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Plan for the OpenMP sessions
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4:00 Introduction: Parallel programming and the OpenMP Common Core

4:30 Working with threads (Including synchronization): the SPMD Pattern

5:30 Worksharing and data sharing: The Loop Parallelism Pattern

~6:30 Dinner

Next Day

8:30 Task-level parallelism in OpenMP: The Divide and Conquer Pattern

10:00 Break

10:30 Beyond the common core: More Worksharing and synchronization … plus threadprivate

12:30 Lunch

1:30 Wrapping up the CPU and transitioning to GPU-programming  

2:30 The loop construct … GPU programming made “simple”

3:30 Break

4:00 Explicit Data Movement and basic principles of GPU optimization

5:30 Detailed control of the GPU … and comparisons to other GPU programming models

6:30 Dinner

Note: How much time people need with the exercises never works out 

as I expect, which is fine. Everything is driven by the needs of the 
students … not some concept I might have of a schedule.
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• Start an interactive job on one node
        qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:grand:eagle  -A ATPESC2025 -q ATPESC

• Use the Nvidia programming environment
        module swap PrgEnv-nvhpc PrgEnv-gnu      change back to Nvidia programming environment  

        cc –mp=gpu heat_map_target.c.       

        OMP_TARGET_OFFLOAD=MANDATORY ./a.out.   might be needed for tiny programs

 

• It might impact performance to match to the specific GPU architecture … 

     cc –mp=gpu -gpu=cc80 program.c
     cc –mp=gpu –gpu=sm_80 program .c

• For short jobs you may need to force it to run on the GPU

      OMP_TARGET_OFFLOAD=MANDATORY ./a.out.  

• For the GPU, you can profile an execution using the nvprof profile in nsys:

      nsys nvprof ./a.out

• This will generate all sorts of data about the job.   What we care most about is the summary of memory movement at the 
end of the profile report.

Preliminaries: Systems for exercises, Polaris
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The Growth of Complexity in OpenMP
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The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers 

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1
2.0

2.5

3.0
3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec

C/C++ spec

Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025

0

500

600

400

300

200

100

Page Counts … not including front matter, tools-interface, appendices or the index.

P
a

g
e

 C
o

u
n

ts
 

Supports general 

multithreading, but 

the emphasis was 

on parallel loops



OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment 

variables

Application

End User

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case …. 

i.e., lots of threads with “equal cost access” to memory 5



The Growth of Complexity in OpenMP
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The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers 
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OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment 

variables

Application

End User

CPU cores SIMD units

Shared address space (NUMA)

7NUMA: Non-Uniform Memory Architecture



OpenMP for non-uniform memory architectures (in one slide)

● Examples:

○ export OMP_PLACES=threads

○ export OMP_PLACES=cores

• A modern CPU is complex.  The OS manages threads to 

emphasize low latency for numerous concurrent threads … 

not HPC

• OpenMP includes the ability for full control of NUMA systems 
… it can get complicated.

• Keep it simple:

– Utilize first touch page assignment: Initialize data the 

same way (e.g. with the same ”parallel for schedule” clause) 

as you will compute with it.

– Define places on the CPU … that is, tell the system the granularity of 

thread placement with the OMP_PLACES environment variable

1. threads: Hardware threads (or hyperhreads or SMT threads)

2. cores: Instruction sequencer(s) and backend

– Tell the system to stop moving threads once they are placed (i.e. 

bind them) and how to distribute them among places with the 

OMP_PROC_BIND environment variable.  2 common cases 

1. spread: Distribute them as evenly as possible. 

2. close: Distributed close to the primary* thread.

● Examples:

○ export OMP_PROC_BIND=spread

○ export OMP_PROC_BIND=close

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads



Getting the affinity right can have serious impacts on performance

Application Benchmark Performance for a number of benchmarks at NERSC

Lower is better

Results running on the Cori system at 

NERSE which has dual Socket nodes with 

Intel® XeonTM E5-2698v3 CPUs

Based on content from  Yun (Helen) He from NERSC (National Energy Research Supercomputing Center)



The Growth of Complexity in OpenMP
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The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers 
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OpenMP ... supports 

irregular parallelism

Proc_bind and 

Places added to 

support thread 

affinity for NUMA 

systems

Target constructs added 

to OpenMP ... supports 

host-device/GPU model
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OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment 

variables

Application

End User

CPU cores SIMD units GPU cores

Shared address space (NUMA)
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The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B

void __global__

vecAdd (float* a, float* b, float* c, int N) {

    int i = blockIdx.x * blockDim.x + threadIdx.x;

    if (i < N) c[i] = a[i] + b[i];

