference work-group. Freedom versus Performance.

- No branch prediction

®Shared Memory in CUDA, or just rely on cache oblivious algorithm
7“coalescing memory” == Don’t do random access / gather. “vectorization” strategies: contiguous
versus strided access.

................ 2772

Programming Model API / Runtime

Programming Model API / Runtime

Runtime and Runtimes

Just a layer of Programming Model / Runtime!

“All problems in computer science can be solved by another level of indirection.”
David Wheeler

Argonne & 28/72

Proprietary / Native Tool-chains (put Python Anywhere you like)

| CUDA Runtime ——— CUDA Driver —— Linux Driver (Nouveau) ——>| Nvidia HW |
HIP HSA Linux Driver (AMDGPU) AMD HW
Linux Driver (i915) Intel HW

............... 29/72

Comments on this diagram

- The Linux Drivers are the “lower-level” we will discuss. Huge effort to
implement.’®

- The level on top (CUDA Driver, HSA, Level Zero) abstracts away a little bit
more of the hardware, but still provides a lot of control "

- The last level (CUDA Runtime, HIP) are “fully” hardware independent

®See nice blog post about the Linux M4 drivers
“Sweet spot to write higher-lever runtime

nnnnnnnnnnnnnnnn

30/72

Taking About Higher-level Programming Model?°

Kokkos

OpenMP offload

OpenCL

Sycl

Level Zero

ihsa

hip

\CUDA Runtime |

CUDA Driver

“Where is my Vulkan! Sorry gamer people... And thanks Valve for Direct3D -> Vulkan

nnnnnnnnnnnnnnn

31/72

Example of Paths

- OpenCL -> *?

- OpenMP Offload -> HSA

- Kokkos -> CUDA Runtime -> CUDA Driver
+ HIP -> CUDA

- HIP, CUDA -> L0%

Z¥es, | Like OpenCL... Soon you will too!
2Maybe more surprising, we will talk about this more at the end if we have time and interested

............... 32/72

Hierarchy of Programming Model

- In short we have a “High Level” programming model. Used by Application.
- A “low-level” programming model that the high-level runtime is written with

- Each layer of abstraction is a trade-off between flexibility/performance and
convenience/productivity

All of this is relative to who you are talking with.

Argonne & 33/72

nnnnnnnnnnnnnnnn

“Sad” Truth

- No technical reason for having so much “intermediate” programming model
- hipcc was a perl script that did ‘s/cu/hip/g’ to avoid copyright infringement??

- Always hard to have a standard (*insert XKCD*)
- OpenCL is the standard, but low-adoption by vendors
- Please don't let vendors make the same mistake with new ML accelerators!

ZBNot a lawyer, but the “recent” supreme court Google vs Oracle may help

Argonne & 34/72

nnnnnnnnnnnnnnnn

Controversial Opinion

HIP and CUDA Runtime should not be used anymore.

- Too low-level for Applications that want to use nice C++ construct®
- Too high-level for people who have advance use-cases.

Kokkos, SYCL, OpenMP Offload already bypass HIP / CUDA runtime, so no
“overhead” by using those programming models

*Come on, who wants to cast the output of malloc...

................ 35/72

My Dream World

SYCL OpenCL Level Zero

OpenMP ofﬂo;d HSA

Ccu D Driver

Python

You are young and not yet totally jaded, so | share my dream with you!

............... 36/72

Programming Model API / Runtime

Main concepts (shared)

Side note: They all have good old C API®

1 // Get number of platorm
2 cl_uint platformCount;
3 clGetPlatformIDs(0, NULL, &platformCount);
4 cl_platform_id* platforms = malloc(sizeof(cl_platform_id) * platformCount);
5 // Populate the newly allocated array
6 clGetPlatformIDs(platformCount, platforms, NULL);
5| Don't check error code, because I'm not that of a great programmer...
Argonne &

nnnnnnnnnnnnnnn

37/72

What are a GPU Runtime’s Main Goals?

Find devices

Load/Compile your kernels

Create Queue / Steam

Allocate GPU Memory

Execute commands (data-transfer, kernels)

oy 1 S W NP 2

Synchronize

Not that hard! Tedious but Simple?®

8If only everything was like this...

