
Programming
your GPU with

OpenMP

Tim Mattson
tgmattso@gmail.com

The Human Learning Group

This content was created with Tom

Deakin and Simon McIntosh-Smith of

the University of Bristol

This is my favorite picture of my wife … surfing at Cascade Head in Oregon

mailto:tgmattso@gmail.com

Plan for the OpenMP sessions

2

4:00 Introduction: Parallel programming and the OpenMP Common Core

4:30 Working with threads (Including synchronization): the SPMD Pattern

5:30 Worksharing and data sharing: The Loop Parallelism Pattern

~6:30 Dinner

Next Day

8:30 Task-level parallelism in OpenMP: The Divide and Conquer Pattern

10:00 Break

10:30 Beyond the common core: More Worksharing and synchronization … plus threadprivate

12:30 Lunch

1:30 Wrapping up the CPU and transitioning to GPU-programming

2:30 The loop construct … GPU programming made “simple”

3:30 Break

4:00 Explicit Data Movement and basic principles of GPU optimization

5:30 Detailed control of the GPU … and comparisons to other GPU programming models

6:30 Dinner

Note: How much time people need with the exercises never works out

as I expect, which is fine. Everything is driven by the needs of the
students … not some concept I might have of a schedule.

M
o
n

d
a
y,

 P
M

T
u
e
s
d

a
y,

 A
ll

D
a
y

• Start an interactive job on one node
 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle -A ATPESC2025 -q ATPESC

• Use the Nvidia programming environment
 module swap PrgEnv-nvhpc PrgEnv-gnu  change back to Nvidia programming environment

 cc –mp=gpu heat_map_target.c.

 OMP_TARGET_OFFLOAD=MANDATORY ./a.out.  might be needed for tiny programs

• It might impact performance to match to the specific GPU architecture …

 cc –mp=gpu -gpu=cc80 program.c
 cc –mp=gpu –gpu=sm_80 program .c

• For short jobs you may need to force it to run on the GPU

 OMP_TARGET_OFFLOAD=MANDATORY ./a.out.

• For the GPU, you can profile an execution using the nvprof profile in nsys:

 nsys nvprof ./a.out

• This will generate all sorts of data about the job. What we care most about is the summary of memory movement at the
end of the profile report.

Preliminaries: Systems for exercises, Polaris

3

The Growth of Complexity in OpenMP

4

The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1
2.0

2.5

3.0
3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec

C/C++ spec

Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025

0

500

600

400

300

200

100

Page Counts … not including front matter, tools-interface, appendices or the index.

P
a

g
e

 C
o

u
n

ts

Supports general

multithreading, but

the emphasis was

on parallel loops

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….

i.e., lots of threads with “equal cost access” to memory 5

The Growth of Complexity in OpenMP

6

The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1
2.0

2.5

3.0
3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec

C/C++ spec

Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025

0

500

600

400

300

200

100

Page Counts … not including front matter, tools-interface, appendices or the index.

P
a

g
e

 C
o

u
n

ts

Tasks added to

OpenMP ... supports

irregular parallelism

Proc_bind and

Places added to

support thread

affinity for NUMA

systems

OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

CPU cores SIMD units

Shared address space (NUMA)

7NUMA: Non-Uniform Memory Architecture

OpenMP for non-uniform memory architectures (in one slide)

● Examples:

○ export OMP_PLACES=threads

○ export OMP_PLACES=cores

• A modern CPU is complex. The OS manages threads to

emphasize low latency for numerous concurrent threads …

not HPC

• OpenMP includes the ability for full control of NUMA systems
… it can get complicated.

• Keep it simple:

– Utilize first touch page assignment: Initialize data the

same way (e.g. with the same ”parallel for schedule” clause)

as you will compute with it.

– Define places on the CPU … that is, tell the system the granularity of

thread placement with the OMP_PLACES environment variable

1. threads: Hardware threads (or hyperhreads or SMT threads)

2. cores: Instruction sequencer(s) and backend

– Tell the system to stop moving threads once they are placed (i.e.

bind them) and how to distribute them among places with the

OMP_PROC_BIND environment variable. 2 common cases

1. spread: Distribute them as evenly as possible.

2. close: Distributed close to the primary* thread.

● Examples:

○ export OMP_PROC_BIND=spread

○ export OMP_PROC_BIND=close

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads

Getting the affinity right can have serious impacts on performance

Application Benchmark Performance for a number of benchmarks at NERSC

Lower is better

Results running on the Cori system at

NERSE which has dual Socket nodes with

Intel® XeonTM E5-2698v3 CPUs

Based on content from Yun (Helen) He from NERSC (National Energy Research Supercomputing Center)

The Growth of Complexity in OpenMP

10

The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1
2.0

2.5

3.0
3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec

C/C++ spec

Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025

0

500

600

400

300

200

100

Page Counts … not including front matter, tools-interface, appendices or the index.

P
a

g
e

 C
o

u
n

ts

Tasks added to

OpenMP ... supports

irregular parallelism

Proc_bind and

Places added to

support thread

affinity for NUMA

systems

Target constructs added

to OpenMP ... supports

host-device/GPU model

11

OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

CPU cores SIMD units GPU cores

Shared address space (NUMA)

11

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B

void __global__

vecAdd (float* a, float* b, float* c, int N) {

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < N) c[i] = a[i] + b[i];

}

int main () {

 int N = ... ;

 float *a, *b, *c;

 cudaMalloc (&a, sizeof(float) * N);

 // ... allocate other arrays (b and c)

 // and fill with data

 // Use thread blocks with 256 threads each

 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

}

12

Assume a GPU with

unified shared memory

… allocate on host,

visible on device too

int main() {

 int N = . . . ;

 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)

 // and fill with data

 for (int i=0;i<N; i++)

 c[i] = a[i] + b{i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

How do we execute code on a GPU:

