
Accelerated Quantum Supercomputing

Yuri Alexeev, Senior Quantum Algorithm Engineer,
NVIDIA Corporation

NVIDIA supercomputers leveraging QPUs

Accelerated Quantum Supercomputing

• NVIDIA supercomputers integrate
quantum computers as a co-processor

• NVIDIA's solutions de-risk the quantum
industry by being agnostic to the different
QPU modalities

• Hybrid applications need GPUs and QPUs

• NVIDIA’s CUDA-Q software framework
allows for seamless applications
programming

Accelerated Quantum Supercomputing

The NVIDIA Accelerated Quantum Research Center (NVAQC)

Boston, Massachusetts

GB200 NVL72 pods

Partner quantum hardware

Research to enable quantum accelerated
supercomputing

GB200 NVL72

GB200 NVL72

DGX Quantum
System for Integration of Quantum with GPU supercomputing

• Tightly integrates Quantum with GPU
Supercomputing

• Qubit Agnostic – Supports different qubit
modalities

• Reduces GPU-QPU latency by 1-2 orders of
magnitude

• Enables GPU Acceleration of Quantum Error
Correction, Calibration, and Hybrid Algorithms

• Scalable for more GPU compute and larger QPUs

DGX Quantum
System for Integration of Quantum with GPU supercomputing

Typical Latencies

Remote QPU, Web API
1-10 seconds

Local QPU, Ethernet

10 microseconds

DGX Quantum PCIe

400 nanoseconds
(PCIe 5.0 100 nanoseconds)

Typical Error Correction

 Budget* 10 microseconds

Classical-Quantum Latencies

*Includes decoding time

DGX Quantum 4 microseconds

DGX A100 node

NVIDIA Quantum Product Map
CUDA-Q is the entry point into our products for most users

CUDA-Q
Libraries Programming Model InfrastructureTools

DGX-Quantum
Reference architecture for low-

latency QPU/DGX integration

Libraries for simulating

applications and hardware

cuQuantum
CUDA-Q supports range

of QPU vendor backends

QPU DGX-SuperPOD

ClassicalQuantum

CUDA-Q AcademicNVIDIA Quantum Cloud

CUDA-Q
The platform for accelerated quantum computing

Features

• Python and C++
o Access via familiar & powerful languages

• QPU agnostic
o Optimized backends from all major QPU vendors and qubit

modalities

• GPU-accelerated simulation
o Quantum simulators that scale to large-scale quantum

computers

• Fully kernel system for hybrid computing interface
o Seamlessly combine GPU and QPU resources

• Supports QEC HW development
o DGX-Quantum reference architecture allows decoder and

calibration development

• Access to classical CUDA-X and AI libraries
o Conventional parts of hybrid algorithms can draw on

fastest implementations

• Comprehensive educational tools
o CUDA-Q Academic onboards users to accelerated quantum

supercomputing

Performance

QML workflow in CUDA-Q using multithreaded

CPU versus NVIDIA A100 Tensor Core GPUs

Getting started with CUDA-Q

https://developer.nvidia.com/cuda-q

CUDA-Q Overview
https://github.com/NVIDIA/cuda-q-academic

CUDA-Q Academic

https://nvidia.github.io/cuda-

quantum/latest/index.html

CUDA-Q Docs
https://nvidia.github.io/cuda-

quantum/latest/using/tutorials.html

CUDA-Q Apps

A New Heterogenous Architecture

Programming model
and compiler for
heterogenous
supercomputer

Used for
programming low-
latency real-time
hybrid applications

Libraries to enable
domain scientists

Open source and
qubit-agnostic

Defining the Accelerated Quantum Supercomputer

C++

CUDA-Q Intermediate Representation (MLIR)

Quake CC Func Math Arith LLVM

Quantum Intermediate Representation (QIR, Profiles, LLVM IR)

Simulation (MGPU, MNMG, DM, TN) Physical QPU (Quantinuum, IonQ, IQM, OQC…)

(Quantum) (Classical CFG) (Kernels) (Standard Math) (Constants) (Lowering Target)

Python

Kernel
Expressions

JIT Kernel
Expressions

Runtime
Kernel

Expressions
JIT Kernel

Expressions
Runtime

Role of IRs in CUDA-Q

Purpose Role of IRs

Abstraction
Separates front-end languages (C++, Python)

from backend targets (simulators/QPU).

