
MPI for Scalable Computing

Links to latest slides and code examples are posted in Slack
Tutorial at ATPESC, July 2025

Yanfei Guo, Ken Raffenetti, Hui Zhou, Mike Wilkins
Argonne National Laboratory

About the Speakers

§ Ken Raffenetti: Principal Research Software Engineer, Argonne National Laboratory

§ Yanfei Guo: Computer Scientist, Argonne National Laboratory

§ Hui Zhou: Principal Research Software Engineer, Argonne National Laboratory

§ Mike Wilkins: Maria Goeppert Mayer Fellow, Argonne National Laboratory

§ All of us are deeply involved in MPI standardization (in the MPI Forum) and in MPI
implementation

2

The MPI Part of ATPESC

§ We assume everyone already has some MPI experience

§ We will focus on understanding MPI concepts and use hands-on code examples
to illustrate them

§ Emphasis will be on issues affecting scalability and performance

§ There will be code walkthroughs and hands-on exercises

3

Outline

§ Morning
– Introduction

– MPI Fundamentals Refresher

– Avoiding Unintended Synchronization

– Collective Communication

– Derived Datatypes

– One-sided Communication (RMA)

§ Afternoon
– Hybrid programming

– MPI + threads

– MPI + GPUs

– New features in MPI

– MPI Sessions

– Large Count

– ABI

4

What is MPI?

§ MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the application can and cannot
expect

– Each system can implement it differently as long as the semantics match

§ MPI is not…
– a language or compiler specification
– a specific implementation or product

5

MPI-1

§ MPI-1 supports the classical message-passing programming model: basic point-to-
point communication, collectives, datatypes

§ MPI-1 was defined (1994) by a broadly based group of parallel computer vendors,
computer scientists, and applications developers.
– 2-year intensive process

§ Implementations appeared quickly and now MPI is taken for granted as vendor-
supported software on any parallel machine.

§ Free, portable implementations exist for clusters and other environments (MPICH,
Open MPI)

6 6

Following MPI Standards

§ MPI-2 was released in 1997
– Several new features including MPI + threads, MPI-I/O, remote memory access functionality, C++ bindings,

and many others

§ MPI-2.1 (2008) and MPI-2.2 (2009) were released with some corrections to the standard and small
features

§ MPI-3 (2012) several new features

§ MPI-3.1 (2015) minor corrections and features

§ MPI-4 (June 2021) several new features

§ MPI-4.1 (November 2023) minor corrections and features,

§ MPI-5.0 (June 2025) standardization of application binary interface (ABI)

§ The Standard itself:
– at http://www.mpi-forum.org

– All MPI official releases, in both PDF and HTML

7

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

Overview of MPI-3
§ Major new features

– Nonblocking collectives
– Neighborhood collectives
– Improved one-sided communication interface
– Tools interface
– Fortran 2008 bindings

§ Other new features
– Matching Probe and Recv for thread-safe probe and receive
– Noncollective communicator creation function
– “const” correct C bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++ bindings removed
§ Previously deprecated functions removed
§ MPI 3.1 added nonblocking collective I/O functions

8

Overview of MPI-4

§ Major new features and changes
– Persistent Collectives

– Partitioned Communication

– Sessions

– Large Count

– Error Handling Improvement

– Topology-aware Communicator Creation

§ MPI 4.1 added corrections and some deprecations
– MPI_TYPE_SIZE_X, etc. deprecated in favor or “large count” versions (MPI_TYPE_SIZE_C)

– mpif.h Fortran binding deprecated

9

Overview of MPI-5

§ Major new features
– Application Binary Interface (ABI) for C interface. Build applications once and run with any

compliant implementation. Improved support for packaging and third-party libraries/language
bindings.

10

Important considerations while using MPI

§ All parallelism is explicit: the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using MPI constructs

11

Web Pointers

§ MPI Standard : http://www.mpi-forum.org/docs/

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations:
– MPICH : http://www.mpich.org/

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

– Open MPI : http://www.open-mpi.org/

– IBM Spectrum MPI, Cray MPICH, ParaStation MPI, …

§ General MPI Education
– https://rookiehpc.org/mpi/

– https://mpitutorial.com/tutorials/

12

http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
https://rookiehpc.org/mpi/
https://rookiehpc.org/mpi/
https://mpitutorial.com/tutorials/
https://mpitutorial.com/tutorials/
https://mpitutorial.com/tutorials/

Tutorial Books on MPI

Basic MPI Advanced MPI, including MPI-3

13

Approach in this Tutorial

§ Example driven
– Small examples used to illustrate specific features

– Running examples used throughout the tutorial

14 14

MPI Fundamentals Refresher
Communicators, Messages, Blocking vs Nonblocking

15

MPI Communicators

§ MPI processes are members of one or more groups
– Each group can have multiple colors (sometimes called context)

– Group + color == communicator (it is like a name for the group)

– When an MPI application starts, the group of all processes is initially given a predefined name
called MPI_COMM_WORLD

§ The same group can have many names, but simple programs do not have to worry about
multiple names

§ A process is identified by a unique number within each communicator, called rank
– For two different communicators, the same process can have two different ranks: the meaning

of a “rank” is only defined when you specify the communicator

16

Communicators

17

0 1 2 3

4 5 6 7

0 1

2 3

4 5

6 7

When you start an MPI program, there
is one predefined communicator

MPI_COMM_WORLD

Can make copies of this communicator
(same group of processes, but different

“aliases”)

Communicators do not need to
contain all processes in the system

Every process in a communicator
has an ID called a “rank”

The same process might have different
ranks in different communicators

Communicators can be created “by hand” or using tools provided by MPI (not discussed in this tutorial)
Simple programs typically only use the predefined communicator MPI_COMM_WORLD

% mpiexec -n 16 ./hello

Communicators

18

Think of independent communication layers
over a group of processes

Messages in one layer will not affect
messages in another

0 1 2 3

4 5 6 7

0 1

2 3

4 5

6 7

Message-based Communication

§ Point-to-point messaging in MPI
– One process sends a copy of its data to another process which receives it
– Message boundaries are well-defined, unlike pipes or sockets

§ Communication requires the following information:
– Sender has to know:

• Whom to send the data to (receiver process’s rank in communicator)
• What kind of data to send (100 integers or 200 characters, etc)
• A user-defined “tag” for the message (additional context for message)

– Receiver “might” have to know:

• Who is sending the data (OK if the receiver does not know; in this case sender rank will be
MPI_ANY_SOURCE*, meaning anyone can send)

• What kind of data is being received (partial information is OK: I might receive up to 1000 integers)
• What the user-defined “tag” of the message is (OK if the receiver does not know; in this case tag will be
MPI_ANY_TAG*)

19

*use of wildcards may incur a performance penalty

More Details on Describing Data for Communication

§ Equivalents exist for all C, C++ and Fortran native datatypes
– C int à MPI_INT

– C float à MPI_FLOAT

– C double à MPI_DOUBLE

– C uint32_t à MPI_UINT32_T

– C++ std::complex<float> à MPI_CXX_FLOAT_COMPLEX

– Fortran integer à MPI_INTEGER

§ More complex datatypes are also possible (covered later in tutorial)

§ The “count” in MPI_SEND and MPI_RECV refers to how many datatype elements
should be communicated

20

Message Ordering

§ MPI specifies that messages are nonovertaking
– Messages sent to the same destination with the same matching information (comm, rank, tag)

will be matched in the order they were issued by the sender

§ Messages match in order but are not required to complete in order
– Completion order could be affected by:

• message size

• network routing

• user-level wait behavior

21

Blocking vs. Nonblocking Communication

§ MPI_SEND/MPI_RECV are blocking communication calls
– Return of the routine implies completion

– When these calls return the memory locations used in the message transfer can be safely
accessed

– For “send” completion implies buffer can be reused/modified

• Modifications will not affect data intended for the receiver

– For “receive” completion implies buffer can be read

§ MPI_ISEND/MPI_IRECV are nonblocking variants
– Routine returns immediately – completion is separately tested/waited

– Routines are local. They do not depend on the action of another process.