The SIMT model (Single Instruction Multiple Thread)

13

// Compute sum of order-N matrices: C = A + B
void __global__
matAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if (i < N && j<N) c[i][j] == a[i][j] + b[i][j];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // define threadBlocks and the Grid
 dim3 dimBlock(4,4);
 dim3 dimGrid(4,4);

 // Launch kernel on Grid
 matAdd <<< dimGrid,dimBlock>>> (a, b, c, N);
}

1. Write kernel code for the
scalar work-items 2. Map work-items onto an

N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

spaceThis is CUDA code

14

SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD

execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of

Scalar

instructions

NVIDIA calls this set of

work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution scheduled

across a fixed number of

SIMD Lanes (SL)

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

Dispatch Unit

L1 Cache

L2 Cache

G
P

U
 M

e
m

o
ry

L2 Cache

L2 Cache L2 Cache

G
P

U
 M

e
m

o
ry

G
P

U
 M

e
m

o
ry

G
P

U
 M

e
m

o
ry

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD

processor

GPU terminology is Broken (sorry about that)

16

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

Dispatch Unit

L1 Cache

L2 Cache

G
P

U
 M

e
m

o
ry

L2 Cache

L2 Cache L2 Cache

G
P

U
 M

e
m

o
ry

G
P

U
 M

e
m

o
ry

G
P

U
 M

e
m

o
ry

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

Let’s compare/contrast concurrency on a

CPU and a GPU

18

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution modesl

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

Programming heterogeneous devices

means splitting up code to get the most

from the available hardware

22

No single processor is best at everything
• The idea that you should move everything to the GPU makes no sense

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

CPU only

Offload

Heterogeneous
Computing

If you care about power, the world is
heterogeneous?

Specialized

processors doing

operations suited to

their architecture

are more efficient

than general

purpose

processors. 0

5

10

15

20

25

30

SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2. IEEE International
Symposium on Computer Architecture and High Performance Computing, 2020

Intel® MovidiusTM MyriadTM 2 VPU

Intel® Xeon® E5-2697v2 CPU,
3.5 GHz, 12 cores

Nvidia® K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs,
FPGAs, and a wide range of accelerators

G
FL

O
P

S/
W

at
t

Why is OpenMP so important?

https://x-dev.pages.jsc.fz-juelich.de/models/

Table from https://doi.org/10.1145/3624062.3624178

Many cores, Many models: GPU programming model

vs Vendor Compatibility Overview, Andreas Herten,

SC23 workshop proceedings

OpenMP is the only model

with full support

from all vendors

for C/C++ and Fortran

… and OpenMP supports

Python as well (PyOMP)

https://github.com/Python-for-HPC/PyOMP.git

https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://doi.org/10.1145/3624062.3624178

Let’s dig into the details of writing GPU

code with OpenMP

26

The OpenMP device programming model
▪ OpenMP uses a host/device model

– The host is where the initial thread of the
program begins execution

– Zero or more devices are connected to the
host

– Device-memory address space is distinct
from host-memory address space

#include <omp.h>

#include <stdio.h>

int main()

{

 printf(“There are %d devices\n”,

 omp_get_num_devices());

}

Device

…
…

…

…

…
…

…

…

…
…

…

…

…
…

…

Host

Running code on the GPU:
The target construct and default data movement

Host thread

Generating Task

Initial task

Target task

#pragma omp target

{

 target region,

can use A, B and N

}

Device Initial

thread

Host thread

waits for the

task region to

complete

float A[N], B[N]; A, B and N

mapped to the

device

the arrays

A and B

mapped back to

the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Statically allocated arrays and scalars

(as firstprivate) are moved onto the

device by default before execution

Only the statically allocated arrays are

moved back to the host after the target

region completes

28

Default Data Sharing: example

int main(void) {

 int N = 1024;

 double A[N], B[N];

 #pragma omp target

 {

 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region

}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

29

Now let’s run code in parallel on the device

int main(void) {

 int N = 1024;

 double A[N], B[N];

 #pragma omp target

 {

 #pragma omp loop

 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region

}

The loop construct tells the compiler:

“this loop will execute correctly if
the loop iterations run in any order.

You can safely run them
concurrently. And the loop-body

doesn’t contain any OpenMP
constructs. So do whatever you
can to make the code run fast”

30

The loop construct is a declarative construct. You

tell the compiler what you want done but you DO

NOT tell it how to “do it”. This is new for OpenMP

Exercise: Parallel vector addition on a GPU

• Start with the provided vadd.c program. Parallelize it for a CPU and time it for large N.

– vadd.c Adds together two arrays, element by element: for(i=0;i<N;i++) c[i]=a[i]+b[i];

• Parallelize the vadd program for a GPU and time it for large N.

• How does it compare to the CPU version?

– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp target

– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the

host. You can force the OpenMP runtime to use the GPU by

setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:

 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:eagle -A ATPESC2025 -q ATPESC

Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)
 cc -mp=gpu vadd.c

Solution: Simple vector add in OpenMP on GPU

int main()

{

 float a[N], b[N], c[N], res[N];

 int err=0;

 // fill the arrays

 #pragma omp parallel for

 for (int i=0; i<N; i++){

 a[i] = (float)i;

 b[i] = 2.0*(float)i;

 c[i] = 0.0;

 res[i] = i + 2*i;

 }

 // add two vectors

 #pragma omp target

 #pragma omp loop

 for (int i=0; i<N; i++){

 c[i] = a[i] + b[i];

 }

// test results

#pragma omp parallel for reduction(+:err)

for(int i=0;i<N;i++){

 float val = c[i] - res[i];

 val = val*val;

 if(val>TOL) err++;

}

 printf("vectors added with %d errors\n", err);

return 0;

}

> nsys nvprof ./flow.omp4. flow-params

CUDA Toolkit: nsys

Simple profiling: nsys nvprof ./exe <params>

Time to copy data onto GPU
Time to copy data back from GPU

Exercise: Parallel vector addition on a GPU

• Run you vector add program using nsys and see if the profiling output matches

your expectations for vadd.
– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp task

– #pragma omp taskwait

– #pragma single

– #pragma omp target

– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the

host. You can force the OpenMP runtime to use the GPU by

setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:

 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:eagle -A ATPESC2025 -q ATPESC

Compiler with cc … which is a wrapper around the Nvidia compilers (nvc)
 cc -mp=gpu program.c

 nsys nvprof ./a.out

Implicit data movement covers a small subset of

the cases you need in a real program.