Optimization
Enables compiler-level transformations of

quantum and classical code.

Target Independence
Facilitates code generation for simulators (MGPU,

MPS, TN) and QPUs.

Modularity and Composability
Supports analysis, transformation, and

instrumentation at multiple levels.

AI/ML Integration
Allows insertion of AI-driven rewrites or cost

model heuristics via IR pass.

GHZ State Example

import cudaq

@cudaq.kernel

def ghz_state(N: int):

 qubits = cudaq.qvector(N)

 h(qubits[0])

 for i in range(N - 1):

 x.ctrl(qubits[i], qubits[i + 1])

 mz(qubits)

Running on GPU

cudaq.set_target(“nvidia")

n = 29

print("Preparing GHZ state for", n,
"qubits.")

counts = cudaq.sample(ghz_state,n)

counts.dump()

Output:

Preparing GHZ state for 29 qubits.

{ 00000000000000000000000000000:509
11111111111111111111111111111:491 }

Challenges facing HCP-quantum integration

• - Hardware challenges concern the design of tightly coupled HPC–quantum
systems. Co-locating quantum and classical resources within the same
hardware node is essential for the low-latency communication and tight
synchronization required.

• - Software challenges involve creating a unified, seamless software stack
enabling the efficient orchestration of quantum and classical components.

• - Algorithmic challenges lie in developing quantum algorithms designed for
hybrid HPC–FTQC platforms. There is a significant gap in algorithms tailored
to the intermediate regime, where a small number of logical qubits coexist
with HPC. Such algorithms must leverage distributed quantum and classical
resources and may require novel co-design approaches, potentially leveraging
the use of AI.

Quantum Computing Needs AI Supercomputing

Quantum Development

Algorithms and
applications research

QPU design

QEC research

Training AI models for:
-QEC
-Control
-Calibration

Real-time accelerated
QEC

AI-assisted calibration,
control, and readout

Hybrid algorithms and
applications

Quantum Deployment

arXiv:2411.09131v1

AI to Enable Quantum Computing

Scaling Quantum Error Correction: A Critical Challenge

10-3

State of the art error rates

<10-10

Expected Error rates needed

100TB/s
Data streaming from 1M qubits

22,325,184
Qubits needed with QEC

Fault-Tolerant QC is mostly QEC

Scaling Quantum Error Correction: A Critical Challenge

Scaling Quantum Error Correction: A Critical Challenge

AI Decoding Outperforms MLE

Challenges of VQE and ADAPT-VQE algorithms

• Slow Convergence in Plateau Regions:

 leading to very slow convergence

• Number of Gradient Evaluations:

 high measurement overhead . Not scalable. practical applicability rapidly

 diminishes with system scaling

• Operator Pool Size and Completeness:

 the choice of the operator pool directly impacts efficiency, accuracy, and convergence.

• Number of measurements:

Ο
1

𝜖2 with an additive error 𝜖 (𝜖 determines the precision of the result)

Can generative AI be a promising route?

Generative Quantum Eigensolver (GPT-QE)

• Quantum gates are analog to words (tokens). Token space includes:
gate type, target qubit, evolution time

• Quantum circuits are analog to predicted sentence

https://arxiv.org/pdf/2401.09253.pdf

Probability that a sequence of j is
sampled is determined by the logits
sum:

j ~ 𝑒− 𝛽 𝑊(𝒋) W(j) = Wj1 + Wj2+…+WjN

If W(j) = E(j) and 𝛽 is large, the
ground state is likely to be
generated

Logit matching:

Cost= (W(j) – E(j))2

GPT-QE Performance and Accuracy
Comparing VQE, ADAPT-VQE, GPT-QE

• The first demonstration of a GPT-generated

quantum circuit in the literature

• A powerful example of leveraging AI to

accelerate quantum computing

• Executed using CUDA Quantum on A100 GPUs

on Perlmutter

• Opens the door to a wide variety of novel

Generative Quantum Algorithms (GQAs) for

drug discovery, materials science, and

environmental challenges

• Energies are not within chemical accuracy
• Improving the GPT-QE: work in progress

How to fix GQE

• - Add energy minimization in cost function (logit matching)

• - Add quantum concepts to the attention mechanism

• - Use physics aware neural networks

• - Train on already optimized quantum circuits

ADAPT-GPT for predicting compact quantum circuit

• Use ADAPT algorithm to generate synthetic
data (compact quantum circuits)

• Tokenize the circuit

• The tokenized circuit is then passed to the
transformer model for training

• This is called ADAPT-GPT

• ADAPT-GPT can be used to predict compact
quantum circuit for other problem not seen
before in the training.