22

Blocking vs. Nonblocking Completion Semantics

§ A send has completed when the user supplied buffer can be reused
§ Just because the send completes does not mean that the receive has completed

– Message may be buffered by the system
– Message may still be in transit

§ A receive has completed when the user supplied buffer can be read

*buf = 3;
MPI_Send(buf, 1, MPI_INT …)
buf = 4; / OK, receiver will always
 receive 3 */

*buf = 3;
MPI_Isend(buf, 1, MPI_INT …)
buf = 4; / NOT OK, receiver may get
 3, 4, or garbage */

MPI_Wait(…);

23

*buf = -1;
MPI_Recv(buf, 1, MPI_INT …)
assert(*buf >= 0); /* OK */

*buf = -1;
MPI_Irecv(buf, 1, MPI_INT …)
assert(*buf >= 0); /* NOT OK */
MPI_Wait(…);

assert(*buf >= 0); /* OK */

Nonblocking Communication Overlap

§ Nonblocking communication allows for overlap
– Overlap with other communication
– Overlap with computation

§ Overlap with communication
– Useful for deadlock avoidance. No need to carefully order operations.
– MPI can better utilize communication resources for better performance

§ Overlap with computation
– If application threads are busy doing computation, communication might not progress in the background. It is not required in the MPI

specification. Referred to as the “weak progress model” of MPI.
– Communication progress characteristics are dependent on many factors, but not limited to:

• System architecture
• MPI library configuration and implementation
• Runtime parameters
• Process locality
• Communication arguments, e.g. datatypes
• …

– If possible, periodically call MPI_Test[any|some|all] during computation phase to ensure progress

Costs of Unintended Synchronization

25

Unintended Synchronization

§ MPI send and receive messaging combines data
movement and synchronization

– In many typical data exchange patterns,
unnecessary synchronization can lead to poor
performance

– An example of unnecessary synchronization is
sending and receiving messages one-at-a-time
using blocking communication primitives.

– Commonly used rendezvous protocol dictates that
sends only complete with involvement (read:
synchronization) of the receiver

Neighbor Exchange Example Code

§ https://github.com/pmodels/mpi-tutorial-
examples/tree/main/unintended-sync
– 4 versions of 2-dimensional nearest neighbor exchange

• NOTE: examples are hardcoded for n=12

– Build/run them and look at performance characteristics of each

RTS

CTS

DATA

sender recevier

rendezvous

https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync
https://github.com/pmodels/mpi-tutorial-examples/tree/main/unintended-sync

2d exchange (blocking)

§ Unsafe use of blocking send. Risk of deadlock!

2d exchange (blocking + ordering)

§ Fixes deadlock, but communication is sequential. Low resource utilization.

2d exchange (nonblocking receives)

§ Better utilization, but congestion at receivers can delay sends, which propagates
through the exchange.

Timeline of
nonblocking
receive exchange

§ Some processes finish
much earlier than others.
Long delays the result of
congestion propagation.

2d exchange (fully nonblocking)

§ Best utilization. No arbitrary or unintended synchronization.

Timeline of fully
nonblocking
exchange

§ Interior processes take
longer because they have
the most neighbors.
More balanced
completion. Overall
communication time
reduced 30%.

Takeaway: Defer synchronization!

§ Send-receive accomplishes two things:
– Data transfer

– Synchronization

§ In many cases, there is more synchronization than required

§ Consider the use of nonblocking operations and MPI_Waitall to defer
synchronization

§ Gives MPI the best chance to utilize communication resources effectively and
results in best performance
– High amounts of memory and network bandwidth in modern hardware. Do not waste it!

Running Example: Stencil

Running Example: Regular Mesh Algorithms

§ Many scientific applications involve the solution of partial differential equations
(PDEs)

§ Many algorithms for approximating the solution of PDEs rely on forming a set of
difference equations
– Finite difference, finite elements, finite volume

§ The exact form of the differential equations depends on the particular method
– From the point of view of parallel programming for these algorithms, the operations are the

same

§ Five-point stencil is a popular approximation solution

36

The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at each point
involves the four neighbors

§ The red “plus” is called the method’s stencil

§ Good numerical algorithms form a matrix
equation Au=f; solving this requires computing
Bv, where B is a matrix derived from A. These
evaluations involve computations with the
neighbors on the mesh.

§ Example uses “fixed boundary conditions”.
Heat is not lost through the boundary, but it is
no longer measured by the system.

37

MPI Examples

§ https://github.com/pmodels/mpi-tutorial-examples/

§ Clone repo in your home or project directory

§ Allocate or submit job using reservation on Aurora
– qsub -q ATPESC -l select=1,walltime=1:00:00,filesystems=home -A ATPESC2025

38

https://github.com/pmodels/mpi-tutorial-examples/
https://github.com/pmodels/mpi-tutorial-examples/
https://github.com/pmodels/mpi-tutorial-examples/
https://github.com/pmodels/mpi-tutorial-examples/
https://github.com/pmodels/mpi-tutorial-examples/
https://github.com/pmodels/mpi-tutorial-examples/

Example: Stencil

§ hands-on-examples/stencil_serial.c

§ 2D stencil code in single process

./stencil_serial <domain size> <iterations>

mpicc –o stencil_serial stencil_serial.c
qsub -q ATPESC –l
select=1,walltime=1:00:00,filesystems=home –A
ATPESC2025 -I # Aurora

39

./stencil_serial 1000 10
last heat: 30.000000

iter=10

iter=100

iter=10000

The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at each point
involves the four neighbors

§ The red “plus” is called the method’s stencil

§ Good numerical algorithms form a matrix
equation Au=f; solving this requires computing
Bv, where B is a matrix derived from A. These
evaluations involve computations with the
neighbors on the mesh.

§ Decompose mesh into equal sized (work) pieces

40

Domain Decompositioin

41

Parameters for domain decomposition:
N = Size of the edge of the global problem domain (assuming square)
PX, PY = Number of processes in X and Y dimension
N % PX == 0, N % PY == 0

Where am I? (Global offset)
Who (which ranks) are my neigbhors?
Use MPI_PROC_NULL for exterior boundaries

Necessary Data Transfers

42

The Local Data Structure

§ Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

bx

by

43

Necessary Data Transfers

§ Provide access to remote data through a halo exchange (5 point stencil)

44

Example: Stencil with Nonblocking Send/recv

§ nonblocking_p2p/stencil.c

§ Simple stencil code using nonblocking point-to-point operations

For most systems (or local machine)
mpiexec -n <nproc> ./stencil <domain size> <iterations> <px> <py>

<nproc> == <px> * <py>

qsub -q ATPESC -l select=1,walltime=1:00:00,filesystems=home –A
ATPESC2025 -I # Aurora

45

% mpiexec –n 16 ./stencil 1000 10 4 4
[0] last heat: 30.000000

iter=10000

Concluding Remarks

§ Parallelism is critical today. Necessary to achieve performance improvement with
the modern hardware.

§ MPI is an industry standard model for parallel programming
– Many implementations of MPI exist (both commercial and community supported)

– Virtually every system in the world supports MPI

§ Gives user explicit control on data management

§ Widely used by many scientific applications with great success

46

Collectives: Blocking and Nonblocking

Introduction to Collective Operations in MPI

§ Collective operations are called by all processes in a communicator.

§ MPI_BCAST distributes data from one process (the root) to all others in a
communicator.

§ MPI_REDUCE combines data from all processes in the communicator and returns it
to one process.

In many numerical algorithms, SEND/RECV can be replaced by collectives, improving
both simplicity and efficiency.