}

int main () {

    int N = ... ;

    float *a, *b, *c;

    cudaMalloc (&a,  sizeof(float) * N);

  // ... allocate other arrays (b and c)

  // and fill with data

  // Use thread blocks with 256 threads each

    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

}

12

Assume a GPU with 

unified shared memory 

… allocate on host, 

visible on device too

int main() {

   int N = . . . ;

   float *a, *b, *c;

   

   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)

   // and fill with data

   for (int i=0;i<N; i++)

      c[i] = a[i] + b{i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:

The SIMT model (Single Instruction Multiple Thread)
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// Compute sum of order-N matrices: C = A + B
void __global__
matAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j<N) c[i][j] == a[i][j] + b[i][j];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // define threadBlocks and the Grid
      dim3 dimBlock(4,4); 
   dim3 dimGrid(4,4);

  // Launch kernel on Grid 
    matAdd <<< dimGrid,dimBlock>>> (a, b, c, N);
}

1. Write kernel code for the 
scalar work-items 2. Map work-items onto an 

N dim index space. 

4. Run on hardware 
designed around the 

same SIMT 
execution model

3. Map data structures 
onto the same index 

spaceThis is CUDA code
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SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD 

execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of 

Scalar 

instructions

NVIDIA calls this set of 

work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add
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add

st y
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mul a

ld y

add

st y
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SIMD execution scheduled 

across a fixed number of 

SIMD Lanes (SL)
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A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD 

processor



GPU terminology is Broken (sorry about that)
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Let’s compare/contrast concurrency on a 

CPU and a GPU
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CPU/GPU execution modesl

For a CPU, the 
threads are all 
active and able 

to make forward 
progress.

For a GPU, any 
given work-group 

might be in the 
queue waiting to 

execute.



Programming heterogeneous devices 

means splitting up code to get the most 

from the available hardware
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No single processor is best at everything
• The idea that you should move everything to the GPU makes no sense

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running? 

On a CPU

On an Accelerator

CPU only

Offload

Heterogeneous 
Computing



If you care about power, the world is 
heterogeneous?

Specialized 

processors doing 

operations suited to 

their architecture 

are more efficient 

than general 

purpose 

processors. 0

5
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15

20

25

30

SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2.   IEEE International 
Symposium on Computer Architecture and High Performance Computing, 2020  

Intel® MovidiusTM MyriadTM 2 VPU

Intel® Xeon® E5-2697v2 CPU, 
3.5 GHz, 12 cores

Nvidia® K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs, 
FPGAs, and a wide range of accelerators
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Why is OpenMP so important?

https://x-dev.pages.jsc.fz-juelich.de/models/

Table from https://doi.org/10.1145/3624062.3624178

Many cores, Many models: GPU programming model 

vs Vendor Compatibility Overview, Andreas Herten, 

SC23 workshop proceedings

OpenMP is the only model 

with full support

from all vendors

for C/C++ and Fortran

… and OpenMP supports 

Python as well (PyOMP)

https://github.com/Python-for-HPC/PyOMP.git

https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://x-dev.pages.jsc.fz-juelich.de/models/
https://doi.org/10.1145/3624062.3624178


Let’s dig into the details of writing GPU 

code with OpenMP
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The OpenMP device programming model
▪ OpenMP uses a host/device model

– The host is where the initial thread of the 
program begins execution

– Zero or more devices are connected to the 
host

– Device-memory address space is distinct 
from host-memory address space

#include <omp.h>

#include <stdio.h>

int main()

{

    printf(“There are %d devices\n”,

              omp_get_num_devices());

}

Device

…
…

…

…

…
…

…

…

…
…

…

…

…
…

…

Host



Running code on the GPU:  
The target construct and default data movement

Host thread

Generating Task

Initial task

Target task

#pragma omp target

{

      target region, 

can use A, B and N

    

}

Device Initial 

thread

Host thread

waits for the 

task region to 

complete

float A[N], B[N]; A, B and N 

mapped to the 

device

the arrays 

A and B 

mapped back to 

the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Statically allocated arrays and scalars 

(as firstprivate) are moved onto the 

device by default before execution

Only the statically allocated arrays are 

moved back to the host after the target 

region completes
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Default Data Sharing: example

int main(void) {

   int N = 1024;

   double A[N], B[N];

   #pragma omp target 

   {

      for (int ii = 0; ii < N; ++ii) {

         A[ii] = A[ii] + B[ii];

      }

   } // end of target region

}

1. Variables created in host 
memory.

2. Scalar N and stack arrays 
A and B are copied to device 

memory. Execution 
transferred to device.

3. ii is private on the device 
as it’s declared within the 

target region

4. Execution on the device.

5. stack arrays A and B are 
copied from device memory 

back to the host. Host 
resumes execution.

