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Disclaimer

• “If it’s simple, it’s always false. If it’s not, it’s unusable.” Paul Valéry
• “Trust, but verify.” Russian proverb
• “Stay awhile and listen...” Deckard Cain 1

1And sorry in advance for the 2h long lecture
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Introduction



Non-Goals of this lecture

• I will not teach you CUDA2, HIP3, Level Zero4

• You are all smart, if you need to learn it you can find super nice tutorial
online

2Compute Unified Device Architecture,
3Heterogeneous-Compute Interface
4But maybe I will teach you some OpenCL – Open Compute Language...
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Goal of this Lecture: How This code is Implemented

OpenMP5,6

1 #pragma omp target parallel for map(to: B[0:N]) map(from: A[0:N])
2 for (int i=0; i < N; i++)
3 A[i] = B[i];

I’m going to ask someone at the end, so listen carefully!

5Open Multi-Processing... Wait what?!
6I use OpenMP – as example because after me, you have the chance, the privilege!, to get a
OpenMP tutorial. But same goes for Kokkos, SYCL, Python
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Goal of this Lecture

• Give you some foundation to understand the difference and similitude
between multiple low-level programming models (“Any fool can know. The
point is to understand.” Ernest Kinoy)

• Make clear the layering approach of current toolchains
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Some big questions

• Why the “need” to use CUDA for NVIDIA hardware, HIP for AMD, and L0 for
Intel?7

(a) Level Zero (b) CUDA (c) HIP

7But then how can OpenCL be portable?
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GPU-programming consist on three things:

• Programming Model for the GPUs Kernel (OpenCL C, CUDA C, ...).
• Execution Model (SPMD / “MPI-like”)
• Programming Model for the “CPU Runtime” (CUDA, L0, OpenCL)8

8This is the only thing who matter, this rest is trivial
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Programming Model for the GPUs
Kernel



GPU is a different Hardware

• GPU Doesn’t execute the same machine code as your CPU
• You need and additional compiler9 to lower your high-level language to GPU
machine code

9or compiler backend

8/72



Old School: Double Source Approach

- Host Code:

• Written in C/C++/Python for CPU tasks like memory management and kernel
launches.

- Device Code:

• Written in GPU-specific languages like CUDA C/C++, HIP C, or OpenCL C10

• Contains the GPU kernels.

10PTX, SPIR-V, ...
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GPU program

1 // CUDA/HIP
2 extern __shared__ float array[];
3 __global__ void cuda_or_hip_hello() {
4 printf("Hello World from GPU!\n");
5 }
6 // OpenCL
7 __kernel void hello_world() {
8 printf("Hello World from GPU!\n");
9 local int a;

10 }

So much difference!

• Please note the __global__, or __kernel, those are not standard C keyword.
• What can you put in device code has limitation depending on the Hardware /
Compiler

• No dynamic allocation, no throw, no recursion, no virtual Functions, ...
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Compiling: Simple first steps

CUDA C (*.cu) PTX SASS Nvidia HW

HIP Kernel
Language Syntax HSA IL AMDGCN AMD HW

OpenCL C SPIR-V genASM Intel HW

SPIR-V is an Open-Source Standard11

11The other are not, just saying
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Compiling: Simple first steps

CUDA C (*.cu) PTX SASS Nvidia HW

HIP Kernel
Language Syntax HSA IL AMDGCN AMD HW

OpenCL C SPIR‑V genASM Intel HW

SPIR‑V is an Open‑Source Standard12

12The others are not, just saying
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Double Source Compilation Process

• Separate Compilation:
• Host code -> x86/ARM machine code.
• Device code -> Intermediate code (PTX, SPIR-V) -> GPU-specific machine code.

• Potentially Linking: Combines host and device code into the final executable
(see next slide single source).
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Hiding Compilation: Emergence of Single Source

1 // OMP
2 printf("Hello World CPU!\n"); // CPU code
3 #pragma omp target // GPU code
4 printf("Hello World GPU!\n");
5
6 // SYCL
7 printf("Hello World CPU!\n"); // CPU code
8 Q.single_task([](){printf(Hello World!\n");}}.wait(); // GPU code
9

Compiler is smart enough to understand which code will be executed on the CPU,
and which one on the GPU.