48

MPI Collective Communication Basics

§ Communication and computation is coordinated among a group of processes in a
communicator

§ Tags are not used
– Use multiple communicators to overlap collectives

§ Nonblocking collective operations added in MPI-3

§ Three classes of operations: synchronization, data movement, collective
computation

49

Types of Collectives: Synchronization

§ MPI_BARRIER(comm)

– Blocks until all processes in the group of the communicator comm call it
– A process cannot get out of the barrier until all other processes have reached barrier

50

Types of Collectives: One-Sided/Unbalanced Data Movement

A

A

A

A

AP0

P1

P2

P3

51

Broadcast

A B C DP0

P1

P2

P3

A

B

D

C

Scatter

Gather

Types of Collectives: Two-Sided/Balanced Data Movement

A B C D

A B C D

A B C D

A B C D

A

B

D

C

P0

P1

P2

P3

52

Allgather

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

P0

P1

P2

P3

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

Alltoall

Types of Collectives: Collective Computation

f(ABCD)

f(A)

f(AB)

f(ABC)

f(ABCD)

53

Reduce

Scan

A

B

D

C

P0

P1

P2

P3

A

B

D

C

P0

P1

P2

P3

f(ABCD)

f(ABCD)

f(ABCD)

f(ABCD)

Allreduce
A

B

D

C

P0

P1

P2

P3

Undefined

f(A)

f(AB)

f(ABC)

Exscan
A

B

D

C

P0

P1

P2

P3

MPI Collective Routine Nomenclature

§ “All” versions deliver results to all participating processes

– E.g., MPI_ALLREDUCE

§ “V” versions (stands for vector) allow the chunks to have different sizes
– E.g., MPI_ALLTOALLV

– AllTOALL“W” allows different datatypes!

§ MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and MPI_SCAN take both built-in
and user-defined computation operations (i.e., “ops”)

54

MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location

55

Defining your own Collective Operations

§ Create your own collective computations with:

56

MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The user function should perform:

for i from 0 to len-1

inoutvec[i] = invec[i] op inoutvec[i];

§ The user function can be non-commutative, but must be
associative

Example: Stencil with Blocking Collectives

§ blocking_coll/stencil.c

§ Use MPI_Alltoallv to do data exchanges all in one MPI call!

57

Nonblocking Collective Communication

§ Nonblocking (send/recv) communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized communication patterns

à Nonblocking collective communication
– Combines both techniques (e.g., MPI_Bcast -> MPI_Ibcast)

– System noise/imbalance resiliency

– Semantic advantages

61

Nonblocking Collective Communication Basics

§ Semantics
– Function returns immediately

– No guaranteed progress (quality of implementation)

– Usual completion calls (wait, test) + mixing

– Out-of order completion

§ Restrictions
– Send and vector buffers may not be updated during operation (like other

nonblocking operations)

– No tags, in-order matching (like other collective operations)

– MPI_Cancel not supported

– No matching with blocking collectives

62

Semantic Advantages of Nonblocking Collectives

§ Asynchronous progression
– Pipelining + Communication/Computation Overlap

§ Overlapping collectives

§ Decouple data transfer and synchronization

63

A Nonblocking Barrier?

§ Semantics:
– MPI_Ibarrier() – calling process entered the barrier, no synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses:
– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but synchronize collectively!

64

A Semantics Example: DSDE

§ Dynamic Sparse Data Exchange
– Dynamic: comm. pattern varies across

iterations
– Sparse: number of neighbors is limited

(O(log P))
– Data exchange: only senders know

neighbors
§ Main Problem: metadata

– Determine who wants to send how much
 data to me
 (I must post receive and reserve memory)

1

2

2

0

0

0

1

4

2 3

3

3

3

4

0

0

0

1

1

2

2

2

3

3

3

3

4

4

5

5

P0 P1 P2 P3 P4 P5

P0 P1 P2 P3 P4 P5

Hoefler et al.: Scalable Communication Protocols
for Dynamic Sparse Data Exchange

Using Alltoall (PEX)

§ Personalized Exchange ()
– Processes exchange metadata

(sizes) about neighborhoods with
all-to-all

– Processes post receives afterwards

– Most intuitive but least
performance and scalability

1

2

2

0

0

0

1

4

2 3

3

3

3

4

5

P0 P1 P2 P3 P4 P5

0

0

0

1

1

2

2

2

3

3

3

3

4

4

5

P0 P1 P2 P3 P4 P5

0

1

2

0

0

0

0

0

1

0

0

0

3

0

0

0

0

0

0

1

0

0

1

1

0

0

0

4

0

0

0

0

0

0

1

0

MPI_ALLTOALL

MPI_SEND/MPI_RECV

Reduce_scatter (PCX)

§ Personalized Census ()
– Processes exchange

metadata (counts) about
neighborhoods with
reduce_scatter

– Receivers checks with
wildcard MPI_IPROBE
and receives messages

– Better than PEX but
non-deterministic!

1

2

2

0

0

0

1

4

2 3

3

3

3

4

5

P0 P1 P2 P3 P4 P5

0

0

0

1

1

2

2

2

3

3

3

3

4

4

5

P0 P1 P2 P3 P4 P5

0

1

2

0

0

0

0

0

1

0

0

0

3

0

0

0

0

0

0

1

0

0

1

1

0

0

0

4

0

0

0

0

0

0

1

0

MPI_REDUCE_SCATTER

MPI_SEND/MPI_PROBE(ANY_SOURCE)/MPI_RECV

§ Complexity - census (barrier):

 ()
– Combines metadata with actual

transmission

– Point-to-point synchronization

– Continue receiving until barrier
completes

– Processes start collective
synchronization (ibarrier) when p2p
phase ended

• barrier = distributed marker!

– Better than Alltoall, reduce-scatter!

1

2

2

0

0

0

1

4

2 3

3

3

3

4

5

P0 P1 P2 P3 P4 P5

0

0

0

1

1

2

2

2

3

3

3

3

4

4

5

P0 P1 P2 P3 P4 P5

MPI_ISSEND
LOOP:MPI_IPROBE(MPI_ANYSOURCE)/MPI_RECV

If MPI_SSENDs finished: start
MPI_IBARRIER

IPROBE/RECV until MPI_IBARRIER
completes

MPI_IBARRIER (NBX)

Parallel Breadth First Search

§ On a clustered Erdős-Rényi graph, weak scaling
– 6.75 million edges per node (filled 1 GiB)

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

Impact of HW barrier is significant at
large scale!

Example: Stencil with Non-Blocking Collectives

§ nonblocking_coll/stencil.c

§ Use MPI_Alltoallw to do data exchanges

§ Overlap communication with computation
– Compute “inner” grid points that don’t require halo zones while collective

is running

70

Section Summary

§ Collectives are a very powerful and popular feature in MPI

§ Optimized heavily in most MPI implementations
– Algorithmic optimizations (e.g., tree-based communication)

– Hardware optimizations (e.g., network or switch-based collectives)

§ Matches the communication pattern of many applications

§ Nonblocking collectives combine the semantics of nonblocking point-to-point and
blocking collectives
– Natural extension to blocking collectives for event-driven programming

71

Derived Datatypes

Introduction to Datatypes in MPI

§ Automatically serialize arbitrary data layouts into a message stream
– Networks provide serial channels

– Same for block devices and I/O

§ Several constructors to allow arbitrary layouts
– Recursive specification possible

– Declarative specification of data-layout
• “what” and not “how”, leaves optimization to implementation (many unexplored possibilities!)