29



Now let’s run code in parallel on the device

int main(void) {

   int N = 1024;

   double A[N], B[N];

   #pragma omp target 

   {

      #pragma omp loop

      for (int ii = 0; ii < N; ++ii) {

         A[ii] = A[ii] + B[ii];

      }

   } // end of target region

}

The loop construct tells the compiler: 

“this loop will execute correctly if 
the loop iterations run in any order.  

You can safely run them 
concurrently.  And the loop-body 

doesn’t contain any OpenMP 
constructs.  So do whatever you 
can to make the code run fast”

30

The loop construct is a declarative construct.   You 

tell the compiler what you want done but you DO 

NOT tell it how to “do it”.     This is new for OpenMP



Exercise: Parallel vector addition on a GPU

• Start with the provided vadd.c program. Parallelize it for a CPU and time it for large N.  

– vadd.c Adds together two arrays, element by element:              for(i=0;i<N;i++) c[i]=a[i]+b[i];

• Parallelize the vadd program for a GPU and time it for large N. 

• How does it compare to the CPU version?

– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp target

– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the 

host.  You can force the OpenMP runtime to use the GPU by 

setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:

      qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:eagle -A ATPESC2025 -q ATPESC

Compiler with cc … which is a wrapper around the Nvidia compilers (cc, CC or ftn)  
   cc -mp=gpu vadd.c



Solution: Simple vector add in OpenMP on GPU

int main()

{

  float a[N], b[N], c[N], res[N];

  int err=0;

 // fill the arrays

 #pragma omp parallel for

 for (int i=0; i<N; i++){

   a[i] = (float)i;

   b[i] = 2.0*(float)i;

   c[i] = 0.0;

   res[i] = i + 2*i;

 }

 // add two vectors

 #pragma omp target

   #pragma omp loop

 for (int i=0; i<N; i++){

   c[i] = a[i] + b[i];

 }

// test results

#pragma omp parallel for reduction(+:err)

for(int i=0;i<N;i++){

  float val = c[i] - res[i];

  val = val*val;

  if(val>TOL) err++;

}

 printf("vectors added with %d errors\n", err);

return 0;

}



> nsys nvprof ./flow.omp4. flow-params

CUDA Toolkit: nsys

Simple profiling:  nsys nvprof ./exe <params>

Time to copy data onto GPU
Time to copy data back from GPU



Exercise: Parallel vector addition on a GPU

• Run you vector add program using nsys and see if the profiling output matches 

your expectations for vadd.
– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp task

– #pragma omp taskwait

– #pragma single

– #pragma omp target

– #pragma omp loop

ATPESC/OMP_GPU_Exercises/vadd.c

For tiny little programs, OpenMP may opt to run the code on the 

host.  You can force the OpenMP runtime to use the GPU by 

setting the OMP_TARGET_OFFLOAD environment variable

> OMP_TARGET_OFFLOAD=MANDATORY ./a.out

Get interactive access to a node:

 qsub -I -l select=1 -l walltime=00:30:00 -l filesystems=home:eagle  -A ATPESC2025 -q ATPESC

Compiler with cc … which is a wrapper around the Nvidia compilers (nvc)  
   cc -mp=gpu program.c

      nsys nvprof ./a.out



Implicit data movement covers a small subset of 

the cases you need in a real program.

To be more general … we need to manage data 

movement explicitly

35
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Explicit data movement

• Previously, we described the rules for implicit data movement.

• We can explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to be explicitly copied to/from the device:

int main(void) {

   int  ii=0, N = 1024;

   int* A = (int *)malloc(sizeof(int)*N);

   #pragma omp target

   {

     // N, ii and A all exist here

     // The data that A points to (*A , A[ii]) DOES NOT exist here!

   }
}
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Moving data with the map clause

int main(void) {

   int  N = 1024;

   int* A = malloc(sizeof(int)*N);

   #pragma omp target map(A[0:N])

   {

     // N, ii and A all exist here

     // The data that A points to DOES exist here!

   }

}

Default mapping 

map(tofrom: A[0:N])

Copy at start and end of 

target region.
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OpenMP array notation

• For mapping data arrays/pointers you must use array section notation:

– In C, notation is pointer[lower-bound : length]

– map(to: a[0:N])

– Starting from the element at a[0], copy N elements to the target data region

– Be careful!

– It’s common to confuse this with the Fortran notation: (begin : end).  

– Without the map, OpenMP defines that the pointer itself (a) is mapped as a zero-length array 

section.

– Zero length arrays: a[:0]
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Controlling data movement

• The various forms of the map clause

– map(to:list): On entering the region, variables in the list are initialized on the device using the 

original values from the host (host to device copy).