Argonne & 38/72

nnnnnnnnnnnnnnn

Device. Easy

1 // OpenCL

2 cl_int clGetDeviceIDs(

3 cl_platform_id platform,

4 cl_device_type device_type,

5 cl_uint num_entries,

6 cl_device_id* devices,

7 cl_uint* num_devices);

8 // Level Zero

9 ze_result_t zeDeviceGet(ze_driver_handle_t hDriver,
10 uint32_t *pCount,

11 ze_device_handle_t *phDevices)
12 // Cuda Driver

13 CUresult cuDeviceGetCount (int* count)

14 CUresult cuDeviceGet (CUdevice* device, int ordinal)
15 // Cuda Runtime

16 cudaError_t cudaGetDeviceCount (int* count)

17 cudaError_t cudaGetDevice (int* device)

Argonne &

s eeed 39/72

Queue / Stream

- Device are “explicit” / “separate object” / considered as accelerator.
- Queue/Stream? are the concept/object used to dispatch work to the device.

“Trivia, difference between queue and stream? Spoiler, answers on the next slide

40/72

Differences between programming models

- In LO, queues are out-of-order by default?®

- In CUDA runtime and driver and HIP, streams are in-order?
- In OpenCL, they can be both

- In HSA, it's a ring buffer of packets

Out of order, you said?

- Out-of-order, mean kernel is free to re-order kernel execution... and
concurrent execution is a re-ordering!
- Can be a source of error (and poor performance if not used)

The latest L0 version we know have a ZE_COMMAND_QUEUE_FLAG_IN_ORDER flags.
For more complex use cases, use cuda-graph

Argonne & /72

nnnnnnnnnnnnnnnn

Queue / Stream: What to Submit?

Submit “command” to queue/stream. Commands can be

- Kernel Submission
- Memory Copy

- Synchronization (fence, barrier, event...)

............... 42/72

Loading/Creating GPU Kernel

1
2
3
4
5

- Your code was split between hosts and GPU code (as we showed)
- Your kernels need to loaded by the GPU runtime!

clCreateProgramwWithSource
clCreateProgramwithIL

clCreateProgramWithBinary
zeModuleCreate (ZE_MODULE_FORMAT_IL_SPIRV | ZE_MODULE_FORMAT_NATIVE)

cuModuleload

4372

Command Submission

On bad API (but convenient to use), commands can be submitted blocking manner
1 CUresult cuMemcpy (CUdeviceptr dst, CUdeviceptr src,
2 size_t ByteCount) // Where is my stream?!

3}

On good one they asynchronously by default

1 CUresult cuMemcpyAsync (CUdeviceptr dst, CUdeviceptr src,

2 size_t ByteCount, CUstream hStream)

3

4 ze_result_t zeCommandListAppendMemoryCopy/(

5 ze_command_list_handle_t hCommandList, void =dstptr, const void =*srcptr,
6 size_t size,

7 ze_event_handle_t hSignalEvent,

8 uint32_t numWaitEvents, ze_event_handle_t *phWaitEvents)

Argonne &

................ 4472

Hammering Down on the Async Concept

- Asynchronous execution just mean the CPU is free to continue to do other
thing (like submitting other kernel). The call is not blocking / synchronous.

- The fact that the GPU can potentially execute multiple command
concurrently is conceptually orthogonal to async. 3°

- Async mean you need to explicit synchronize, and handle dependency
between commands.

**0One Can use multiple MPI process, or Multiple Thread, ...

................ 45/72

Command Submission Tips

- Async is a common source of error
- Blocking is a common source of poor performance

46/72

Synchronization: Event / Barrier

If it's asynchronous... you need to synchronize (insert “D'oh!” homer meme)

- via Event (specify dependencies for fine grained synchronization)
- via Barrier (for coarse synchronization)

............... 4772

Fine Grained: Event

OpencCL, L0"

1 zeCommandListAppendMemoryCopy(..., Gel) // el will be signaled at completion

2 zeCommandListAppendMemoryCopy(..., &e2) // e2 will be signaled at completion

3 zeCommandListAppendMemoryCopy(..., 2, {el,e2}, &e3) // wait for el and e2, e3 will
< be signaled at completion

4 zeEventHostSynchronize(e3) // And then finaly synchronization the leaf

CUDA, Hip:

1 hipMemcpyAsync // Hip, Cuda have optional Async, default blocking
2 hipEventRecord
3 hipEventSynchronize

(for more fancy use cases, use cuda-graph)

S0 elegant

................ 48/72

Coarse Grain: Barrier

Wait on queue / stream (wait until all the work has been done)

1 zeCommandQueueSynchronize
2 cudaStreamSynchronize
3 cudaDeviceSynchronize // Whoa? Don't do that

Coarse grain. Use with caution because too much synchronization is bad.

nnnnnnnnnnnnnnn

49/72

Programming Model API / Runtime

Notes on Performance

Async is Key to good performance

- You want to keep the GPU busy

- When the GPU is computing something, the CPU should start preparing the
next batch of work

- Importance of asynchronously

Async: [OpenMP][AMDGPU] Switch host-device memory copy to asynchronous
version (real thing: https://reviews.1lvm.org/D115279)

nnnnnnnnnnnnnnnn

50/72

https://reviews.llvm.org/D115279

Overlapping is Key to good performance

- PClis damn slow!®?
- PCl 64 GB/s (unidirectional)
- HBM 1TB/s
- GPU 50 TFlops+3*

- Recompute is better than to load

- Overlap compute and data-transfers

- PCl is bidirectional so please do H2D and D2H at the same time!
- Avoid over-synchronization!