• You can use a subset of C/C++/Python as a GPU kernel13

13Remember previous limitation: no recursion*, no exceptions, no syscall, no io...
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Compiling: A Better(?) method – LLVM example

C

C++

Fortran

LLVM IR AMDGCN14

PTX

SPIR-V genASM

sass

(you have bridge between SPIR-V and PTX)

14or nobody generate AMDGCN and everybody HSA IL, not clear...
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Recap

• Two compilation path, always
• Can do it at runtime (JIT) or at compile time (AOT)
• GPU is fast, because it’s stupid and have restriction
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Execution Model



Execution Model

Kernel Language: GPU programming 101



Memory Hierarchy in GPUs

Overview of GPU Memory Architecture
• Compute Device:

• Comprises multiple Compute Units (CU), each containing several Processing
Elements (PE).

• Private Memory:
• Dedicated to each PE, storing element-specific data.

• Local Memory:
• Shared among PEs within the same CU, facilitating intra-unit communication.

• Global/Constant Memory:
• Global Memory: Large, accessible by all PEs, used for cross-CU data sharing.
• Constant Memory: Read-only, stores constants and configuration data.

• Memory Caches:
• Intermediate cache layers improve access times for frequently used data.
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GPU Memory Architecture
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Execution Hierarchy: CUDA
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Execution Hierarchy: HIP
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Execution Hierarchy: OpenCL
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Execution Hierarchy in GPU Programming

• NDRange/Grid:
• Defines the total computation space as a grid of threads.
• Specifies the overall dimensions and workload size.

• Work-Group/Block:
• Divides the NDRange into manageable chunks.
• Each work-group operates independently, using shared local memory.

• Sub-Group/Warp/Wavefront:
• Smaller units within a work-group that execute in lockstep.
• Optimize data sharing and access patterns within the group.

• Work-Items/Threads:
• The fundamental execution units in a GPU.
• Each thread has private resources and can access shared local memory.
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Key Points to Understanding the Execution Hierarchy

• Efficient Parallelism:
• Optimize work-group sizes for load balancing.
• Prevent resource underutilization with proper grid/block sizing.

• Data Locality:
• Maximize shared memory usage to reduce global memory access.
• Align data structures with hardware capabilities.

• Synchronization:
• Use synchronization within work-groups to manage dependencies.
• Minimize unnecessary synchronization to avoid bottlenecks.

• Memory Access Patterns:
• Coalesced memory access enhances efficiency.
• Optimize data layout for better performance.

• Scalability:
• Design for scalability across different GPU architectures.
• Ensure kernels can adapt to varying numbers of compute units. 23/72



Launching Kernel

15

15From “Design of OpenCL Framework for Embedded Multi-core Processors”
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Index Space

From “An Introduction to the OpenCL Programming Model” by Jonathan A.
Thompson
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Synchronization Possibilities

From An Introduction to the OpenCL Programming Model by Jonathan A. Thompson

Implementing atomic synchronization mechanisms is an advanced topic
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GPU in a Nutshell

• Just think of the GPU as a CPU with lots of threads executing SIMD instruction
• GPU cannot allocate memory
• GPU programs are pretty boring:

• Use Shared Local Memory16 when possible to not read from the Main Memory
• Be careful of register pressure
• “Nothing Special” memory access17
• GPU are fast because they force you to NOT synchronize between threads that
live in difference work-group. Freedom versus Performance.

• No branch prediction
16Shared Memory in CUDA, or just rely on cache oblivious algorithm
17“coalescing memory” == Don’t do random access / gather. “vectorization” strategies: contiguous
versus strided access.
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Programming Model API / Runtime



Programming Model API / Runtime

Runtime and Runtimes



Just a layer of Programming Model / Runtime!

“All problems in computer science can be solved by another level of indirection.”
David Wheeler
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Proprietary / Native Tool‑chains (put Python Anywhere you like)

CUDA Runtime CUDA Driver Linux Driver (Nouveau) Nvidia HW

HIP HSA Linux Driver (AMDGPU) AMD HW

Level Zero Linux Driver (i915) Intel HW
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Comments on this diagram

• The Linux Drivers are the “lower-level” we will discuss. Huge effort to
implement.18

• The level on top (CUDA Driver, HSA, Level Zero) abstracts away a little bit
more of the hardware, but still provides a lot of control 19

• The last level (CUDA Runtime, HIP) are “fully” hardware independent

18See nice blog post about the Linux M4 drivers
19Sweet spot to write higher-lever runtime
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Taking About Higher-level Programming Model20

Kokkos OpenMP offload

OpenCL

Sycl

Level Zero

hip

hsa

CUDA Runtime

CUDA Driver
20Where is my Vulkan! Sorry gamer people... And thanks Valve for Direct3D -> Vulkan
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Example of Paths