– map(from:list):  At the end of the target region, the values from variables in the list are copied 

into the original variables on the host (device to host copy). On entering the region, the initial 

value of the variables on the device is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start of 

region, device to host copy at end).

– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.

– map(list): equivalent to map(tofrom:list).

int i, a[N], b[N], c[N];

#pragma omp target map(to:a,b) map(tofrom:c)

Data movement 

defined from the 

host perspective.



Briefly, attached pointers

• Pointers appearing with array sections in map clauses are called a base pointer

– E.g., in map(tofrom: A[0:N]), A is a base pointer

• The base pointer is mapped firstprivate, and is an attached pointer

• Attached pointers cannot be modified in the target region

• The OpenMP runtime keeps a lookup table of mapped memory addresses to 

translate between the data on the host and the mapped data on the device

– The translation happens when variables are mapped (target, target data, etc)
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Exercise: Parallel vector addition on a GPU

• Start from vadd_heap.c

– Vadd_heap.c Adds together two arrays, element by element:       for(i=0;i<N;i++) c[i]=a[i]+b[i];

• Parallelize for a GPU  
– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp task

– #pragma omp taskwait

– #pragma single

– #pragma omp target

– #pragma omp loop

– Plus the clauses 

– private(), firstprivate(), reduction(+:var)

– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count])  map(tofrom:vptr[Lower:Count])

ATPESC/OMP_GPU_Exercises/vadd.c

Default is tofrom:   map(vptr[Lower:Count])
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Solution: vector add with dynamic memory on GPU

int main()

{

  float *a  = malloc(sizeof(float) * N);

  float *b  = malloc(sizeof(float) * N);

  float *c  = malloc(sizeof(float) * N);

  float *res = malloc(sizeof(float) * N);

  int err=0;

 // fill the arrays <<<code not shown>>>>

 // add two vectors

 #pragma omp target map(to: a[0:N],b[0:N]) map (tofrom: c[0:N])

   #pragma omp loop

 for (int i=0; i<N; i++){

   c[i] = a[i] + b[i];

 }

// test results <<<code not shown>>>>

#pragma omp parallel for reduction(+:err)

 printf("vectors added with %d errors\n", err);

return 0;

}
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Commonly used clauses on 
target and loop constructs

• The basic construct* is:

#pragma omp target [clause[[,]clause]...]

#pragma omp loop [clause[[,]clause]...]

for-loops 

• The most commonly used clauses are:

– map(to | from | tofrom list)     default is tofrom

– private(list)   firstprivate(list)   lastprivate(list)   shared(list) 

– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the 

region, not back out “at the end”.

– reduction(reduction-identifier : list) 

– behaves as in the rest of OpenMP

– collapse(n) 

– Combines loops before the distribute directive splits up the iterations between teams



Loop and reductions

#include <omp.h>

#include <stdio.h>

static long num steps = 100000000;

int main() {

double sum = 0.0;

double step = 1.0 / ( double ) num steps ;

#pragma omp target map(tofrom:sum)

#pragma omp loop reduction (+:sum)

for (int i=0; i<numsteps; i++){

    double x = (i + 0.5) ∗ step;

    sum += 4.0 / (1.0 + x ∗ x);

}

double pi = step ∗ sum;

printf(” pi with %ld steps is %lf\n”, num steps, pi);

We will talk about explicit mapping of 

variables between the host and a 

device latter.   This uses the map() 

clause.    

When using the loop directive, you 

need to explicitly define this mapping 

for the reduction variable.

This will all make sense when we 
cover the map() clause later on.



Going beyond simple vector addition … 

Using OpenMP for GPU application 

programming … the heat diffusion problem



5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.

• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦  is a function of space and time.

• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕2𝑢

𝜕𝑥2
 ≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥2

– Forward finite difference in time, central finite difference in space.

𝜕𝑢

𝜕𝑡
− 𝛼∇2𝑢 = 0



5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time 

t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.

• If on a boundary, look up a boundary condition instead.



Heat diffusion problem: 5-point stencil code 

const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 

     for (int i = 0; i < n; ++i) {

       for (int j = 0; j < n; ++j) {

         u_tmp[i+j*n] =  r2 * u[i+j*n]         +

             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +

             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +

             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);

        }

      }

    // Pointer swap to get ready for next step

    tmp = u;

    u = u_tmp;

    u_tmp = tmp;

 }

}

Loop over time steps

Loop over NxN spatial domain

Update the 5-point 

stencil. Boundary 

conditions on the 

edges of the domain 

are fixed at zero. 