To be more general … we need to manage data

movement explicitly

35

36

Explicit data movement

• Previously, we described the rules for implicit data movement.

• We can explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to be explicitly copied to/from the device:

int main(void) {

 int ii=0, N = 1024;

 int* A = (int *)malloc(sizeof(int)*N);

 #pragma omp target

 {

 // N, ii and A all exist here

 // The data that A points to (*A , A[ii]) DOES NOT exist here!

 }
}

37

Moving data with the map clause

int main(void) {

 int N = 1024;

 int* A = malloc(sizeof(int)*N);

 #pragma omp target map(A[0:N])

 {

 // N, ii and A all exist here

 // The data that A points to DOES exist here!

 }

}

Default mapping

map(tofrom: A[0:N])

Copy at start and end of

target region.

38

OpenMP array notation

• For mapping data arrays/pointers you must use array section notation:

– In C, notation is pointer[lower-bound : length]

– map(to: a[0:N])

– Starting from the element at a[0], copy N elements to the target data region

– Be careful!

– It’s common to confuse this with the Fortran notation: (begin : end).

– Without the map, OpenMP defines that the pointer itself (a) is mapped as a zero-length array

section.

– Zero length arrays: a[:0]

39

Controlling data movement

• The various forms of the map clause

– map(to:list): On entering the region, variables in the list are initialized on the device using the

original values from the host (host to device copy).

– map(from:list): At the end of the target region, the values from variables in the list are copied

into the original variables on the host (device to host copy). On entering the region, the initial

value of the variables on the device is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start of

region, device to host copy at end).

– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.

– map(list): equivalent to map(tofrom:list).

int i, a[N], b[N], c[N];

#pragma omp target map(to:a,b) map(tofrom:c)

Data movement

defined from the

host perspective.

Briefly, attached pointers

• Pointers appearing with array sections in map clauses are called a base pointer

– E.g., in map(tofrom: A[0:N]), A is a base pointer

• The base pointer is mapped firstprivate, and is an attached pointer

• Attached pointers cannot be modified in the target region

• The OpenMP runtime keeps a lookup table of mapped memory addresses to

translate between the data on the host and the mapped data on the device

– The translation happens when variables are mapped (target, target data, etc)

41

Exercise: Parallel vector addition on a GPU

• Start from vadd_heap.c

– Vadd_heap.c Adds together two arrays, element by element: for(i=0;i<N;i++) c[i]=a[i]+b[i];

• Parallelize for a GPU
– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp task

– #pragma omp taskwait

– #pragma single

– #pragma omp target

– #pragma omp loop

– Plus the clauses

– private(), firstprivate(), reduction(+:var)

– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count]) map(tofrom:vptr[Lower:Count])

ATPESC/OMP_GPU_Exercises/vadd.c

Default is tofrom: map(vptr[Lower:Count])

42

Solution: vector add with dynamic memory on GPU

int main()

{

 float *a = malloc(sizeof(float) * N);

 float *b = malloc(sizeof(float) * N);

 float *c = malloc(sizeof(float) * N);

 float *res = malloc(sizeof(float) * N);

 int err=0;

 // fill the arrays <<<code not shown>>>>

 // add two vectors

 #pragma omp target map(to: a[0:N],b[0:N]) map (tofrom: c[0:N])

 #pragma omp loop

 for (int i=0; i<N; i++){

 c[i] = a[i] + b[i];

 }

// test results <<<code not shown>>>>

#pragma omp parallel for reduction(+:err)

 printf("vectors added with %d errors\n", err);

return 0;

}

43

Commonly used clauses on
target and loop constructs

• The basic construct* is:

#pragma omp target [clause[[,]clause]...]

#pragma omp loop [clause[[,]clause]...]

for-loops

• The most commonly used clauses are:

– map(to | from | tofrom list)  default is tofrom

– private(list) firstprivate(list) lastprivate(list) shared(list)

– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the

region, not back out “at the end”.

– reduction(reduction-identifier : list)

– behaves as in the rest of OpenMP

– collapse(n)

– Combines loops before the distribute directive splits up the iterations between teams

Loop and reductions

#include <omp.h>

#include <stdio.h>

static long num steps = 100000000;

int main() {

double sum = 0.0;

double step = 1.0 / (double) num steps ;

#pragma omp target map(tofrom:sum)

#pragma omp loop reduction (+:sum)

for (int i=0; i<numsteps; i++){

 double x = (i + 0.5) ∗ step;

 sum += 4.0 / (1.0 + x ∗ x);

}

double pi = step ∗ sum;

printf(” pi with %ld steps is %lf\n”, num steps, pi);

We will talk about explicit mapping of

variables between the host and a

device latter. This uses the map()

clause.

When using the loop directive, you

need to explicitly define this mapping

for the reduction variable.

This will all make sense when we
cover the map() clause later on.

Going beyond simple vector addition …

Using OpenMP for GPU application

programming … the heat diffusion problem

5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.

• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.

• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕2𝑢

𝜕𝑥2
 ≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥2

– Forward finite difference in time, central finite difference in space.

𝜕𝑢

𝜕𝑡
− 𝛼∇2𝑢 = 0

5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time

t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.

• If on a boundary, look up a boundary condition instead.

Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 u_tmp[i+j*n] = r2 * u[i+j*n] +

 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

 r * ((i > 0) ? u[i-1+j*n] : 0.0) +

 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

 }

 }

 // Pointer swap to get ready for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

}

Loop over time steps

Loop over NxN spatial domain

Update the 5-point

stencil. Boundary

conditions on the

edges of the domain

are fixed at zero.

Serial CPU code

Heat program (heat.c) …

 // Loop over time steps

 for (int t = 0; t < nsteps; ++t) {

 // solve over spatial domain for step t

 solve(n, alpha, dx, dt, u, u_tmp);

 // Pointer swap to get ready for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

• Takes two optional command line

arguments: <ncells> <nsteps>

– E.g. ./heat 1000 10

– 1000x1000 cells, 10 timesteps

(the default problem size).

• If no command line arguments are

provided, it uses a default:

– These two commands both run
the default problem size of

1000x1000 cells, 10 timesteps.

– ./heat

– ./heat 1000 10

• A sensible bigger problem is 8000 x

8000 cells and 10 timesteps.

Heat program (heat.c) …

 // Loop over time steps

 for (int t = 0; t < nsteps; ++t) {

 // solve over spatial domain for step t

 solve(n, alpha, dx, dt, u, u_tmp);

 // Pointer swap to get ready for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

Note: Swapping pointer on the host

before entering the target region on

the next iteration works on a GPU.

When you map pointers between
the host and the device, OpenMP

remembers the address.

Swapped addresses on the hosts

swaps addresses on the device

Exercise: parallel stencil (heat)

• Take the provided heat stencil code (heat.c)

1. Add OpenMP directives to parallelize the loops on the GPU

2. Add OpenMP directives to parallelize the loops on the CPU

• Most of the runtime occurs in the solve() routine. Focus on that function. The rest of the code is there to

just support the work inside solve.

– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp task

– #pragma omp taskwait

– #pragma single

– #pragma omp target

– #pragma omp loop

– Plus the clauses

– private(), firstprivate(), reduction(+:var), collapse(n)

– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count]) map(tofrom:vptr[Lower:Count])

Default is tofrom: map(vptr[Lower:Count])

If you have time, profile

your GPU code using nsys

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp parallel for collapse(2)

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 u_tmp[i+j*n] = r2 * u[i+j*n] +

 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

 r * ((i > 0) ? u[i-1+j*n] : 0.0) +

 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

 }

 }

 // Pointer swap to get ready for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

}

Parallel CPU code, n=4000

Intel® XeonTM Gold 5218 @ 2.3 Ghz, 8 cores. Nvidia HPC Toolkit compiler
nvc –fast –fopenmp heat.c

0

2

4

6

8

0 2 4 6 8 10

heat problem, n=4000

Threads

S
p
e

e
d
u

p

1 thread 1.80 secs

8 threads 0.290 secs

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])

 #pragma omp loop

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 u_tmp[i+j*n] = r2 * u[i+j*n] +

 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

 r * ((i > 0) ? u[i-1+j*n] : 0.0) +

 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

 }

 }

 // Pointer swap to get ready for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

}

Parallel GPU code, n=4000

GPU Solver time = 1.40 secs

This isn’t much better than the

runtime for a single CPU (1.8 secs)

and worse than 8 cores on a CPU

(0.29 secs).

Why is the performance so bad?

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc -fast -mp=gpu -gpu=cc75 heat.c

When you map pointers between the host and the

device, OpenMP remembers the address.

Swapped addresses on the hosts swaps

addresses on the device

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])

 #pragma omp loop

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 u_tmp[i+j*n] = r2 * u[i+j*n] +

 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

 r * ((i > 0) ? u[i-1+j*n] : 0.0) +

 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

 }

 }

 // Pointer swap to get ready for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

}

Parallel GPU code, n=4000

At the beginning of each

iteration, copy

(2*N2)*sizeof(TYPE) bytes

to the device

At the end of each iteration, copy

(2*N2)*sizeof(TYPE) bytes

from the device

With a runtime of 1.4 secs (worse than the

CPU time) we see that Data Movement

dominates performance.

We need to create a data region on the GPU

that is distinct from the target region.

That way, we can keep the data on the device

between target constructs

How do we control how data is mapped onto a

device separately from running kernels … so

data is well defined and persistent between

kernel invocations?

Finer control over data movement

• Recall that data is mapped to/from device at start/end of target region

– #pragma omp target map(tofrom: A[0:N])

{

 …

}

• Inefficient to move data around all the time

• Want to keep data resident on the device between target regions

• Will explain how to interact with the device data environment

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target

regions work within the

target data region

#pragma omp target data map(to:A[0:N], B[0:M]) map(from: C[0:P])

{

 #pragma omp target

 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the

device at the beginning of

the construct

Data is mapped back to

the host at the end of the

target data region

Target update directive

• You can update data between target regions with

the target update directive.

#pragma omp target data map(to: A[0:N],B[0:M]) map(from: C[0:P])

{

 #pragma omp target

 {do lots of stuff with A, B and C on the device}

 #pragma omp target update from(A[0:N])

 host_do_something_with(A)

 #pragma omp target update to(A[0:N])

 #pragma omp target

 {do lots more stuff with A, B, and C on the device}

}

map A on the

device to A on the

host.

map A on the host

to A on the device.

Set up the data

region ahead of

time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)

 Compare to map clause with direction inside: map(to: …)

Target update details

• #pragma omp target update clause[[[,]clause]...]

• Creates a target task to handle data movement between the host and a device.

• Clause: a motion-clause:
– to(list)

– from(list)

Target enter/exit data constructs

• The target data construct requires a structured block of code.

– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:

#pragma omp target enter data map(…)

#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.

• The target exit data unmaps variables from the device data environment.

• Future target regions inherit the existing data environment.