– Choosing the right constructors is not always simple

73

Simple/Predefined Datatypes

§ Equivalents exist for all C, C++ and Fortran native datatypes
– C int à MPI_INT
– C float à MPI_FLOAT

– C double à MPI_DOUBLE
– C uint32_t à MPI_UINT32_T
– Fortran integer à MPI_INTEGER

§ MPI provides routines to represent more complex, user-defined datatypes
– Contiguous
– Vector/Hvector
– Indexed/Indexed_block/Hindexed/Hindexed_block

– Struct
– Some convenience types (e.g., subarray)

74

MPI_Type_contiguous

§ Contiguous array of oldtype

§ Should not be used as “last type” (final call in nested set), can be replaced by count

0 1 2 3 4 5 6 7 8 9 1
0

1
1

contig 1817150 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)

75

MPI_Type_vector

§ Specify strided blocks of data of oldtype

§ Very useful for Cartesian arrays

vector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 1
0

1
1

MPI_Type_vector(int count, int blocklen, int stride, MPI_Datatype oldtype,
 MPI_Datatype *newtype)

76

Commit, Free, and Dup

§ Types must be committed before use
– Only the ones that are used!

– MPI_Type_commit may perform heavy optimizations (and hopefully will)

§ MPI_Type_free
– Free MPI resources of datatypes

– Does not affect types built from it

§ MPI_Type_dup
– Duplicates a type

– Library abstraction (composability)

77

Example: Noncontiguous Send and Recv

§ derived_datatype/sendrecv_nc.c

§ 3 methods for sending and receiving noncontiguous data
1. Multiple messages

2. Manual packing

3. MPI Datatypes – 1 message, no packing!

78

MPI_Type_create_hvector

§ Create byte strided vectors

§ Useful for composition, e.g., vector of structs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

hvector

19

struct struct

vector

stride = 3 oldtypes

stride = 11 bytes

MPI_Type_create_hvector(int count, int blocklen, MPI_Aint stride, MPI_Datatype oldtype,
 MPI_Datatype *newtype)

79

MPI_Type_create_indexed_block

§ Pulling irregular subsets of data from a single array
– dynamic codes with index lists, expensive though!

– blen=2

– displs={0,5,8,13,18}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_create_indexed_block(int count, int blocklen, int *array_of_displacements,
 MPI_Datatype oldtype, MPI_Datatype *newtype)

80

MPI_Type_indexed

§ Like indexed_block, but can have different block lengths
– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

indexed

MPI_Type_indexed(int count, int* array_of_blocklens, int *array_of_displacements,
 MPI_Datatype oldtype, MPI_Datatype *newtype)

81

MPI_Type_create_struct

§ Most general constructor, allows different types and arbitrary arrays
(also most costly)

0 1 2 3 4

struct

MPI_Type_create_struct(int count, int *array_of_blocklens, int *array_of_displacements,
 MPI_Datatype *array_of_types, MPI_Datatype *newtype)

82

MPI_Type_create_subarray

§ Convenience function for creating datatypes for array
segments

§ Specify subarray of n-dimensional array (sizes) by start
(starts) and size (subsize)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_Type_create_subarray(int ndims, int* array_of_sizes, int *array_of_subsizes,
 int *array_of_starts, int order, MPI_Datatype oldtype,
 MPI_Datatype *newtype)

83

Exercise: Stencil with Derived Datatypes (1/3)

§ In the previous versions of the stencil code
– Used manual packing/unpacking of data 👎

§ Let’s try to use derived datatypes
– Specify the locations of the data instead of manually packing/unpacking

bx

by

What datatype do we
need here?

What datatype do we
need here?

84

Exercise: Stencil with Derived Datatypes (2/3)
Memory Layout of 2D Array
§ Buffers allocated with malloc are contiguous in memory - the addresses are

sequential.

85

0 1 2 3 4
5 6

0 1 2 3 4 5 6

2d array

2d array in sequential memory

west edge

east edge

north edge

south edge

Example: Stencil with Derived Datatypes

§ derived_datatype/stencil.c

§ Nonblocking sends and receives

§ Data location specified by MPI datatypes

§ Manual packing of data no longer required

86

Section Summary

§ Derived datatypes are a mechanism to describe ANY layout in memory
– Hierarchical construction allows them to be as complex as the data layout

– More complex layouts require more complex datatype constructions

§ Current MPI implementations are lagging in performance, but it is improving
– Increasing hardware support to process derived datatypes on the network hardware

– If you run into performance issues, complain to the MPI implementer, don’t stop using it!

87

Bonus Exercise: Stencil using Derived Datatype and Collectives

§ As time allows/homework

§ Goal: Use collective communication with derived datatype

§ Start from derived_datatype/stencil.c

§ Solution in derived_datatype/ directory

88

MPI Remote Memory Access (RMA,
a.k.a One-Sided) Communication

Process Provide Memory Isolation

§ One process does not simply access another process’s memory
– Operating system ensures that

– But parallel programs need to exchange data

§ Using shared memory for parallel programs
– Within one node

§ Multithreaded programming
– Within one node

90

Limitation of Point-to-Point Communcation

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment
Memory
Segment
Memory
Segment

Memory
Segment

91

§ Point-to-point is a two-sided communication
– Communication requires a SEND to match with a RECV, developer must to arrange that

– Sender is delayed if Receiver is slow, especially for large message

Process Synchronization as A Side Effect of Data Movement

§ Point-to-point: synchronizes between a pair of processes

§ Collective: synchronizes among a group of processes
– All processes in the group must participate

– Everybody waiting for the straggler

§ Nonblocking is a Remedy
– Overlaps communication with computation

– Still stuck at MPI_Wait/Test if run out of work to overlap

– Load unbalance

92

Remote Memory Access (RMA)/One-sided Communication

§ The basic idea is global address space that makes process’s private memory public
– Each process can exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory, even across nodes

– One process should be able to move data without requiring that the remote process to
participate/synchronize

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Global
Address

Space
Private

Memory
Private

Memory
Private

Memory
Private

Memory

93

Window Window Window Window

RMA Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment
Memory
Segment
Memory
Segment

Memory
Segment

94

Comparing RMA and Point-to-Point Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending

process is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

95

What we need to know in MPI RMA

§ Allocation: How to create remote accessible memory?

§ Operation: Reading, Writing and Updating remote memory

§ Coordination: Data Synchronization

§ Information: Memory Model

§ MPI RMA has a large number of functions, supporting many options
– We will concentrate on a core that provides most of the power of RMA

– You can refer to Using Advanced MPI or the MPI 4.0 standard for more on RMA

96

Creating Public Memory

§ Any memory used by a process is, by default, only locally accessible
– X = malloc(100);

§ Once the memory is allocated, the user has to make an explicit MPI call to declare a
memory region as remotely accessible
– MPI terminology for remotely accessible memory is a “window”

– A group of processes collectively create a “window”

§ Once a memory region is declared as remotely accessible, all processes in the
window can read/write data to this memory via MPI RMA functions

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Process 0

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window

97

MPI_WIN_CREATE

§ Expose a existing region of memory in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– base - pointer to local data to expose
– size - size of local data in bytes (nonnegative integer)
– disp_unit - local unit size for displacements, in bytes (positive integer)
– info - info argument (handle)
– comm - communicator (handle)
– win - window (handle)

MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
 MPI_Win *win)

98

win = WIN_CREATE(base, size, comm);

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* create private memory */
 a = (int *) malloc(1000*sizeof(int));
 /* use private memory like you normally would */
 for (int i = 0; i < 1000; i++) a[i] = i + 1;

 /* collectively declare memory as remotely accessible */
 MPI_Win_create(a, 1000*sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* Array ‘a’ is now accessibly by all processes in
 * MPI_COMM_WORLD */

 MPI_Win_free(&win);
 free(a);
 MPI_Finalize(); return 0;
}

99

MPI_WIN_ALLOCATE

§ Allocate a new memory region and expose it globally via RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - returned pointer to exposed local data

– win - returned window (handle)

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
 void *baseptr, MPI_Win *win)

100

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Process 0

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window

baseptr, win = WIN_ALLOCATE(size, comm);

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
 int *a;
 MPI_Win win;

 MPI_Init(&argc, &argv);

 /* collectively create remote accessible memory in a window */
 MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &a, &win);

 /* Array ‘a’ is now accessible from all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Finalize(); return 0;
}

101

Window creation models

§ Four models exist
– MPI_WIN_ALLOCATE

• You want to create a buffer and directly make it remotely accessible

– MPI_WIN_CREATE

• You already have an allocated buffer that you would like to make remotely accessible

– MPI_WIN_CREATE_DYNAMIC

• You don’t have a buffer yet, but will have one in the future

• You may want to dynamically add/remove buffers to/from the window

• (not covered in this tutorial, but slides available)

– MPI_WIN_ALLOCATE_SHARED

• You want multiple processes on the same node share a buffer (covered in later section)

102

Data movement

§ MPI provides ability to read, write and atomically modify data in remotely accessible
memory regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)

§ There are variations of these as well.