Serial CPU code



Heat program (heat.c) …  

 // Loop over time steps

  for (int t = 0; t < nsteps; ++t) {

    // solve over spatial domain for step t

  solve(n, alpha, dx, dt, u, u_tmp);

  // Pointer swap to get ready for next step

  tmp = u;

  u = u_tmp;

  u_tmp = tmp;

 }

• Takes two optional command line 

arguments: <ncells> <nsteps>

– E.g. ./heat 1000 10

– 1000x1000 cells, 10 timesteps 

(the default problem size).

• If no command line arguments are 

provided, it uses a default:

– These two commands both run 
the default problem size of 

1000x1000 cells, 10 timesteps.

– ./heat

– ./heat 1000 10

• A sensible bigger problem is 8000 x 

8000 cells and 10 timesteps.



Heat program (heat.c) …  

 // Loop over time steps

  for (int t = 0; t < nsteps; ++t) {

    // solve over spatial domain for step t

  solve(n, alpha, dx, dt, u, u_tmp);

  // Pointer swap to get ready for next step

  tmp = u;

  u = u_tmp;

  u_tmp = tmp;

 }

Note: Swapping pointer on the host 

before entering the target region on 

the next iteration works on a GPU.

When you map pointers between 
the host and the device, OpenMP 

remembers the address.   

Swapped addresses on the hosts 

swaps addresses on the device



Exercise: parallel stencil (heat)

• Take the provided heat stencil code (heat.c)

1. Add OpenMP directives to parallelize the loops on the GPU

2. Add OpenMP directives to parallelize the loops on the CPU

• Most of the runtime occurs in the solve() routine.  Focus on that function. The rest of the code is there to 

just support the work inside solve. 

– double omp_get_wtime();

– #pragma omp parallel

– #pragma omp for

– #pragma omp parallel for

– #pragma omp task

– #pragma omp taskwait

– #pragma single

– #pragma omp target

– #pragma omp loop

– Plus the clauses 

– private(), firstprivate(), reduction(+:var), collapse(n)

– map(to:vptr[Lower:Count]) map(from:vptr[Lower:Count])  map(tofrom:vptr[Lower:Count])

Default is tofrom:   map(vptr[Lower:Count])

If you have time, profile 

your GPU code using nsys



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 

     #pragma omp parallel for collapse(2)

     for (int i = 0; i < n; ++i) {

       for (int j = 0; j < n; ++j) {

         u_tmp[i+j*n] =  r2 * u[i+j*n]         +

             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +

             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +

             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);

        }

      }

    // Pointer swap to get ready for next step

    tmp = u;

    u = u_tmp;

    u_tmp = tmp;

 }

}

Parallel CPU code, n=4000

Intel® XeonTM  Gold 5218 @ 2.3 Ghz, 8 cores.    Nvidia HPC Toolkit compiler
nvc –fast –fopenmp heat.c 

0
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heat problem,  n=4000 

Threads

S
p
e
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p

1 thread 1.80 secs

8 threads 0.290 secs



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 

    #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])

    #pragma omp loop

     for (int i = 0; i < n; ++i) {

       for (int j = 0; j < n; ++j) {

         u_tmp[i+j*n] =  r2 * u[i+j*n]         +

             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +

             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +

             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);

        }

      }

    // Pointer swap to get ready for next step

    tmp = u;

    u = u_tmp;

    u_tmp = tmp;

 }

}

Parallel GPU code, n=4000

GPU Solver time = 1.40 secs

This isn’t much better than the 

runtime for a single CPU (1.8 secs) 

and worse than 8 cores on a CPU 

(0.29 secs).

Why is the performance so bad?

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc -fast -mp=gpu -gpu=cc75 heat.c

When you map pointers between the host and the 

device, OpenMP remembers the address.   

Swapped addresses on the hosts swaps 

addresses on the device



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 

    #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])

    #pragma omp loop

     for (int i = 0; i < n; ++i) {

       for (int j = 0; j < n; ++j) {

         u_tmp[i+j*n] =  r2 * u[i+j*n]         +

             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +

             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +

             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);

        }

      }

    // Pointer swap to get ready for next step

    tmp = u;

    u = u_tmp;

    u_tmp = tmp;

 }

}

Parallel GPU code, n=4000

At the beginning of each 

iteration, copy 

(2*N2)*sizeof(TYPE) bytes

to the device

At the end of  each iteration, copy

(2*N2)*sizeof(TYPE) bytes

from the device

With a runtime of 1.4 secs (worse than the 

CPU time) we see that Data Movement 

dominates performance. 

We need to create a data region on the GPU 

that is distinct from the target region.

That way,  we can keep the data on the device 

between target constructs



How do we control how data is mapped onto a 

device separately from running kernels … so 

data is well defined and persistent between 

kernel invocations?