• OpenCL -> *21

• OpenMP Offload -> HSA
• Kokkos -> CUDA Runtime -> CUDA Driver
• HIP -> CUDA
• HIP, CUDA -> L022

21Yes, I Like OpenCL... Soon you will too!
22Maybe more surprising, we will talk about this more at the end if we have time and interested
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Hierarchy of Programming Model

• In short we have a “High Level” programming model. Used by Application.
• A “low-level” programming model that the high-level runtime is written with
• Each layer of abstraction is a trade-off between flexibility/performance and
convenience/productivity

All of this is relative to who you are talking with.
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“Sad” Truth

• No technical reason for having so much “intermediate” programming model
• hipcc was a perl script that did ‘s/cu/hip/g‘ to avoid copyright infringement23

• Always hard to have a standard (*insert XKCD*)
• OpenCL is the standard, but low-adoption by vendors
• Please don’t let vendors make the same mistake with new ML accelerators!

23Not a lawyer, but the “recent” supreme court Google vs Oracle may help
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Controversial Opinion

HIP and CUDA Runtime should not be used anymore.

• Too low-level for Applications that want to use nice C++ construct24

• Too high-level for people who have advance use-cases.

Kokkos, SYCL, OpenMP Offload already bypass HIP / CUDA runtime, so no
“overhead” by using those programming models

24Come on, who wants to cast the output of malloc...
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My Dream World

Kokkos SYCL

OpenMP offload

Python

OpenCL Level Zero

HSA

CUDA Driver

You are young and not yet totally jaded, so I share my dream with you!
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Programming Model API / Runtime

Main concepts (shared)



Side note: They all have good old C API25

1 // Get number of platorm
2 cl_uint platformCount;
3 clGetPlatformIDs(0, NULL, &platformCount);
4 cl_platform_id* platforms = malloc(sizeof(cl_platform_id) * platformCount);
5 // Populate the newly allocated array
6 clGetPlatformIDs(platformCount, platforms, NULL);

25I Don’t check error code, because I’m not that of a great programmer...
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What are a GPU Runtime’s Main Goals?

1. Find devices
2. Load/Compile your kernels
3. Create Queue / Steam
4. Allocate GPU Memory
5. Execute commands (data-transfer, kernels)
6. Synchronize

Not that hard! Tedious but Simple26

26If only everything was like this...
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Device. Easy

1 // OpenCL
2 cl_int clGetDeviceIDs(
3 cl_platform_id platform,
4 cl_device_type device_type,
5 cl_uint num_entries,
6 cl_device_id* devices,
7 cl_uint* num_devices);
8 // Level Zero
9 ze_result_t zeDeviceGet(ze_driver_handle_t hDriver,

10 uint32_t *pCount,
11 ze_device_handle_t *phDevices)
12 // Cuda Driver
13 CUresult cuDeviceGetCount ( int* count )
14 CUresult cuDeviceGet ( CUdevice* device, int ordinal)
15 // Cuda Runtime
16 cudaError_t cudaGetDeviceCount ( int* count )
17 cudaError_t cudaGetDevice ( int* device )
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Queue / Stream

• Device are “explicit” / “separate object” / considered as accelerator.
• Queue/Stream27 are the concept/object used to dispatch work to the device.

27Trivia, difference between queue and stream? Spoiler, answers on the next slide
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Differences between programming models

• In L0, queues are out-of-order by default28

• In CUDA runtime and driver and HIP, streams are in-order29

• In OpenCL, they can be both
• In HSA, it’s a ring buffer of packets

Out of order, you said?

• Out-of-order, mean kernel is free to re-order kernel execution... and
concurrent execution is a re-ordering!

• Can be a source of error (and poor performance if not used)
28The latest L0 version we know have a ZE_COMMAND_QUEUE_FLAG_IN_ORDER flags.
29For more complex use cases, use cuda-graph
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Queue / Stream: What to Submit?

Submit “command” to queue/stream. Commands can be

• Kernel Submission
• Memory Copy
• Synchronization (fence, barrier, event...)
• ...
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Loading/Creating GPU Kernel

• Your code was split between hosts and GPU code (as we showed)
• Your kernels need to loaded by the GPU runtime!