§ All these operations are nonblocking!

103

Data movement: Put

§ Move data from origin, to target

§ Separate data description triples for origin and target

Origin

MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype origin_dtype,
 int target_rank, MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely
Accessible
Memory

Private
Memory

104

Data movement: Get

§ Move data to origin, from target

§ Separate data description triples for origin and target

Origin

MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_dtype,
 int target_rank, MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely
Accessible
Memory

Private
Memory

105

Ordering of Non-atomic Operations in MPI RMA

§ RMA data access model
– When is a process allowed to read/write remotely accessible memory?
– When is data written by process X is available for process Y to read?
– What is the value of M if both process X and process Y put into it?
– What data will be read if process X do a put then get to M?

§ No guaranteed ordering for Put/Get operations
§ Result of concurrent Puts to the same location is undefined (different locations are fine)
§ Result of Get concurrent Put undefined

– Can be garbage
§ What is “concurrent” here?

– RMA operations are nonblocking
– Sequentially issued operations can happen to update target memory at the same time
– Sequentially issued operations can seemed to be reordered
– Memory can be in corrupted states

106

Examples with operation ordering

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and
Put/Accumulates: undefined

3. Concurrent Accumulate operations
to the same location: ordering is
guaranteed

107

RMA Synchronization Models
§ RMA data access model

– Epochs define ordering and completion semantics
– Open a epoch to allow RMA operations
– Close a epoch to make sure memory changes in the epoch is visible to other processes

§ Three synchronization models provided by MPI:
– Lock/Unlock (passive target) <- preferred for all RMA since MPI 3.0
– Fence (active target)
– Post-start-complete-wait (PSCW) (generalized active target)

§ They are memory synchronizations, not process synchronizations

– Memory states are consistent
– Not synchronizing processes is the point

108

Fence: Active Target Synchronization

§ Collective synchronization model

§ Starts and ends access and exposure epochs on
all processes in the window

§ All processes in group of “win” do an
MPI_WIN_FENCE to open an epoch

§ Everyone can issue PUT/GET operations to
read/write data

§ Everyone does an MPI_WIN_FENCE to close
the epoch

§ All operations complete at the second fence
synchronization

§ This is not a MPI_Barrier

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2

109

Example with MPI_PUT and MPI_FENCE

int main(int argc, char ** argv)
{
 int *a, value = 1;
 MPI_Win win;

 /* Init and allocation omitted */

 /* starting an epoch */
 MPI_Fence(0, win);

if (rank == 0) {

MPI_Put(&value, 1, MPI_INT, 1, 0, 1, MPI_INT, win);
}

 MPI_Fence(0, win);

/* cleanup omitted */

}

110

Hands-on Example: Calculating Pi with RMA

111

§ Calculating the value of “pi” via
numerical integration
– Divide interval up into subintervals
– Assign subintervals to processes
– Each process calculates partial sum
– Add all the partial sums together to get pi

1

1

“n” segments

1. Width of each segment (w) will be 1/n
2. Distance (d(i)) of segment “i” from the origin will be “i * w”
3. Height of segment “i” will be sqrt(1 – [d(i)]^2)

§ Blocking Collective Version
– Bcast to distribute n
– Reduce to calculate result
– See blocking_coll/cpi.c

Hands-on Task 1: Replace Collective Communication with RMA

112

§ Replace MPI_Bcast and MPI_Reduce with RMA
§ Starting from rma/cpi.c
§ TODO

– Create windows to expose memory
– Use MPI_Put/MPI_Get to move data (n and mypi)
– Use MPI_Win_fence for synchronization
– Cleanup at the end

Atomic Data movement

§ MPI provides ability to read, write and atomically modify data in remotely accessible
memory regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)

§ There are variations of these as well.

§ All these operations are nonblocking!

113

Atomic Data Aggregation: Accumulate

§ Atomic update operation, similar to a put
– Reduces origin and target data into target buffer using op argument as combiner
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only, no user-defined operations

§ Different data layouts between
target/origin OK
– Basic type elements must match

§ Op = MPI_REPLACE
– Implements f(a,b)=b
– Atomic PUT

MPI_Accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_dtype,
 int target_rank, MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Origin Target

Remotely
Accessible
Memory

Private
Memory

+=

114

Atomic Data Aggregation: Get Accumulate

§ Atomic read-modify-write
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only

§ Result stored in target buffer
§ Original data stored in result buf
§ Different data layouts between

target/origin OK
– Basic type elements must match

§ Atomic get with MPI_NO_OP
§ Atomic swap with MPI_REPLACE

MPI_Get_accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_dtype,
 void *result_addr,int result_count, MPI_Datatype result_dtype,
 int target_rank, MPI_Aint target_disp,int target_count,
 MPI_Datatype target_dype, MPI_Op op, MPI_Win win)

+=

Origin Target

Remotely
Accessible
Memory

Private
Memory

115

Atomic Data Aggregation: FOP and CAS

§ FOP: Simpler version of MPI_Get_accumulate
– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

§ CAS: Atomic swap if target value is equal to compare value

MPI_Compare_and_swap(const void *origin_addr, const void *compare_addr,
 void *result_addr, MPI_Datatype dtype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr, MPI_Datatype dtype,
 int target_rank, MPI_Aint target_disp, MPI_Op op, MPI_Win win)

116

Ordering of Operations in MPI RMA

§ Result of Get concurrent Put/Accumulate undefined

– Can be garbage in both cases

§ Result of concurrent accumulate operations to the same location are defined according to the order
in which the occurred

– Atomic put: Accumulate with op = MPI_REPLACE

– Atomic get: Get_accumulate with op = MPI_NO_OP

§ Accumulate operations from a given process are ordered by default

– User can tell the MPI implementation that (s)he does not require ordering as optimization hint

– You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW

– This is where info_hint in window creation is useful

117

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
 void *baseptr, MPI_Win *win)

Examples with operation ordering with atomic

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x = 4

x = 5y=2

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and
Put/Accumulates: undefined

3. Concurrent Accumulate operations
to the same location: ordering is
guaranteed

118

Hands-on Task 2: Improving with RMA Atomic

119

§ Use MPI_Accumulate to calculate the sum
– Each process ”push” partial sum to rank 0
– Avoids the loop and multiple MPI_Win_fence

Passive Target Synchronization

§ Lock/Unlock: Begin/end passive mode epoch
– Target process does not make a corresponding MPI call
– Can initiate multiple passive target epochs to different processes
– Concurrent epochs to same process not allowed (affects threads)

§ Lock type
– SHARED: Other processes using shared can access concurrently
– EXCLUSIVE: No other processes can access concurrently

§ Flush: Remotely complete RMA operations to the target process
– After completion, data can be read by target process or a different process

§ Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

120

Passive Target Synchronization

§ Lock_all: Shared lock, passive target epoch to all other processes
– Expected usage is long-lived: lock_all, put/get, flush, …,
unlock_all