Finer control over data movement

• Recall that data is mapped to/from device at start/end of target region

– #pragma omp target map(tofrom: A[0:N])

{

   …

}

• Inefficient to move data around all the time

• Want to keep data resident on the device between target regions

• Will explain how to interact with the device data environment



Target data directive
• The target data construct creates a target data region 

… use map clauses for explicit data management

one or more target 

regions work within the 

target data region

#pragma omp target data map(to:A[0:N], B[0:M]) map(from: C[0:P])

{

 #pragma omp target

 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the 

device at the beginning of 

the construct

Data is mapped back to 

the host at the end of the 

target data region



Target update directive

• You can update data between target regions with 

the target update directive.

#pragma omp target data map(to: A[0:N],B[0:M]) map(from: C[0:P])

{

     #pragma omp target

           {do lots of stuff with A, B and C on the device}

     #pragma omp target update from(A[0:N])

     host_do_something_with(A)

     #pragma omp target update to(A[0:N])

     #pragma omp target

           {do lots more stuff with A, B, and C on the device}

}

map A on the 

device to A on the 

host. 

map A on the host 

to A on the device. 

Set up the data 

region ahead of 

time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)

 Compare to map clause with direction inside: map(to: …)



Target update details

• #pragma omp target update clause[[[,]clause]...]

• Creates a target task to handle data movement between the host and a device.

• Clause: a motion-clause: 
– to(list) 

– from(list) 



Target enter/exit data constructs

• The target data construct requires a structured block of code.

– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:

#pragma omp target enter data map(…)

#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.

• The target exit data unmaps variables from the device data environment.

• Future target regions inherit the existing data environment.



Target enter/exit data example

void init_array(int *A, int N) {

   for (int i = 0; i < N; ++i)
      A[i] = i;
  #pragma omp target enter data map(to: A[0:N])

}

int main(void) {

   int N = 1024;
   int *A = malloc(sizeof(int) * N);

   init_array(A, N);

   #pragma omp target 

   #pragma loop  
   for (int i = 0; i < N; ++i)
      A[i] = A[i] * A[i];

 #pragma omp target exit data map(from: A[0:N])

}



Target enter/exit data details

• #pragma omp target enter data clause[[[,]clause]...]

• Creates a target task to handle data movement between the host and a device.

• clause is one of the following: 
– if(scalar-expression) 

– device(integer-expression)

– map (map-type: list) 



Exercise

• Modify your parallel heat code from the last exercise.

• Use the ‘target data’ family of constructs to control the device data environment. 

• Minimize data movement with map clauses to minimize data movement.

• Question … will the pointer swap on the host still work?

– #pragma omp target 

– #pragma omp target enter data

– #pragma omp target exit data

– #pragma omp target update

– map(to:list) map(from:list) map(tofrom:list)

– #pragma omp teams distribute parallel for simd



Solution:  Pointer swapping in action

#pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

 for (int t = 0; t < nsteps; ++t) {

  solve(n, alpha, dx, dt, u, u_tmp);

  // Pointer swap

  tmp = u;

  u = u_tmp;

  u_tmp = tmp;

 }

#pragma omp target exit data map(from: u[0:n*n])

Copy data to device 

before iteration loop

Update solve() routine to remove map clauses:

#pragma omp target map(u_tmp[0:n*n], u[0:n*n])

Copy data from device 

after iteration loop

Pointer-swap on the host works.  Why?

The pointers (u and u_tmp) are “on the stack” scalars the value of which is a pointer to 

memory.   They are copied onto the device at the target construct.

The association between host and device addresses is fixed with the start of a target data 

region.  Hence, as you swap the pointers, the references to the addresses in device 

memory are swapped ….. i.e. pointer-swapping on the host works.   



Data movement summary

• Data transfers between host/device occur at:

– Beginning and end of target region

– Beginning and end of target data region

– At the target enter data construct

– At the target exit data construct

– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data 

region or between target enter/exit data directives.



Getting the data movement between host memory and 

device memory is key.

What are the other major issues to consider when 

optimizing performance?



Occupancy:  Keep all the GPU resources busy
• In our “GPU cartoon” we have 16 

multithreaded SIMD processors each with 

16 SIMD lanes …. For a total of 162=256 

processing elements.

• You want all resources busy at all times.  

You do that by keeping excess work for 

the multithreaded SIMD processors … if 

they are other busy on some high latency 
operation, you want a new work-group is 

ready to be scheduled for execution.