ADAPT-GPT for predicting compact quantum circuit

Proposed use case diagram. Given a user-supplied input graph, the system computes
a fixed-length graph embedding and tokenizes the graph structure.

Both representations are passed to the QAOA-GPT model, which autoregressively
generates a quantum circuit that solves the corresponding QAOA optimization problem.

ADAPT-GPT versus ADAPT-QAOA
Performance and Runtime

Paper accepted to QCE25 conference proceedings

Find out more

NVIDIA Quantum
https://www.nvidia.com/en-us/solutions/quantum-computing/

CUDA-Q v0.12 Now Available
Python – > pip install cudaq
C++ – https://github.com/NVIDIA/cuda-quantum/releases

CUDA-QX – QEC and Solvers Libraries
https://developer.nvidia.com/cuda-qx

Quandoom

https://github.com/Lumorti/Quandoom

https://arxiv.org/abs/2412.12162v1

A port of the first level of DOOM
designed for a quantum computer,
given as a single QASM file, using
a mere 70,000 qubits and
80 million gates. Although such
a quantum computer doesn't exist
right now, Quandoom is efficiently
 simulatable on a classical computer
, capable of running at 10-20 fps
on a laptop

https://github.com/Lumorti/Quandoom
https://arxiv.org/abs/2412.12162v1

Thank you!

References

• “How to Build a Quantum Supercomputer: Scaling from Hundreds to
Millions of Qubits”
https://arxiv.org/abs/2411.10406

• “Artificial Intelligence for Quantum Computing”

 https://arxiv.org/abs/2411.09131

• “The generative quantum eigensolver (GQE) and its application for
ground state search”
https://arxiv.org/abs/2401.09253

https://arxiv.org/abs/2411.10406
https://arxiv.org/abs/2411.09131
https://arxiv.org/abs/2401.09253

	Slide 1: Accelerated Quantum Supercomputing
	Slide 2: Accelerated Quantum Supercomputing
	Slide 3
	Slide 4: Accelerated Quantum Supercomputing
	Slide 5: The NVIDIA Accelerated Quantum Research Center (NVAQC)
	Slide 6: GB200 NVL72
	Slide 7: GB200 NVL72
	Slide 8
	Slide 9: DGX Quantum
	Slide 10: DGX Quantum
	Slide 11: DGX A100 node
	Slide 12: NVIDIA Quantum Product Map
	Slide 13: CUDA-Q
	Slide 14
	Slide 15: Role of IRs in CUDA-Q
	Slide 16: GHZ State Example
	Slide 17: Challenges facing HCP-quantum integration
	Slide 18: Quantum Computing Needs AI Supercomputing
	Slide 19
	Slide 20: AI to Enable Quantum Computing
	Slide 21: Scaling Quantum Error Correction: A Critical Challenge
	Slide 22: Scaling Quantum Error Correction: A Critical Challenge
	Slide 23: Scaling Quantum Error Correction: A Critical Challenge
	Slide 24: AI Decoding Outperforms MLE
	Slide 25: Challenges of VQE and ADAPT-VQE algorithms
	Slide 26
	Slide 27: Generative Quantum Eigensolver (GPT-QE)
	Slide 28: GPT-QE Performance and Accuracy
	Slide 29: How to fix GQE
	Slide 30: ADAPT-GPT for predicting compact quantum circuit
	Slide 31: ADAPT-GPT for predicting compact quantum circuit
	Slide 32: ADAPT-GPT versus ADAPT-QAOA
	Slide 33: Find out more
	Slide 34: Quandoom
	Slide 35
	Slide 36: References