Target enter/exit data example

void init_array(int *A, int N) {

 for (int i = 0; i < N; ++i)
 A[i] = i;
 #pragma omp target enter data map(to: A[0:N])

}

int main(void) {

 int N = 1024;
 int *A = malloc(sizeof(int) * N);

 init_array(A, N);

 #pragma omp target

 #pragma loop
 for (int i = 0; i < N; ++i)
 A[i] = A[i] * A[i];

 #pragma omp target exit data map(from: A[0:N])

}

Target enter/exit data details

• #pragma omp target enter data clause[[[,]clause]...]

• Creates a target task to handle data movement between the host and a device.

• clause is one of the following:
– if(scalar-expression)

– device(integer-expression)

– map (map-type: list)

Exercise

• Modify your parallel heat code from the last exercise.

• Use the ‘target data’ family of constructs to control the device data environment.

• Minimize data movement with map clauses to minimize data movement.

• Question … will the pointer swap on the host still work?

– #pragma omp target

– #pragma omp target enter data

– #pragma omp target exit data

– #pragma omp target update

– map(to:list) map(from:list) map(tofrom:list)

– #pragma omp teams distribute parallel for simd

Solution: Pointer swapping in action

#pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

 for (int t = 0; t < nsteps; ++t) {

 solve(n, alpha, dx, dt, u, u_tmp);

 // Pointer swap

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

#pragma omp target exit data map(from: u[0:n*n])

Copy data to device

before iteration loop

Update solve() routine to remove map clauses:

#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

Copy data from device

after iteration loop

Pointer-swap on the host works. Why?

The pointers (u and u_tmp) are “on the stack” scalars the value of which is a pointer to

memory. They are copied onto the device at the target construct.

The association between host and device addresses is fixed with the start of a target data

region. Hence, as you swap the pointers, the references to the addresses in device

memory are swapped ….. i.e. pointer-swapping on the host works.

Data movement summary

• Data transfers between host/device occur at:

– Beginning and end of target region

– Beginning and end of target data region

– At the target enter data construct

– At the target exit data construct

– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data

region or between target enter/exit data directives.

Getting the data movement between host memory and

device memory is key.

What are the other major issues to consider when

optimizing performance?

Occupancy: Keep all the GPU resources busy
• In our “GPU cartoon” we have 16

multithreaded SIMD processors each with

16 SIMD lanes …. For a total of 162=256

processing elements.

• You want all resources busy at all times.

You do that by keeping excess work for

the multithreaded SIMD processors … if

they are other busy on some high latency
operation, you want a new work-group is

ready to be scheduled for execution.

• Occupancy having enough work-groups to

keep the GPU busy. To support high
occupancy, you need many more work-

items than SIMD-lanes.

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD
Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD
Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

L3 Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane
SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD

Lane

Register File

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

SIMD

Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
P

U
 M

e
m

o
ry

L2 Cache

L2 Cache L2 Cache

G
P

U
 M

e
m

o
ry

G
P

U
 M

e
m

o
ry

G
P

U
 M

e
m

o
ry

A multithreaded SIMD
processor

#pragma omp parallel for

for(int i=0;i<N;i++)

 for(int j=0;j<N;j++)

 for(int k=0;i<N;k++)

 *(C+(i*N+j)) += *(A+(i* N +k)) * *(B+(k* N +j));

#pragma omp parallel for collapse(2)

for(int i=0;i<N;i++)

 for(int j=0;j<N;j++)

 for(int k=0;i<N;k++)

 *(C+(i*N+j)) += *(A+(i* N +k)) * *(B+(k* N +j));

Parallelize i-loop

parallelism O(N)
Parallelize combined i/j-loops

parallelism O(N2)

Converged Execution: Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address

• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently

– Supports the Single Program Multiple Data (SPMD) pattern.

• Branch behavior

– Each branch will be executed serially

– Work-items not following the current branch will be disabled

A warp

Start If Else Converge

Time

Converged Execution: Branching

• GPUs tend not to support speculative execution, which means that branch

instructions have high latency

• This latency can be hidden by switching to alternative work-items/work-groups,

but avoiding branches where possible is still a good idea to improve performance

• When different work-items executing within the same SIMD ALU array take

different paths through conditional control flow, we have divergent branches (vs.

uniform branches)

• Divergent branches are bad news: some work-items will stall while waiting for the

others to complete

• We can use predication, selection and masking to convert conditional control flow

into straight line code and significantly improve the performance of code that has

lots of conditional branches

Branching

Conditional execution

// Only evaluate expression

// if condition is met

if (a > b)

{

acc += (a - b*c);

}

Selection and masking

// Always evaluate expression

// and mask result

temp = (a - b*c);

mask = (a > b ? 1.f : 0.f);

acc += (mask * temp);

Coalesced memory accesses

• Coalesced memory accesses are key for high performance code,

especially on GPUs

• In principle, it’s very simple, but frequently requires transposing or

transforming data on the host before sending it to the GPU

• Sometimes this is an issue of Array of Structures vs. Structure of Arrays

(AoS vs. SoA)

Memory layout is critical to performance

• Structure of Arrays vs. Array of Structures
– Array of Structures (AoS) more natural to code:

 struct Point{ float x, y, z, a; };

 Point *Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-

items/vector-lanes like

to access adjacent

memory locations

– Structure of Arrays (SoA) suits memory coalescence in vector units

 struct { float *x, *y, *z, *a; } Points;

Coalescence

• Coalesce - to combine into one

• Coalesced memory accesses are key for high

bandwidth

• Simply, it means, if thread i accesses memory

location n then thread i+1 accesses memory

location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)

{

// ideal

float val1 = memA[id];

// still pretty good

const int c = 3;

float val2 = memA[id + c];

// stride size is not so good

float val3 = memA[c*id];

// terrible

const int loc =

some_strange_func(id);

float val4 = memA[loc];

}

0 1 2 3 4 5 6 7 GPU Threads

64 Byte Boundary
GPU Memory

64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

float val1 = memA[id];

0 1 2 3 4 5 6 7

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

64 Byte Boundary

Memory access patterns

0 1 2 3 4 5 6 7

0x1200x11c0x1180x114 0x124 0x128 0x12c 0x130 0x134 0x138 0x13c 0x140 0x144 0x148

64 Byte Boundary

const int c = 3;
float val2 = memA[id + c];

Memory access patterns

float val3 = memA[3*id];

0 1 2 3 4 5 6 7

64 Byte Boundary
Strided access results in multiple

memory transactions (and

kills throughput)

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

const int loc =
some_strange_func(id);

float val4 = memA[loc];

0 1 2 3 4 5 6 7

64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns

Exercise

• Optimize the stencil ‘solve’ kernel.

