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NVIDIA supercomputers leveraging QPUs

Accelerated Quantum Supercomputing

• NVIDIA supercomputers integrate 
quantum computers as a co-processor

• NVIDIA's solutions de-risk the quantum 
industry by being agnostic to the different 
QPU modalities

• Hybrid applications need GPUs and QPUs 

• NVIDIA’s CUDA-Q software framework 
allows for seamless applications 
programming





Accelerated Quantum Supercomputing



The NVIDIA Accelerated Quantum Research Center (NVAQC)

Boston, Massachusetts

GB200 NVL72 pods

Partner quantum hardware

Research to enable quantum accelerated 
supercomputing



GB200 NVL72



GB200 NVL72





DGX Quantum
System for Integration of Quantum with GPU supercomputing

• Tightly integrates Quantum with GPU 
Supercomputing

• Qubit Agnostic – Supports different qubit 
modalities

• Reduces GPU-QPU latency by 1-2 orders of 
magnitude

• Enables GPU Acceleration of Quantum Error 
Correction, Calibration, and Hybrid Algorithms

• Scalable for more GPU compute and larger QPUs



DGX Quantum
System for Integration of Quantum with GPU supercomputing

Typical Latencies

Remote QPU, Web API
1-10 seconds

Local QPU, Ethernet

10 microseconds

DGX Quantum PCIe

400 nanoseconds
(PCIe 5.0 100 nanoseconds)

Typical Error Correction

 Budget* 10 microseconds

Classical-Quantum Latencies

*Includes decoding time

DGX Quantum 4 microseconds



DGX A100 node



NVIDIA Quantum Product Map
CUDA-Q is the entry point into our products for most users

CUDA-Q
Libraries Programming Model InfrastructureTools

DGX-Quantum
Reference architecture for low-

latency QPU/DGX integration

Libraries for simulating 

applications and hardware

cuQuantum
CUDA-Q supports range 

of QPU vendor backends

QPU DGX-SuperPOD

ClassicalQuantum

CUDA-Q AcademicNVIDIA Quantum Cloud



CUDA-Q
The platform for accelerated quantum computing

Features

•  Python and C++
o Access via familiar & powerful languages

•  QPU agnostic
o Optimized backends from all major QPU vendors and qubit 

modalities 

•  GPU-accelerated simulation
o Quantum simulators that scale to large-scale quantum 

computers

•  Fully kernel system for hybrid computing interface
o Seamlessly combine GPU and QPU resources

• Supports QEC HW development
o DGX-Quantum reference architecture allows decoder and 

calibration development

•  Access to classical  CUDA-X and AI libraries
o Conventional parts of hybrid algorithms can draw on 

fastest implementations

•  Comprehensive educational tools
o CUDA-Q Academic onboards users to accelerated quantum 

supercomputing

Performance

QML workflow in CUDA-Q using multithreaded 

CPU versus NVIDIA A100 Tensor Core GPUs

Getting started with CUDA-Q

https://developer.nvidia.com/cuda-q

CUDA-Q Overview
https://github.com/NVIDIA/cuda-q-academic

CUDA-Q Academic

https://nvidia.github.io/cuda-

quantum/latest/index.html

CUDA-Q Docs
https://nvidia.github.io/cuda-

quantum/latest/using/tutorials.html

CUDA-Q Apps



A New Heterogenous Architecture

Programming model 
and compiler for 
heterogenous 
supercomputer

Used for 
programming low-
latency real-time 
hybrid applications

Libraries to enable 
domain scientists

Open source and 
qubit-agnostic

Defining the Accelerated Quantum Supercomputer

C++ 

CUDA-Q Intermediate Representation (MLIR)

Quake CC Func Math Arith LLVM

Quantum Intermediate Representation (QIR, Profiles, LLVM IR)

Simulation (MGPU, MNMG, DM, TN) Physical QPU (Quantinuum, IonQ, IQM, OQC…)

(Quantum) (Classical CFG) (Kernels) (Standard Math) (Constants) (Lowering Target)

Python

Kernel 
Expressions

JIT Kernel 
Expressions

Runtime
Kernel 

Expressions
JIT Kernel 

Expressions
Runtime



Role of IRs in CUDA-Q

Purpose Role of IRs

Abstraction
Separates front-end languages (C++, Python) 

from backend targets (simulators/QPU).

Optimization
Enables compiler-level transformations of 

quantum and classical code.

Target Independence
Facilitates code generation for simulators (MGPU, 

MPS, TN) and QPUs.

Modularity and Composability
Supports analysis, transformation, and 

instrumentation at multiple levels.

AI/ML Integration
Allows insertion of AI-driven rewrites or cost 

model heuristics via IR pass.



GHZ State Example

import cudaq

@cudaq.kernel

def ghz_state(N: int):

  qubits = cudaq.qvector(N)

  h(qubits[0])

  for i in range(N - 1):

    x.ctrl(qubits[i], qubits[i + 1])

  mz(qubits)

Running on GPU

cudaq.set_target(“nvidia")

n = 29

print("Preparing GHZ state for", n, 
"qubits.")

counts = cudaq.sample(ghz_state,n)

counts.dump()

Output:

Preparing GHZ state for 29 qubits.