• Occupancy having enough work-groups to 

keep the GPU busy.   To support high 
occupancy, you need many more work-

items than SIMD-lanes.
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A multithreaded SIMD 
processor

#pragma omp parallel for

for(int i=0;i<N;i++)

   for(int j=0;j<N;j++)

      for(int k=0;i<N;k++)

        *(C+(i*N+j)) += *(A+(i* N +k)) *  *(B+(k* N +j));

#pragma omp parallel for collapse(2)

for(int i=0;i<N;i++)

   for(int j=0;j<N;j++)

      for(int k=0;i<N;k++)

        *(C+(i*N+j)) += *(A+(i* N +k)) *  *(B+(k* N +j));

Parallelize i-loop 

parallelism O(N)
Parallelize combined i/j-loops 

parallelism O(N2)



Converged Execution:  Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address

• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently 

– Supports the Single Program Multiple Data (SPMD) pattern.  

• Branch behavior

– Each branch will be executed serially

– Work-items not following the current branch will be disabled

A warp

Start If Else Converge

Time



Converged Execution: Branching

• GPUs tend not to support speculative execution, which means that branch 

instructions have high latency

• This latency can be hidden by switching to alternative work-items/work-groups, 

but avoiding branches where possible is still a good idea to improve performance

• When different work-items executing within the same SIMD ALU array take 

different paths through conditional control flow, we have divergent branches (vs. 

uniform branches)

• Divergent branches are bad news: some work-items will stall while waiting for the 

others to complete

• We can use predication, selection and masking to convert conditional control flow 

into straight line code and significantly improve the performance of code that has 

lots of conditional branches



Branching

Conditional execution

// Only evaluate expression

// if condition is met

if (a > b)

{

acc += (a - b*c);

}

Selection and masking

// Always evaluate expression

// and mask result

temp = (a - b*c);

mask = (a > b ? 1.f : 0.f);

acc += (mask * temp);



Coalesced memory accesses

• Coalesced memory accesses are key for high performance code, 

especially on GPUs

• In principle, it’s very simple, but frequently requires transposing or 

transforming data on the host before sending it to the GPU

• Sometimes this is an issue of Array of Structures vs. Structure of Arrays 

(AoS vs. SoA)



Memory layout is critical to performance

• Structure of Arrays vs. Array of Structures
– Array of Structures (AoS) more natural to code:

 struct Point{ float x, y, z, a; };

 Point *Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-

items/vector-lanes like 

to access adjacent 

memory locations

– Structure of Arrays (SoA) suits memory coalescence in vector units

 struct { float *x, *y, *z, *a; } Points;



Coalescence

• Coalesce - to combine into one

• Coalesced memory accesses are key for high 

bandwidth

• Simply, it means, if thread i accesses memory 

location n then thread i+1 accesses memory 

location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)

{

// ideal

float val1 = memA[id];

// still pretty good 

const int c = 3;

float val2 = memA[id + c];

// stride size is not so good

float val3 = memA[c*id];

// terrible

const int loc =

some_strange_func(id);

float val4 = memA[loc];

}
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float val1 = memA[id];

0 1 2 3 4 5 6 7
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const int c = 3;
float val2 = memA[id + c];

Memory access patterns



float val3 = memA[3*id];

0 1 2 3 4 5 6 7

64 Byte Boundary
Strided access results in multiple 

memory transactions (and 

kills throughput)
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Memory access patterns



const int loc = 
some_strange_func(id);

float val4 = memA[loc];

0 1 2 3 4 5 6 7

64 Byte Boundary

0x1000x0fc0x0f80x0f4 0x104 0x108 0x10c 0x110 0x114 0x118 0x11c 0x120 0x124 0x128

Memory access patterns



Exercise

• Optimize the stencil ‘solve’ kernel.

• Start with your code with optimized memory movement from the last exercise.

• Experiment with the optimizations we’ve discussed.

• Focus on the memory access pattern.

• Try different input sizes to see the effect of the optimizations.

• Keep an eye on the solve time as reported by the application.



Solution (only the solve function): collapse + swap loop order

// Compute the next timestep, given the current timestep

void solve(const int n, const double alpha, const double dx, const double dt, const double * restrict u, 

double * restrict u_tmp) {

 // Finite difference constant multiplier

 const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // Loop over the nxn grid

 #pragma omp target

 #pragma omp loop collapse(2)

 for (int j = 0; j < n; ++j) {

  for (int i = 0; i < n; ++i) {

   // Update the 5-point stencil, using boundary conditions on the edges of the domain.