• Start with your code with optimized memory movement from the last exercise.

• Experiment with the optimizations we’ve discussed.

• Focus on the memory access pattern.

• Try different input sizes to see the effect of the optimizations.

• Keep an eye on the solve time as reported by the application.

Solution (only the solve function): collapse + swap loop order

// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u,

double * restrict u_tmp) {

 // Finite difference constant multiplier

 const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // Loop over the nxn grid

 #pragma omp target

 #pragma omp loop collapse(2)

 for (int j = 0; j < n; ++j) {

 for (int i = 0; i < n; ++i) {

 // Update the 5-point stencil, using boundary conditions on the edges of the domain.

 // Boundaries are zero because the MMS solution is zero there.

 u_tmp[i+j*n] = r2 * u[i+j*n] +

 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

 r * ((i > 0) ? u[i-1+j*n] : 0.0) +

 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

}}}

Swap the i and j loops so that the i+j*n

memory accesses are contiguous

Create more work … to better fill the

processing elements of the GPU

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp parallel for

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 u_tmp[i+j*n] = r2 * u[i+j*n] +

 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

 r * ((i > 0) ? u[i-1+j*n] : 0.0) +

 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);

 }

 }

 // Pointer swap for next step

 tmp = u;

 u = u_tmp;

 u_tmp = tmp;

 }

}

Parallel CPU and GPU

results, n=4000

What if I optimize the CPU code?

… just swap the i and j loops. Using collapse(2)

did not help on the GPU or the CPU

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.

Nvidia HPC Toolkit compiler. nvc -fast -mp=gpu heat.c

Num threads ij loop order ji loop order

1 1.512849 0.262260

2 0.776229 0.132453

4 0.400822 0.064220

8 0.227317 0.046586

Intel® XeonTM Gold 5218 @ 2.3 Ghz, 8 cores.
Nvidia HPC Toolkit compiler nvc –fast –fopenmp heat.c

This is the ij loop order.

Swap these loops to get
the ji order.

ij without timing

enter and exit data

ij loop

order

ji without timing

enter and exit data

ji loop order

0.056830 0.417887 0.020123 0.358905

This GPU code used the

target enter data and
target exit data

C
P

U

G
P

U
All times in seconds

The loop construct is great, but sometimes you

want more control.

85

Our host/device Platform Model and OpenMP

Processing

Element

Device

…
…

…

…

…
…

…

…

…
…

…

…

…
…

…

Host

Compute Unit

Target

construct to

get onto a

device

Teams construct to create a

league of teams with one team of

threads on each compute unit.

Distribute construct to assign

blocks of loop iterations to teams.

Parallel for simd

to run each block

of loop iterations

on the processing

elements

86

teams and distribute constructs

• The teams construct
– Similar to the parallel construct

– It starts a league of thread teams

– Each team in the league starts as one initial thread – a team of one

– Threads in different teams cannot synchronize with each other

– The construct must be “perfectly” nested in a target construct

• The distribute construct

– Similar to the for construct

– Loop iterations are workshared across the initial threads in a league

– No implicit barrier at the end of the construct

– dist_schedule(kind[, chunk_size])

– If specified, scheduling kind must be static

– Chunks are distributed in round-robin fashion in chunks of size chunk_size

– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk

87

Create a league of teams and distribute a loop among them

• teams construct

• distribute construct

• Transfer execution control to MULTIPLE device initial threads

• Workshare loop iterations across the initial threads.

host thread

device initial
threads

teams

#pragma omp target

#pragma omp teams

#pragma omp distribute

 for (i=0;i<N;i++)

 …

88

Create a league of teams and distribute a loop among them

and run each team in parallel with its partition of the loop
• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

89

#pragma omp target

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for simd

 for (i=0;i<N;i++)

 …

Create a league of teams and distribute a loop among them

and run each team in parallel with its partition of the loop
• loop

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

90

#pragma omp target

#pragma omp teams

#pragma omp loop

 for (i=0;i<N;i++)

 …

Create a league of teams and distribute a loop among them

and run each team in parallel with its partition of the loop
• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

91

#pragma omp target

#pragma omp teams num_teams(3) thread_limit(5)

#pragma omp distribute

#pragma omp parallel for simd

 for (i=0;i<N;i++)

 …

Explicit control

of number and

size of teams

Create a league of teams and distribute a loop among them

and run each team in parallel with its partition of the loop
• Combined construct

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

92

#pragma omp target teams loop

for (i=0;i<N;i++)

 …

Create a league of teams and distribute a loop among them

and run each team in parallel with its partition of the loop
• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

93

#pragma omp target

#pragma omp teams distribute

for (i=0;i<N;i++)

#pragma omp parallel for simd

 for (j=0;j<M;i++)
 …

Works with

nested loops

as well

Worksharing example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Distribute iterations across 2 teams

In a team, workshare (parallel

for) iterations across 4 threads

In each thread use

SIMD parallelism

64 iterations assigned to 2 teams;

Each team has 4 threads;

Each thread has 2 SIMD lanes

#pragma omp target teams distribute parallel for simd \

num_teams(2) num_threads(4) simdlen(2)

 for (i=0; i<64; i++)

 …

Commonly used clauses on
teams distribute parallel for simd

• The basic construct* is:

#pragma omp teams distribute parallel for simd [clause[[,]clause]...]

for-loops

• The most commonly used clauses are:

– private(list) firstprivate(list) lastprivate(list) shared(list)
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the

region, not back out “at the end”.