*And for integrated architectures, you have NUMA so same things... Data-movement will always be

more expensive than compute
#And a few billions times more if you believe nvdia marketing slide and fantasy math

Argonne & 51/72

nnnnnnnnnnnnnnnn

So how to achieve concurrency?

Importance of asynchronously!®*

- Extract Maximum parallelism opportunity from your apps (this is the really
hard part)

- Submit kernels to multiple stream / queue

- Submit kernels to an out-of-order queue.

- Synchronize: Not too much, not too little, just right.

*0Or use multiple thread / process but this is cheating

Argonne & 52/72

nnnnnnnnnnnnnnnn

- 3 Independent Kernel To submits (D2H, Kernel, H2D)

- You can imagine as computing current iteration, moving back data of
previous iteration, prefetching data for the next iteration

............... 53/72

Example: Vibe-coded Bad

zeC... zeC... zeC.. zeC... zeC... zeC.. 5

_ZT.. zeC... zeC.. . _ZT.. zeC.. zeC.. _ZT.. zeC... zeC...

Argonne & 54172

Example: Vibe-coded Bad-Problem, solution

Gap in the timeline... And too much synchronization!

AT ST ST

Solution:

- Use Async API, so with some luck your command will be long enough that
you can submit new one in the meantime.

- Stop Synchronize too much

................ 55/72

Example: Bad Blocking

zeEventHostSynchronize zeEventHostSynchronize

_ITSZ.. zeCommandLi‘.. _ZTSZ5bench... zeCommandLi.. zeCommandLis...|_ZTSZ5bench... zeCommandLi.. zeCommandLis...| _ZTSZ5bench..

Argonne &

IONAL LABORATORY

56/72

Example: Bad Blocking

All kernel serialized. Not that Bad gpu utilization but we can do better. (the code
is using In-order queue).

zeEventHostSynchronize zeEventHostSynchronize zeEventHostSynchronize ze|

_ITSZ.. zeCommandLi‘.. _ZTSZ5bench... zeCommandLi.. zeCommandLis...|_ZTSZ5bench... zeCommandLi.. zeCommandLis...| _ZTSZ5bench..

Solution: Extract more concurrency from your code! Out-of-order queue, or more
multiple in-order queues.

................ 57172

Example: Good

Amazing Concurrency of Kernel, H2D, and D2H (3x buy using a out-of-order queue)

zeEventHostS.. zeEv.. zeEventHost.. zeEventHost.. zeEv.. zeEventHostS.. zeEv.. zeEventHostS.. zeEv.. zeEv

_ZTSZ5bench... zeCommandListAppen... | zeCommandListAppen.. zeCommandListAppen... | zeCommandListAppen...| _ZTSZ5bench...
zeCommandListAppen... | _ZTSZ5bench... zeCommandListAp... _ZTSZ5bench... _ZTSZ5bench...
zeCommandListAp... zeCommandListAp... _ZTS8Z5bench... zeCommandListAp... zeCommandListAp...

(The picture is more zoomed-in, and maybe misleading; the runtime of the apps
is 3 times faster)

................ 58/72

Programming Model API / Runtime

Memory Allocation

Types of GPU Memory3®

- Device Memory: Accessible only on the particular device®

- Shared Memory: Accessible by both the host and the device3®
- This may impact performance, Different migration strategies
- Can be migrated via prefetching®

+ Host memory

- “Pinned” memory. CPU memory but has been registered by the runtime.
- May required for some optimizations / performance

- Malloc-ed Memory

*Read the documentation to know if it's accessible by OTHER devices. Context, wink, wink
*®Nvidia calls it “Managed”

¥Do not confuse with prefetch of memory inside a kernel

B0penCL has buffer, but lets not go that way...

Argonne & 59/72

nnnnnnnnnnnnnnnn

But future GPUs will be integrated!

- Doesn't matter,
- NUMA is bad, Locality is good.
- Please don't use shared everywhere...

Argonne & 60/72

Best Case Scenario

- All data fit on the GPU
- Move everything over
- Do a ton of computation

- Move back results

You should aim for this. If you cannot, we will discuss other strategies latter.°.
Memory transfers are expensive. Don't do it! Or at least try...