§ Flush_all – remotely complete RMA operations to all processes

§ Flush_local_all – locally complete RMA operations to all
processes

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

121

Examples with operation ordering

Process 0 Process 1

PUT(x=2, P1)

x = 2

x = 1

PUT(x=1, P1)

x = 1

x = 0
1. Puts to P1 no longer concurrent

2. Put/Get to P1 no longer
concurrent

122

GET(y, x, P1)

LOCK(EXCLUSIVE, P1)

UNLOCK(EXCLUSIVE, P1)

UNLOCK(EXCLUSIVE, P1)

LOCK(EXCLUSIVE, P1)

FLUSH(P1)

x = 2

y = 0

y = 2

Hands-on Task 3: Change MPI_Win_fence to MPI_Win_lock/unlock

123

§ Use MPI_Win_lock/unlock for fine-grained synchronization
– Avoids most collective synchronization
– Caveat: at one collective synchronization is needed

Section Summary

§ MPI RMA communication is provides virtual global arrays across
processes

§ Exposes memory through windows

§ Operations include basic PUT, GET, and Atomic operations

§ Synchronization modes
– Active-target (similar to two-sided) : FENCE, PSCW

– Passive-target: LOCK-UNLOCK, FLUSH, FLUSH_LOCAL…

Process 1 Process 2 Process 3

Private
Memor

y

Private
Memor

y

Private
Memor

y

Process 0

Private
Memor

y

Accessi
ble

Memor
y

Accessi
ble

Memor
y

Accessi
ble

Memor
y

Accessi
ble

Memor
yPrivate

Memory
Private

Memory
Private

Memory
Private

Memory

124

Hybrid Programming:
MPI+Threads & MPI+GPU

MPI Hybrid Programming - Overview

§ What makes MPI hybrid programming “difficult”
is performance.

§ More hands-on exercises
– Performance is all about expectation.

§ Topics:
– Basic MPI messaging

– MPI+Threads

– MPI+GPU

§ Grab an interactive session on aurora:

126

MPI_Send MPI_Recv

qsub –l select=2,walltime=4:00:00 –l filesystems=home –A ATPESC2025 –q ATPESC

Warm-up Exercise: Basic Send/Recv

127

MPI_Comm comm = MPI_COMM_WORLD;
int rank; MPI_Comm_rank(comm, &rank);
int tag = 0;
int count = 1024;
void *buf = malloc(count);

Reference: hybrid/basic_sendrecv.c

$ mpicc t.c && mpirun –n 2 ./a.out

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
int main(void) {
 MPI_Init(0, 0);
 /* Send/Recv */
 MPI_Finalize();
 return 0;
}

1. Start with a MPI skeleton
2. Setup variables
3. Perform Send/Recv
4. Compile and test

if (rank == 0) {
 MPI_Send(buf, count, MPI_INT, 1, tag, comm);
} else {
 MPI_Recv(buf, count, MPI_INT, 0, tag, comm, MPI_STATUS_IGNORE);
}

MPI_Send
MPI_Recv

P0 P1

Optional:
• Check MPI_Comm_size.
• Initialize send buffer

and verify received
data.

• Check MPI_Status.
• Use MPI_BYTE to count

message size in bytes.

Semantics of MPI Messaging

128

if (rank == 0) {
 MPI_Send(buf, count, MPI_INT, tag, comm);
} else {
 MPI_Recv(buf, count, MPI_INT, tag, comm,
&status);
}

• What does an MPI message accomplish?
• Data movement
• Synchronization

• Synchronization
• Performance metric

• Latency

• Data transfer
• Performance metric

• Bandwidth
MPI_Send MPI_Recv

Exercise: Measure Bandwidth

129

Reference: hybrid/bandwidth.c

MPI_Send
time_start

MPI_Recv

time_finish

• Use a large message size

• Use MPI_Wtime to measure time

• Use a zero-sized message to synchronize completion

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑖𝑧𝑒
𝐸𝑙𝑎𝑝𝑎𝑠𝑒𝑑𝑇𝑖𝑚𝑒

(GB/sec)

int count = 1000000000; /* 1GB message size */
void *buf = malloc(count);

double time_start = MPI_Wtime();

Optional:
• Repeat to observe variations.
• Vary message size.
• Intranode vs. internode.
• Intranuma vs. internuma.

Exercise: Measure Latency

130

Reference: hybrid/latency.c

MPI_Send
time_start

MPI_Recv

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 	𝐸𝑙𝑎𝑝𝑎𝑠𝑒𝑑	𝑇𝑖𝑚𝑒

• Use *small* message sizes

• Ping-pong to measure two-way latency;

divide by 2 for one-way latency

• Aggregate many, many rounds to improve accuracy

(µs)

MPI_SendMPI_Recv
pingpong

Optional:
• Observe measurement

variations.
• Vary message size.
• Intranode vs. internode.
• Intranuma vs. internuma.

MPI+Threads

Review: The Basic MPI Model

132

CPU

Memory

Network
Card

CPU

Memory

Network
Card

MPI Process MPI Process

• Execution context
• Memory context
• Semantics

• Data Transfer
• Synchronization

• The flat MPI model
(one process per core)

• Homework: Measure intra-node and
inter-node performance separately

MPI+Threads

133

Virtual Memory

Virtual
Communication

Interface

MPI Process

Network
Interface Card

• Threads vs. Process
• Shared memory
• Shared communication interface

• Semantics
• Require Synchronizations

• Advantage
• Flexible

• Performance Impact

Exercise: MPI+Threads

134

#pragma omp parallel num_threads(8) {
 if (rank == 0) {
 MPI_Send(buf, count, MPI_INT, tag, comm);
 } else {
 MPI_Recv(buf, count, MPI_INT, tag, comm, &status);
 }
}

• Just add an OpenMP parallel
region, RIGHT?

What could go wrong?

MPI+Threads – What could go wrong - 1

135

problem:
MPI is not thread-safe!

§ MPI_THREAD_SINGLE
– No additional threads

§ MPI_THREAD_FUNNELED
– Master thread communication only

§ MPI_THREAD_SERIALIZED
– Threaded communication serialized

§ MPI_THREAD_MULTIPLE
– No restrictions

•Restriction

•Low
Thread-

Safety Costs

•Flexibility

•High
Thread-

Safety Costs

MPI + Threads

Interoperability

Interoperation or thread levels:

MPI+Threads: Thread Levels

136

MPI_Init_thread(requested, provided)

MPI_THREAD_SINGLE

§ There are no additional user threads in the system
– E.g., there are no OpenMP parallel regions

int buf[100];
int main(int argc, char ** argv)
{
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 for (i = 0; i < 100; i++)
 compute(buf[i]);

 /* Do MPI stuff */

 MPI_Finalize();

 return 0;
}

MPI Process

COMP.

COMP.

MPI COMM.