– reduction(reduction-identifier : list)

– behaves as in the rest of OpenMP … but the variable must appear in a map(tofrom) clause on the associated

target construct in order to get the value back out at the end (more on this later)

– collapse(n)

– Combines loops before the distribute directive splits up the iterations between teams

– dist_schedule(kind[, chunk_size])

– only supports kind = static. Otherwise works the same as when applied to a for construct. Note: this applies to the

operation of the distribute directive and controls distribution of loop iterations onto teams (NOT the distribution of

loop iterations inside a team).

*We often refer to this as the Big Ugly Directive, or BUD

There is MUCH more … beyond what have time to cover

• Do as much as you can with a simple loop construct. It’s portable and as

compilers improve over time, it will keep up with compiler driven performance

improvements.

• But sometimes you need more:

– Control over number of teams in a league and the size of the teams

– Explicit scheduling of loop iterations onto the the teams

– Management of data movement across the memory hierarchy: global vs. shared vs. private …

– Calling optimized math libraries (such as cuBLAS)

– Multi-device programming

– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU

programming. But start with loop. Start with how data on the host maps onto the

device (i.e. the GPU). Master that level of GPU programming before worrying

about the complex stuff.

96

This is the end … well almost the end.

Let’s wrap up with a few high-level comments

about the state of GPU programming more

generally

97

98

SIMT Programming models: it’s more than just OpenMP
• CUDA:

– Released ~2006. Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.

– Downside: proprietary to NVIDIA

• OpenCL:

– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.

– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.

– Downside: extreme portability means verbose API. Painfully low level especially for the host-program.

• Sycl:

– C++ abstraction layer implements SIMT model with kernels as lambdas. Closely aligned with OpenCL. 1st release 2014

– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models:

– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive

(rather than prescriptive) semantics.

– Downside: NOT an Open Standard. Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT. Semantics are prescriptive which makes it more verbose. A truly Open

standard supported by all the key GPU players. And with the loop construct … its now prescriptive (hence there is no

longer any reason for OpenACC to exist)

Third party names are the property of their owners

They’ve made it more open, but it still doesn’t add anything you can’t do in OpenMP

Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B

void __global__

vecAdd (float* a, float* b, float* c, int N) {

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < N) c[i] = a[i] + b[i];

}

int main () {

 int N = ... ;

 float *a, *b, *c;

 cudaMalloc (&a, sizeof(float) * N);

 // ... allocate other arrays (b and c), fill with data

 // Use thread blocks with 256 threads each

 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

}

99

Unified shared

memory … allocate

on host, visible on

device too

CUDA kernel as

function

Enqueue the kernel

to execute on the

Grid

Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B

#include <CL/sycl.hpp>

int main () {

 int N = ... ;

 float *a, *b, *c;

 sycl::queue q;

 *a = (float *)sycl::malloc_shared(N * sizeof(float), q);

 // ... allocate other arrays (b and c), fill with data

 q.parallel_for(sycl::range<1>{N},

 [=](sycl::id<1> i) {

 c[i] = a[i] + b[i];

 });

 q.wait();

}

100

Create a queue

for SYCL

commands

Unified shared

memory … allocate

on host, visible on

device too

Kernel as a C++

Lambda function

 [=] means capture external
variables by value.

101101

Vector addition with OpenACC

•Let’s add two vectors together …. C = A + B

void vadd(int n,

 const float *a,

 const float *b,

 float *restrict c)

{

 int i;

 #pragma acc parallel loop

 for (i=0; i<n; i++)

 c[i] = a[i] + b[i];

}

int main(){

float *a, *b, *c; int n = 10000;

// allocate and fill a and b

 vadd(n, a, b, c);

}

Assure the

compiler that c is

not aliased with

other pointers

Turn the loop

into a kernel,

move data to a

device, and

launch the
kernel.

Host waits here

until the kernel is

done. Then the

output array c is

copied back to
the host.

102

Why so many ways to do the same thing?

• The parallel programming model people have failed you …

– It’s more fun to create something new in your own closed-community that work across vendors to

create a portable API

• The hardware vendors have failed you …

– Don’t you love my “walled garden”? It’s so nice here, programmers, just don’t even think of going

to some other platform since your code is not portable.

• The standards community has failed you …

– Standards are great, but they move too slow. OpenACC stabbed OpenMP in the back and I’m

pissed, but their comments at the time were spot-on (OpenMP was moving so slow … they just

couldn’t wait).

• The applications community failed themselves …

– If you don’t commit to a standard and use “the next cool thing” you end up with the diversity of

overlapping options we have today. Think about what happened with OpenMP and MPI.

Summary

• Application developers … if you respect yourself, you will only write
code using a cross-platform, vendor neutral programming model.

• I am not sure how to pull it off … but you need to band together and
fight back against vendors trying to tie you to their platforms. I don’t
know how you can make this work, but its up to you.

• GPU programming is fun. But the need to optimize power efficiency
will push us to specialized hardware. How to support specialized
hardware while honoring portable parallel programming is unclear.

To learn more about OpenMP
The OpenMP web site has a great deal of material to help you with OpenMP www.openmp.org
Reading the spec is painful … but each spec has a collection of examples. Study the examples, don’t try to read the specs

Since the specs are written ONLY for implementors … programmers need the OpenMP Books to master OpenMP.