1 clCreateProgramWithSource
2 clCreateProgramWithIL
3 clCreateProgramWithBinary
4 zeModuleCreate ( ZE_MODULE_FORMAT_IL_SPIRV | ZE_MODULE_FORMAT_NATIVE)
5 cuModuleLoad
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Command Submission

On bad API (but convenient to use), commands can be submitted blocking manner
1 CUresult cuMemcpy ( CUdeviceptr dst, CUdeviceptr src,
2 size_t ByteCount ) // Where is my stream?!
3 }

On good one they asynchronously by default
1 CUresult cuMemcpyAsync (CUdeviceptr dst, CUdeviceptr src,
2 size_t ByteCount, CUstream hStream)
3
4 ze_result_t zeCommandListAppendMemoryCopy(
5 ze_command_list_handle_t hCommandList, void *dstptr, const void *srcptr,
6 size_t size,
7 ze_event_handle_t hSignalEvent,
8 uint32_t numWaitEvents, ze_event_handle_t *phWaitEvents)
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Hammering Down on the Async Concept

• Asynchronous execution just mean the CPU is free to continue to do other
thing (like submitting other kernel). The call is not blocking / synchronous.

• The fact that the GPU can potentially execute multiple command
concurrently is conceptually orthogonal to async. 30

• Async mean you need to explicit synchronize, and handle dependency
between commands.

30One Can use multiple MPI process, or Multiple Thread, ...
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Command Submission Tips

• Async is a common source of error
• Blocking is a common source of poor performance
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Synchronization: Event / Barrier

If it’s asynchronous... you need to synchronize (insert “D’oh!” homer meme)

• via Event (specify dependencies for fine grained synchronization)
• via Barrier (for coarse synchronization)
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Fine Grained: Event

OpenCL, L031:
1 zeCommandListAppendMemoryCopy(..., &e1) // e1 will be signaled at completion
2 zeCommandListAppendMemoryCopy(..., &e2) // e2 will be signaled at completion
3 zeCommandListAppendMemoryCopy(..., 2, {e1,e2}, &e3) // wait for e1 and e2, e3 will

be signaled at completion↪→
4 zeEventHostSynchronize(e3) // And then finaly synchronization the leaf

CUDA, Hip:
1 hipMemcpyAsync // Hip, Cuda have optional Async, default blocking
2 hipEventRecord
3 hipEventSynchronize

(for more fancy use cases, use cuda-graph)
31So elegant
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Coarse Grain: Barrier

Wait on queue / stream (wait until all the work has been done)
1 zeCommandQueueSynchronize
2 cudaStreamSynchronize
3 cudaDeviceSynchronize // Whoa? Don't do that

Coarse grain. Use with caution because too much synchronization is bad.
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Programming Model API / Runtime

Notes on Performance



Async is Key to good performance

• You want to keep the GPU busy
• When the GPU is computing something, the CPU should start preparing the
next batch of work

• Importance of asynchronously

Async: [OpenMP][AMDGPU] Switch host-device memory copy to asynchronous
version (real thing: https://reviews.llvm.org/D115279)
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Overlapping is Key to good performance

• PCI is damn slow!32

• PCI 64 GB/s (unidirectional)
• HBM 1 TB/s
• GPU 50 TFlops+33

• Recompute is better than to load
• Overlap compute and data-transfers
• PCI is bidirectional so please do H2D and D2H at the same time!
• Avoid over-synchronization!

32And for integrated architectures, you have NUMA so same things... Data-movement will always be
more expensive than compute
33And a few billions times more if you believe nvdia marketing slide and fantasy math
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So how to achieve concurrency?

Importance of asynchronously!34

• Extract Maximum parallelism opportunity from your apps (this is the really
hard part)

• Submit kernels to multiple stream / queue
• Submit kernels to an out-of-order queue.
• Synchronize: Not too much, not too little, just right.

34Or use multiple thread / process but this is cheating
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Example

• 3 Independent Kernel To submits (D2H, Kernel, H2D)
• You can imagine as computing current iteration, moving back data of
previous iteration, prefetching data for the next iteration
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Example: Vibe-coded Bad
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Example: Vibe-coded Bad-Problem, solution

Gap in the timeline... And too much synchronization!

Solution:

• Use Async API, so with some luck your command will be long enough that
you can submit new one in the meantime.

• Stop Synchronize too much
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Example: Bad Blocking
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Example: Bad Blocking

All kernel serialized. Not that Bad gpu utilization but we can do better. (the code
is using In-order queue).