137

MPI_THREAD_FUNNELED
§ All MPI calls are made by the master thread

– Outside the OpenMP parallel regions
– In OpenMP master regions
int buf[100];
int main(int argc, char ** argv)
{
 int provided;

 MPI_Init_thread(&argc, &argv,
MPI_THREAD_FUNNELED, &provided);

 if (provided < MPI_THREAD_FUNNELED)
 MPI_Abort(MPI_COMM_WORLD,1);

 for (i = 0; i < 100; i++)
 pthread_create(…,func,(void*)i);
 for (i = 0; i < 100; i++)
 pthread_join();

 /* Do MPI stuff */

 MPI_Finalize();
 return 0;
}

MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
 int i = (int)arg;
 compute(buf[i]);
}

138

int buf[100];
int main(int argc, char ** argv)
{
 int provided;

 pthread_mutex_t mutex;

 MPI_Init_thread(&argc, &argv,
MPI_THREAD_SERIALIZED, &provided);

 if (provided < MPI_THREAD_SERIALIZED)
MPI_Abort(MPI_COMM_WORLD,1);

 for (i = 0; i < 100; i++)
 pthread_create(…,func,(void*)i);
 for (i = 0; i < 100; i++)
 pthread_join();

 MPI_Finalize();

 return 0;
}

MPI_THREAD_SERIALIZED
§ Only one thread can make MPI calls at a time

– Protected by OpenMP critical regions

MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
 int i = (int)arg;
 compute(buf[i]);
 pthread_mutex_lock(&mutex);

 /* Do MPI stuff */
 pthread_mutex_unlock(&mutex);
}

139

int buf[100];
int main(int argc, char ** argv)
{
 int provided;

 MPI_Init_thread(&argc, &argv,

MPI_THREAD_MULTIPLE, &provided);
 if (provided < MPI_THREAD_MULTIPLE)
 MPI_Abort(MPI_COMM_WORLD,1);

 for (i = 0; i < 100; i++)

 pthread_create(…,func,(void*)i);
 for (i = 0; i < 100; i++)
 pthread_join();

 MPI_Finalize();
 return 0;

}

void* func(void* arg) {
 int i = (int)arg;
 compute(buf[i]);

 /* Do MPI stuff */
}

MPI_THREAD_MULTIPLE

§ Any thread can make MPI calls any time (restrictions apply)

MPI Process

COMP.

COMP.

MPI COMM.

140

Threads and MPI

§ An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required to be thread safe

§ A fully thread-safe implementation will support MPI_THREAD_MULTIPLE

§ A program that calls MPI_Init (instead of MPI_Init_thread) should assume that only
MPI_THREAD_SINGLE is supported

– MPI Standard mandates MPI_THREAD_SINGLE for MPI_Init

§ A threaded MPI program that does not call MPI_Init_thread is an incorrect program
(common user error we see)

141

MPI+Threads – What could go wrong - 2

142

#pragma omp parallel num_threads(8) {
 if (rank == 0) {
 buf[0] = thread_id;
 MPI_Send(buf, count, MPI_INT, tag, comm);
 } else {
 MPI_Recv(buf, count, MPI_INT, tag, comm, &status);
 printf(“Thread %d received from thread %d\n”,
 thread_id, buf[0]);
 }
}

problem:
Race conditions on message buffers!

• Use MPI_THREAD_MULTIPLE, our code is no longer crashing ✓
• Let’s check the message matching

MPI+Threads – What could go wrong - 3

143

#pragma omp parallel num_threads(8) {
 void *buf = buffer_pool[thread_id];
 if (rank == 0) {
 buf[0] = thread_id;
 MPI_Send(buf, count, MPI_INT, tag, comm);
 } else {
 MPI_Recv(buf, count, MPI_INT, tag, comm, &status);
 printf(“Thread %d received from thread %d\n”,
 thread_id, buf[0]);
 }
}

problem:
Indeterministic message order!

What could go wrong: 2 Processes, 2 Threads
if (rank == 1) {
 MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
 MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

 MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
 MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
} else { /* rank == 0 */

 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);

 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
}

144

Intended Ordering of Operations

§ Every send matches a receive on the other rank

2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1

145

Possible Ordering of Operations in Practice

§ Because the MPI operations can be issued in an arbitrary
order across threads, all threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1

146

Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with
Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 0

Thread 1

147

Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with
Collectives

§ P0 and P1 can have different orderings of Bcast and Barrier
§ Here the user must use some kind of synchronization to ensure that either thread 1

or thread 2 gets scheduled first on both processes
§ Otherwise a broadcast may get matched with a barrier on the same communicator,

which is not allowed in MPI

Process 0
Thread 1 Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1
Thread 1 Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)

148

Hands-on: try yourself

Ordering in MPI_THREAD_MULTIPLE: Incorrect Example with Object
Management – request object

§ Calling a completion function transfers the ownership of the request objects.
– While MPI can make concurrent progress, concurrent setting the same request objects may

corrupt it.

Process 0

149

Thread 1

MPI_Irecv(&req)

MPI_Test(&req)

Thread 2

MPI_Test(&req)

Exercise: Measure MPI+Threads Performance

§ Benchmark: send messages concurrently in multiple threads
– Use 2 nodes to measure internode performance

– Per-thread latency

– Per-thread bandwidth

– Aggregate bandwidth

– Vary the number of threads

150

Pair-wise Messaging

Reference: hybrid/bandwidth.c, hybrid/latency.c

How to improve MPI+Threads Performance

§ Two contention areas
1. Internal contexts

2. Communication interface

§ Ideas
– Separate communication contexts

via separate communicators

– Enable multiple “Virtual Communication
Interfaces”

• MPIR_CVAR_CH4_NUM_VCIS=N

§ Exercise:
– Improve MPI+Threads performance

151

Core

Virtual Memory

Virtual
Communication

Interface

MPI Process

Network
Interface Card

Core

MPI+GPU

MPI + GPU

153

GPU

Memory

CPU

Memory

Network
Card

MPI Process• Execution Context

• Asynchronous

• Memory

• Hybrid

• Advantage: Throughput

• Disadvantage: Synchronization

• Communication

• CPU driven

• Latency optimization – GDRCopy or Fast memcpy

• Bandwidth optimization - IPC or RDMA

Exascale Supercomputers

154

1 x AMD EPYC CPU
4 x AMD MI250X GPU

2 x Intel Xeon CPU
6 x Intel Data Center GPU

4 x AMD MI300A APU

Exercise: MPI+GPU

155

• It just works

• But complicated for performance

int dev_id = omp_get_default_device();

void *buf_gpu = omp_target_alloc(nbytes, dev_id);
/* intel extension */
void *buf_gpu = omp_target_alloc_device(nbytes, dev_id);
void *buf_host = omp_target_alloc_host(nbytes, dev_id);
Void *buf_shared = omp_target_alloc_shared(nbytes, dev_id);

if (rank == 0) {
 MPI_Send(buf, count, MPI_INT, tag, comm);
} else {
 MPI_Recv(buf, count, MPI_INT, tag, comm, &status);
}

$ mpicc –fiopenmp –fopenmp-targets=spir64 …

Allocating memory:

MPI:

Compile:

Hybrid Memory Types

156

*

* Shared memory may limit MPI messaging performance

How MPI Moves Data Between Different Types Of Memory?

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

GPUs have separate physical memory subsystem
How to move data between GPUs with MPI?

Simple answer: For modern GPUs and GPU-aware MPI implementations, “just
like you would with a non-GPU machine”

157

Exercise: GPU buffers with GPU-Unaware MPI implementations

§ It is still common for older systems to use GPU-Unaware MPI by default
– GPU-awareness may come with a cost of lowering CPU-only performance

– GPU architecture is still evolving

§ Fallback strategy: copy to host bounce buffer.
– Extra latency

– Wasted bandwidth

– Loss of optimization opportunity

§ It serve as a base-line performance check for MPI implementations.

158

Omp_target_memcpy(dst, src, len, src_off, dst_off, dst_dev, src_dev);

int host_id = omp_get_initial_device();

Hands on: disable MPI GPU support: MPIR_CVAR_ENABLE_GPU=0

How MPI Moves Data Between Different Types Of Memory?

159

• Contiguous data
• Intra-node

• Small messages - sender copy to shared memory, receiver copy from shared memory
• Large messages – Inter-Process Communication (IPC)

• IPC is fast because it avoids double copy
• Inter-node

• Small messages – sender copy to NIC, NIC to NIC, receiver copy from NIC
• Large message – GPU Remote Direct Memory Access (GPU RDMA)

• RDMA is fast because it un-involves the CPU and GPU
• Non-contiguous data

• Large segments – send the data piece-by-piece, receive the data piece-by-piece
• Fragmented – pack and send as contig host memory, receive and unpack

• Techniques: staging buffers, pipelining, copy kernels

• Ideally implementations should do best under each scenarios.
• In reality, hardware architecture and software stacks keep evolving.
• Lean on MPI, but measure for performance.