Start here … learn the basics and
build a foundation for the future

Learn advanced features in
OpenMP including tasking and
GPU programming (up to version 4.5)

Programming your
GPU with OpenMP

Tom Deakin and Tim Mattson

MIT Press

Learn all the details of GPU
programming with OpenMP
(up to version 5.2)

http://www.openmp.org/

	Slide 1: Programming your GPU with OpenMP
	Slide 2: Plan for the OpenMP sessions
	Slide 3: Preliminaries: Systems for exercises, Polaris
	Slide 4: The Growth of Complexity in OpenMP
	Slide 5: OpenMP Basic Definitions: Basic Solution Stack
	Slide 6: The Growth of Complexity in OpenMP
	Slide 7: OpenMP Basic Definitions: Solution stack
	Slide 8: OpenMP for non-uniform memory architectures (in one slide)
	Slide 9: Getting the affinity right can have serious impacts on performance
	Slide 10: The Growth of Complexity in OpenMP
	Slide 11: OpenMP Basic Definitions: Solution stack
	Slide 12: The “BIG idea” Behind GPU programming
	Slide 13: How do we execute code on a GPU: The SIMT model (Single Instruction Multiple Thread)
	Slide 14: SIMT: One instruction stream maps onto many SIMD lanes
	Slide 15
	Slide 16: GPU terminology is Broken (sorry about that)
	Slide 17
	Slide 18: Let’s compare/contrast concurrency on a CPU and a GPU
	Slide 19: Executing a program on CPUs and GPUs
	Slide 20: Executing a program on CPUs and GPUs
	Slide 21: CPU/GPU execution modesl
	Slide 22: Programming heterogeneous devices means splitting up code to get the most from the available hardware
	Slide 23: No single processor is best at everything
	Slide 24: If you care about power, the world is heterogeneous?
	Slide 25: Why is OpenMP so important?
	Slide 26: Let’s dig into the details of writing GPU code with OpenMP
	Slide 27: The OpenMP device programming model
	Slide 28: Running code on the GPU: The target construct and default data movement
	Slide 29: Default Data Sharing: example
	Slide 30: Now let’s run code in parallel on the device
	Slide 31: Exercise: Parallel vector addition on a GPU
	Slide 32: Solution: Simple vector add in OpenMP on GPU
	Slide 33: CUDA Toolkit: nsys
	Slide 34: Exercise: Parallel vector addition on a GPU
	Slide 35: Implicit data movement covers a small subset of the cases you need in a real program. To be more general … we need to manage data movement explicitly
	Slide 36: Explicit data movement
	Slide 37: Moving data with the map clause
	Slide 38: OpenMP array notation
	Slide 39: Controlling data movement
	Slide 40: Briefly, attached pointers
	Slide 41: Exercise: Parallel vector addition on a GPU
	Slide 42: Solution: vector add with dynamic memory on GPU
	Slide 43: Commonly used clauses on target and loop constructs
	Slide 44: Loop and reductions
	Slide 45: Going beyond simple vector addition … Using OpenMP for GPU application programming … the heat diffusion problem
	Slide 46: 5-point stencil: the heat program
	Slide 47: 5-point stencil: the heat program
	Slide 51: Heat diffusion problem: 5-point stencil code
	Slide 52: Heat program (heat.c) …
	Slide 53: Heat program (heat.c) …
	Slide 54: Exercise: parallel stencil (heat)
	Slide 55: Heat diffusion problem: 5-point stencil code
	Slide 56: Heat diffusion problem: 5-point stencil code
	Slide 57: Heat diffusion problem: 5-point stencil code
	Slide 58: How do we control how data is mapped onto a device separately from running kernels … so data is well defined and persistent between kernel invocations?
	Slide 59: Finer control over data movement
	Slide 60: Target data directive
	Slide 61: Target update directive
	Slide 62: Target update details
	Slide 63: Target enter/exit data constructs
	Slide 64: Target enter/exit data example
	Slide 65: Target enter/exit data details
	Slide 66: Exercise
	Slide 67: Solution: Pointer swapping in action
	Slide 68: Data movement summary
	Slide 69: Getting the data movement between host memory and device memory is key. What are the other major issues to consider when optimizing performance?
	Slide 70: Occupancy: Keep all the GPU resources busy
	Slide 71: Converged Execution: Single Instruction Multiple Data
	Slide 72: Converged Execution: Branching
	Slide 73: Branching
	Slide 74: Coalesced memory accesses
	Slide 75: Memory layout is critical to performance
	Slide 76: Coalescence
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Exercise
	Slide 83: Solution (only the solve function): collapse + swap loop order
	Slide 84: Heat diffusion problem: 5-point stencil code
	Slide 85: The loop construct is great, but sometimes you want more control.
	Slide 86: Our host/device Platform Model and OpenMP
	Slide 87: teams and distribute constructs
	Slide 88: Create a league of teams and distribute a loop among them
	Slide 89: Create a league of teams and distribute a loop among them and run each team in parallel with its partition of the loop
	Slide 90: Create a league of teams and distribute a loop among them and run each team in parallel with its partition of the loop
	Slide 91: Create a league of teams and distribute a loop among them and run each team in parallel with its partition of the loop
	Slide 92: Create a league of teams and distribute a loop among them and run each team in parallel with its partition of the loop
	Slide 93: Create a league of teams and distribute a loop among them and run each team in parallel with its partition of the loop
	Slide 94: Worksharing example
	Slide 95: Commonly used clauses on teams distribute parallel for simd
	Slide 96: There is MUCH more … beyond what have time to cover
	Slide 97: This is the end … well almost the end. Let’s wrap up with a few high-level comments about the state of GPU programming more generally
	Slide 98: SIMT Programming models: it’s more than just OpenMP
	Slide 99: Vector addition with CUDA
	Slide 100: Vector addition with SYCL
	Slide 101: Vector addition with OpenACC
	Slide 102: Why so many ways to do the same thing?
	Slide 103: Summary
	Slide 104: To learn more about OpenMP