{ 00000000000000000000000000000:509 
11111111111111111111111111111:491 }



Challenges facing HCP-quantum integration

• - Hardware challenges concern the design of tightly coupled HPC–quantum 
systems. Co-locating quantum and classical resources within the same 
hardware node is essential for the low-latency communication and tight 
synchronization required. 

• - Software challenges involve creating a unified, seamless software stack 
enabling the efficient orchestration of quantum and classical components.

• - Algorithmic challenges lie in developing quantum algorithms designed for 
hybrid HPC–FTQC platforms. There is a significant gap in algorithms tailored 
to the intermediate regime, where a small number of logical qubits coexist 
with HPC. Such algorithms must leverage distributed quantum and classical 
resources and may require novel co-design approaches, potentially leveraging 
the use of AI. 



Quantum Computing Needs AI Supercomputing

Quantum Development

Algorithms and 
applications research

QPU design

QEC research

Training AI models for:
-QEC
-Control
-Calibration

Real-time accelerated 
QEC

AI-assisted calibration, 
control, and readout

Hybrid algorithms and 
applications
  

Quantum Deployment



arXiv:2411.09131v1



AI to Enable Quantum Computing



Scaling Quantum Error Correction: A Critical Challenge

10-3

State of the art error rates

<10-10

Expected Error rates needed

100TB/s
Data streaming from 1M qubits

22,325,184
Qubits needed with QEC

Fault-Tolerant QC is mostly QEC



Scaling Quantum Error Correction: A Critical Challenge



Scaling Quantum Error Correction: A Critical Challenge



AI Decoding Outperforms MLE



Challenges of VQE and ADAPT-VQE algorithms

• Slow Convergence in Plateau Regions:

 leading to very slow convergence

• Number of Gradient Evaluations: 

 high measurement overhead . Not scalable. practical applicability rapidly 

 diminishes with system scaling

• Operator Pool Size and Completeness: 

 the choice of the operator pool directly impacts efficiency, accuracy, and convergence. 

• Number of measurements: 

Ο
1

𝜖2 with an additive error 𝜖 (𝜖 determines the precision of the result)

Can generative AI be a promising route?





Generative Quantum Eigensolver (GPT-QE)

• Quantum gates are analog to words (tokens). Token space includes: 
gate type, target qubit, evolution time

• Quantum circuits are analog to predicted sentence 

https://arxiv.org/pdf/2401.09253.pdf

Probability that a sequence of j is 
sampled is determined by the logits 
sum:

j ~ 𝑒− 𝛽 𝑊(𝒋)  W(j) = Wj1 + Wj2+…+WjN

If W(j) = E(j) and 𝛽 is large, the 
ground state is likely to be 
generated

Logit matching: 

Cost=  ( W(j) – E(j) )2



GPT-QE Performance and Accuracy
Comparing VQE, ADAPT-VQE, GPT-QE

• The first demonstration of a GPT-generated 

quantum circuit in the literature

• A powerful example of leveraging AI to 

accelerate quantum computing

• Executed using CUDA Quantum on A100 GPUs 

on Perlmutter

• Opens the door to a wide variety of novel 

Generative Quantum Algorithms (GQAs) for 

drug discovery, materials science, and 

environmental challenges

• Energies are not within chemical accuracy
• Improving the GPT-QE: work in progress



How to fix GQE

• - Add energy minimization in cost function (logit matching)

• - Add quantum concepts to the attention mechanism

• - Use physics aware neural networks

• - Train on already optimized quantum circuits



ADAPT-GPT for predicting compact quantum circuit

• Use ADAPT algorithm to generate synthetic 
data (compact quantum circuits)

• Tokenize the circuit 

• The tokenized circuit is then passed to the 
transformer model for training

• This is called ADAPT-GPT

• ADAPT-GPT can be used to predict compact 
quantum circuit for other problem not seen 
before in the training.



ADAPT-GPT for predicting compact quantum circuit

Proposed use case diagram. Given a user-supplied input graph, the system computes 
a fixed-length graph embedding and tokenizes the graph structure. 

Both representations are passed to the QAOA-GPT model, which autoregressively 
generates a quantum circuit that solves the corresponding QAOA optimization problem.



ADAPT-GPT versus ADAPT-QAOA
Performance and Runtime

Paper accepted to QCE25 conference proceedings



Find out more

NVIDIA Quantum
https://www.nvidia.com/en-us/solutions/quantum-computing/

CUDA-Q v0.12 Now Available
Python –    > pip install cudaq
C++ – https://github.com/NVIDIA/cuda-quantum/releases

CUDA-QX – QEC and Solvers Libraries
https://developer.nvidia.com/cuda-qx



Quandoom

https://github.com/Lumorti/Quandoom

https://arxiv.org/abs/2412.12162v1

A port of the first level of DOOM 
designed for a quantum computer, 
given as a single QASM file, using 
a mere 70,000 qubits and 
80 million gates. Although such 
a quantum computer doesn't exist 
right now, Quandoom is efficiently
 simulatable on a classical computer
, capable of running at 10-20 fps 
on a laptop

https://github.com/Lumorti/Quandoom
https://arxiv.org/abs/2412.12162v1


Thank you!
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