Unified Virtual Addressing (UVA)
§ UVA is a memory address management system

supported in modern 64-bit architectures
– Requires device driver support

§ The same virtual address space is used for all
processors, host or devices

§ No distinction between host and device pointers

§ The user can query the location of the data
allocation given a pointer in the unified virtual
address space and the appropriate GPU runtime
library query APIs (“GPU-aware” MPI library)

UVA: Single virtual address space
for the host and all devices

GPU

0x000 ..

CPU GPU

 .. 0xFFF

160

Intranode Communication with UVA

§ Intranode Optimization
– GPU peer-to-peer data transfers are

possible
– MPI can directly move data between GPU

devices

MPI Process 1 MPI Process 2

GPU

Memory

CPU

Memory

GPU

Memory

161

Peer-to-Peer direct transfer between GPUs

Internode Communication with UVA

§ Internode Optimization
– GPUDirect RDMA enables network card

transfer data without involving CPU or GPU

162

GPU

GPU Memory
CPU

Host
Memory

void* d_data

Network
Card

RDMA

A Note On Shared Memory

§ Shared memory allows access from either
host or device without explicit copy.

– Intel: Unified Shared Memory (USM)
– Nvidia: Managed Memory or Unified Shared Memory
– AMD: Unified Memory

§ Automatic data movement between host and GPU
memories (called Unified Memory in CUDA)

– Data is automatically migrated between host and GPU
on page faults

– Moving pages to GPU and back to host is similar to
swap-out and swap-in of pages to and from disk

§ Performance
– Implicit hidden page migration cost

– Good for programming model that neglects latency
– Prevents MPI from optimizing

GPU CPU GPU

Page i

Page k

Page fault

Page
migration

Page
migration

Single memory space accessible to
all devices and host. Transparently
managed heterogeneous memory.

Page fault

163

Exercise: MPI+GPU performance

164

* MPI+GPU
 * [] Allocate host buffer, device buffer, registered host buffer,
and shared buffer
 * [] Send/recv between various types of buffers
 * [] Inter-node, intra-node, inter-device, inter-tiles

Q: How does the gpu messaging performance compared with host messaging?

Interoperability with MPI – Memory Allocation Kinds

§ Standardized in MPI 4.1

§ “mpi_memory_alloc_kinds”
– Supplied via mpiexec, or

MPI_Session_init.

– It allows MPI implementation to optimize

– Similar to MPI thread level

§ “mpi_assert_memory_kinds”
– Set to a communicator, a window, or a file

– As a promise from user

– Allows per-object-scope optimizations

165

% mpiexec –memory-alloc-kinds=mpi:system
–n 4 my_app

We do not need
 GPU support

Interoperability with MPI – Execution Context

166

kernel<<<…>>> (buf);

MPI_Send(buf, …);

Host Thread
Context

GPU Stream
Context

kernel<<<…>>> (buf);

cudaStreamSynchronize()

MPI_Send(buf, …);

• Explicit synchronization between the
host and GPU execution is required.

• Stream synchronizations are expensive
in performance.

Future MPI
• Stream-aware MPI functions

• Enqueue MPI operations and
triggered by the stream

• In-kernel MPI functions
• e.g. MPI_Pready in kernel

Additional Exercises:

167

o Explore performance factors
o CPU binding
o Varying message sizes
o For intra-node, compare against OpenMP-equivalent

o Benchmark collective performance
o MPI_Bcast
o MPI_Allreduce
o Which collectives are performance-critical in your app?

o Stencil example using MPI+Threads
o Stencil example using MPI+GPU

New MPI Features
Sessions, Large Count, Partitioned Communication, ABI

168

169

An alternative method to initializing and creating MPI resources

MPI Sessions

MPI_SESSION_INIT

Query runtime for process sets

MPI_GROUP_FROM_SESSION_PSET

MPI_COMM_CREATE_FROM_GROUP

MPI_INIT

MPI_COMM_WORLD, MPI_COMM_SELF

World Process Model Sessions Process Model

mpi://world
mpi://self

ref: hello/hello_world.c, hello/hello_session.c

MPI Sessions

§ Why?
– More explicit initialization and object construction

• No predefined MPI objects

– Composability
• Libraries can manage their own MPI resources by creating independent sessions. No need to check if MPI is initialized/finalized.

– Tighter integration with resource manager
• Job information, such as placement, can be queried. Process sets can be defined by system resources such as racks and switches

– Fault tolerance? Malleability? MPI+X? Many open research areas to explore.
– (Holmes et al., EuroMPI 2016)1

§ Notes
– Sessions and the WPM can coexist in the same process. Sessions also requires support for multiple init/finalize cycles.

Some bugs may still be hiding in implementations J.

An alternative method to initializing and creating MPI resources

170

1. MPI Sessions: Leveraging Runtime Infrastructure to Increase Scalability of Applications at Exascale https://doi.org/10.1145/2966884.2966915

https://doi.org/10.1145/2966884.2966915
https://doi.org/10.1145/2966884.2966915
https://doi.org/10.1145/2966884.2966915

Large Count

§ int -> MPI_Count for count arguments
– MPI_Send -> MPI_Send_c

– Fortran interface polymorphism in mpi_f08 module. Just use MPI_SEND and it will work.

§ Why?
– Common request over the years. Users were told to workaround by creating large datatypes instead.
– Creating large datatypes workaround had known issues, particularly with ”v” and “w” collectives (Hammond et al.,

ExaMPI, 2014)1

§ Notes
– Led MPI Forum to “pythonize” the document to generate language bindings in the document.

– Led the MPICH team to generate C language bindings and assiocated boiler plate (Zhou et al., EuroMPI, 2021)2

• Profiling interface (PMPI)
• Argument checking

Support for counts > INT_MAX

171

1. To INT_MAX... and Beyond! Exploring Large-Count Support in MPI https://doi.org/10.1109/ExaMPI.2014.5/
2. Generating Bindings in MPICH https://arxiv.org/abs/2401.16547

https://doi.org/10.1109/ExaMPI.2014.5/
https://arxiv.org/abs/2401.16547

Partitioned Communication

§ Send and receive buffer partitioning
– Partitioned requests are persistent and match once during initialization

• Data generation for partitions can be delegated to threads or accelerators

– Individual partitions marked ready to send (MPI_PREADY)
– Receiver can optionally check for arrived partitions (MPI_PARRIVED)

§ Why?
– One-sided model wrapped in familiar two-sided API
– Potential benefits include reduced resource contention, message aggregation, “early-bird” effect (Gillis

et al., ICPP, 2023)1

– Ongoing work to define support for MPI_PREADY in a GPU context

172

1. Quantifying the Performance Benefits of Partitioned Communication in MPI https://dl.acm.org/doi/10.1145/3605573.3605599

A new approach to MPI+X

https://dl.acm.org/doi/10.1145/3605573.3605599

A Standard MPI ABI

§ Common definitions across implementations (Hammond et al., EuroMPI, 2023)1

– MPI_Aint and other integer types
– Handle types – MPI_Comm, …
– Constant Values – MPI_STATUS_IGNORE, …
– Data structures – MPI_Status, …

§ Why?
– Better support third-party languages – Python, Julia, Rust, etc.
– Improved package management and distribution.
– Easier to write tools
– Prior efforts wi4mpi and MPI Trampoline demonstrated utility

Build Once, Run Many

1. MPI Application Binary Interface Standardization https://doi.org/10.1145/3615318.3615319

https://github.com/cea-hpc/wi4mpi
https://github.com/eschnett/MPItrampoline
https://doi.org/10.1145/3615318.3615319
https://doi.org/10.1145/3615318.3615319
https://doi.org/10.1145/3615318.3615319

174

Thank You!