Solution: Extract more concurrency from your code! Out-of-order queue, or more
multiple in-order queues.
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Example: Good

Amazing Concurrency of Kernel, H2D, and D2H (3x buy using a out-of-order queue)

(The picture is more zoomed-in, and maybe misleading; the runtime of the apps
is 3 times faster)
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Programming Model API / Runtime

Memory Allocation



Types of GPU Memory38

• Device Memory: Accessible only on the particular device35

• Shared Memory: Accessible by both the host and the device36

• This may impact performance, Different migration strategies
• Can be migrated via prefetching37

• Host memory
• “Pinned” memory. CPU memory but has been registered by the runtime.
• May required for some optimizations / performance

• Malloc-ed Memory
35Read the documentation to know if it’s accessible by OTHER devices. Context, wink, wink
36Nvidia calls it “Managed”
37Do not confuse with prefetch of memory inside a kernel
38OpenCL has buffer, but lets not go that way...
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But future GPUs will be integrated!

• Doesn’t matter,
• NUMA is bad, Locality is good.
• Please don’t use shared everywhere...
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Best Case Scenario

• All data fit on the GPU
• Move everything over
• Do a ton of computation
• Move back results

You should aim for this. If you cannot, we will discuss other strategies latter.39.
Memory transfers are expensive. Don’t do it! Or at least try...

39Please not that it’s the same in CPU. Keep data in cache
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Programming Model API / Runtime

Kernel Submission



Kernel: CUDA Runtime / HIP

Magic / Syntactic sugar40

1 mykernel<<<blocks, threads, shared_mem, stream>>>(args);

But that just call HSA / Cuda Driver behind the scenes.

40A new syntax just to avoid people being portable...
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Behind the seen: OpenCL, CUDA

1 cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
2 cl_kernel kernel,
3 cl_uint work_dim,
4 const size_t *global_work_offset,
5 const size_t *global_work_size,
6 const size_t *local_work_size,
7 cl_uint num_events_in_wait_list,
8 const cl_event *event_wait_list,
9 cl_event *event)

10
11 CUresult cuLaunchKernel ( CUfunction f, unsigned int gridDimX, unsigned int

gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int
blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream
hStream, void** kernelParams, void** extra )

↪→
↪→
↪→
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Behind the seen: Level zero, HSA

1
2 // Similar in L0, Count versus Size, and by kernel
3 zeKernelSetGroupSize(hKernel, groupSizeX, 1, 1);
4 ze_group_count_t groupCount = { numGroupsX, 1, 1 };
5 zeCommandListAppendLaunchKernel(hCommandList, hKernel, &groupCount, NULL, 0,

NULL);↪→
6
7 // HSA you get a packet from queue and then signaling, but still same idea
8 typedef struct hsa_kernel_dispatch_packet_s { uint16_t header ;
9 uint16_t setup;

10 uint16_t workgroup_size_x ; uint16_t workgroup_size_y ; uint16_t workgroup_size_z;
uint16_t reserved0;↪→

11 uint32_t grid_size_x ;
12 uint32_t grid_size_y ;
13 uint32_t grid_size_z;
14 uint32_t private_segment_size; uint32_t group_segment_size;
15
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Programming Model API / Runtime

Recap of those section



Summary of Runtime

• HIP, CUDA (runtime, driver), L0 kind of all the same
• Always: “Discrete” device, load kernel, submit command async, synchronize.
If not, it’s just abstracted away

• Push your vendor/institution/PI to use a standard (OpenCL).
• DON’T WRITE YOUR OWN PORTABILITY LAYER! (pretty please)41

41Just use SYCL...
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Summary

• You see, all the programming model are same. And lot of Bridge between
them!

• Create Kernel, Queue, Execution, Synchronize
• Some are less verbose more high level (HIP/CUDA runtime) but you lose
some flexibility42

• IMO HIP/CUDA runtime are in a weird intermediate level and should never be
used.

42And need to deal with some state-machine...
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But does this matter? This sounds trivial

Real Time Experience (controversial)

• Experience: The runtime performance is far more important than the kernel
performance

• Improving Kernel performance will give you a few percent; doing too much
data-transfer will slowdown your code 100x.
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Conclusion

• GPUs do not have the same ISA as CPU, so two compilation phases
• GPU are fast because they are simple→ they are just a big SIMD 10k+ threads
CPU

• Lots of good tutorials online for GPU Kernel Programming
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Summary



Summary

• OpenCL, L0, Cuda Driver -> All The same
• C API. “Double source” (CPU and Accelerator sources).
• Create queue, Kernel Creation, Submission Command, Synchronization Host
<-> GPU

• Thinks of GPU are SIMD Machine
• All GPU the same
• Abstraction are powerful.
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Example and Q&A



OpenMP: Now tell me what it does

1 #pragma omp target parallel for map(to: B[0:N]) map(from: A[0:N])
2 for (int i=0; i < N; i++)
3 A[i] = B[i];
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Proof
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Any questions? If not I will show you some code...
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