¥Please not that it's the same in CPU. Keep data in cache

nnnnnnnnnnnnnnnn

61/72

Programming Model API / Runtime

Kernel Submission

Kernel: CUDA Runtime / HIP

Magic / Syntactic sugar“®

1 mykernel<<<blocks, threads, shared_mem, stream>>>(args);

But that just call HSA / Cuda Driver behind the scenes.

“0A new syntax just to avoid people being portable...

............... 62/72

Behind the seen: OpenCL, CUDA

1 cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,

2 cl_kernel kernel,

3 cl_uint work_dim,

4 const size_t =global_work_offset,
5 const size_t *global_work_size,

6 const size_t *local_work_size,

7 cl_uint num_events_in_wait_list,
8 const cl_event xevent_wait_list,
9 cl_event =event)

10

CUresult cuLaunchKernel (CUfunction f, unsigned int gridDimX, unsigned int
— gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int

< blockDimY, unsigned int blockDimz, unsigned int sharedMemBytes, CUstream
< hStream, void** kernelParams, void** extra)

-
=

nnnnnnnnnnnnnnnn

Argonne & 63/72

Behind the seen: Level zero, HSA

// Similar in LO, Count versus Size, and by kernel
zeKernelSetGroupSize(hKernel, groupSizeX, 1, 1);

ze_group_count_t groupCount = { numGroupsX, 1, 1 };
zeCommandListAppendLaunchKernel(hCommandList, hKernel, &groupCount, NULL, O,
< NULL);

[e N

// HSA you get a packet from queue and then signaling, but still same idea

typedef struct hsa_kernel_dispatch_packet_s { uint16_t header ;

uintl6_t setup;

10 uintl6_t workgroup_size_x ; uintl6_t workgroup_size_y ; uint16_t workgroup_size_z;
< uintl6_t reservedo0;

11 uint32_t grid_size_x ;

12 uint32_t grid_size_y ;

13 uint32_t grid_size_z;

14 uint32_t private_segment_size; uint32_t group_segment_size;

15

© o N O

................ 64/72

Programming Model API / Runtime

Recap of those section

Summary of Runtime

- HIP, CUDA (runtime, driver), LO kind of all the same

- Always: “Discrete” device, load kernel, submit command async, synchronize.
If not, it's just abstracted away

- Push your vendor/institution/PI to use a standard (OpenCL).
- DON'T WRITE YOUR OWN PORTABILITY LAYER! (pretty please)*!

“Just use SYCL...

................ 65/72

- You see, all the programming model are same. And lot of Bridge between
them!

- Create Kernel, Queue, Execution, Synchronize

- Some are less verbose more high level (HIP/CUDA runtime) but you lose
some flexibility*?

- IMO HIP/CUDA runtime are in a weird intermediate level and should never be
used.

“2And need to deal with some state-machine...

nnnnnnnnnnnnnnnn

66/72

But does this matter? This sounds trivial

Real Time Experience (controversial)

- Experience: The runtime performance is far more important than the kernel
performance

- Improving Kernel performance will give you a few percent; doing too much
data-transfer will slowdown your code 100x.

................ 67/72

Conclusion

- GPUs do not have the same ISA as CPU, so two compilation phases

- GPU are fast because they are simple — they are just a big SIMD 10k+ threads
CPU

- Lots of good tutorials online for GPU Kernel Programming

............... 68/72

Summary

- OpencCL, LO, Cuda Driver -> All The same

- C API. “Double source” (CPU and Accelerator sources).

- Create queue, Kernel Creation, Submission Command, Synchronization Host
<-> GPU

- Thinks of GPU are SIMD Machine

- All GPU the same

- Abstraction are powerful.

Argonne & 69/72

nnnnnnnnnnnnnnnn

Example and Q&A

OpenMP: Now tell me what it does

1 #pragma omp target parallel for map(to: B[O:N]) map(from: A[O:N])
2 for (int i=0; i < N; i++)
3 A[i] = B[il;

70/72

ompt_target
ompt_target_data_transfer_to_device ompt... | ompt_target_data_transfer_from_device zeEventH...
zeCommandListAppendMemoryCopy zeC... zeCommandListAppendMemoryCopy

zeCommandListAppendMemor... I

Argonne & 7172

Any questions? If not | will show you some code...

7272

	Introduction
	Programming Model for the GPUs Kernel
	Execution Model
	Kernel Language: GPU programming 101

	Programming Model API / Runtime
	Runtime and Runtimes
	Main concepts (shared)
	Notes on Performance
	Memory Allocation
	Kernel Submission
	Recap of those section

	Summary
	Example and Q&A