   // Boundaries are zero because the MMS solution is zero there.

   u_tmp[i+j*n] =  r2 * u[i+j*n] +

   r * ((i < n-1) ? u[i+1+j*n] : 0.0) +

   r * ((i > 0)  ? u[i-1+j*n] : 0.0) +

   r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

   r * ((j > 0)  ? u[i+(j-1)*n] : 0.0);

}}}

Swap the i and j loops so that the i+j*n 

memory accesses are contiguous

Create more work … to better fill the 

processing elements of the GPU



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

 

  for (int t = 0; t < nsteps; ++t) { 

 

    #pragma omp parallel for

     for (int i = 0; i < n; ++i) {

       for (int j = 0; j < n; ++j) {

         u_tmp[i+j*n] =  r2 * u[i+j*n]         +

             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +

             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +

             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);

        }

      }

    // Pointer swap for  next step

    tmp = u;

    u = u_tmp;

    u_tmp = tmp;

 }

 

}

Parallel CPU and GPU 

results, n=4000

What if I optimize the CPU code?

… just swap the i and j loops.  Using collapse(2) 

did not help on the GPU or the CPU

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.

Nvidia HPC Toolkit compiler. nvc -fast -mp=gpu heat.c

Num threads ij loop order ji loop order

1 1.512849 0.262260

2 0.776229 0.132453

4 0.400822 0.064220

8 0.227317 0.046586

Intel® XeonTM  Gold 5218 @ 2.3 Ghz, 8 cores.    
Nvidia HPC Toolkit compiler           nvc –fast –fopenmp heat.c 

This is the ij loop order.  

Swap these loops to get 
the ji order.

ij without timing 

enter and exit data

ij loop 

order

ji without timing 

enter and exit data

ji loop order

0.056830 0.417887 0.020123 0.358905

This GPU code used the 

target enter data and 
target exit data

C
P

U

G
P

U
All times in seconds



The loop construct is great, but sometimes you 

want more control.
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Our host/device Platform Model and OpenMP

Processing 

Element

Device

…
…

…

…

…
…

…

…

…
…

…

…

…
…

…

Host

Compute Unit

Target 

construct to 

get onto a 

device

Teams construct to create a 

league of teams with one team of 

threads on each compute unit.

Distribute construct to assign 

blocks of loop iterations to teams.

Parallel for simd 

to run each block 

of loop iterations 

on the processing 

elements
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teams and distribute constructs

• The teams construct
– Similar to the parallel construct

– It starts a league of thread teams

– Each team in the league starts as one initial thread – a team of one

– Threads in different teams cannot synchronize with each other

– The construct must be “perfectly” nested in a target construct

• The distribute construct

– Similar to the for construct

– Loop iterations are workshared across the initial threads in a league

– No implicit barrier at the end of the construct

– dist_schedule(kind[, chunk_size])

– If specified, scheduling kind must be static

– Chunks are distributed in round-robin fashion in chunks of size chunk_size

– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk
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Create a league of teams and distribute a loop among them

• teams construct

• distribute construct

• Transfer execution control to MULTIPLE device initial threads

• Workshare loop iterations across the initial threads.

host thread

device initial 
threads

teams

#pragma omp target

#pragma omp teams

#pragma omp distribute

 for (i=0;i<N;i++)

    …
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Create a league of teams and distribute a loop among them 

and run each team in parallel with its partition of the loop
• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams

89

#pragma omp target

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for simd

 for (i=0;i<N;i++)

    …



Create a league of teams and distribute a loop among them 

and run each team in parallel with its partition of the loop
• loop

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams

90

#pragma omp target

#pragma omp teams

#pragma omp loop

 for (i=0;i<N;i++)

    …



Create a league of teams and distribute a loop among them 

and run each team in parallel with its partition of the loop
• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams

91

#pragma omp target

#pragma omp teams num_teams(3) thread_limit(5)

#pragma omp distribute

#pragma omp parallel for simd

 for (i=0;i<N;i++)

    …

Explicit control 

of number and 

size of teams



Create a league of teams and distribute a loop among them 

and run each team in parallel with its partition of the loop
• Combined construct

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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#pragma omp target teams loop 

for (i=0;i<N;i++)

    …



Create a league of teams and distribute a loop among them 

and run each team in parallel with its partition of the loop
• teams distribute

• parallel for simd

• Transfer execution control to MULTIPLE device initial threads

– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team

– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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#pragma omp target

#pragma omp teams distribute

for (i=0;i<N;i++)

#pragma omp parallel for simd

 for (j=0;j<M;i++)
    …

Works with 

nested loops 

as well



Worksharing example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Distribute iterations across 2 teams

In a team, workshare (parallel 

for) iterations across 4 threads

In each thread use 

SIMD parallelism

64 iterations assigned to 2 teams;

Each team has 4 threads;

Each thread has 2 SIMD lanes

#pragma omp target teams distribute parallel for simd \

num_teams(2) num_threads(4) simdlen(2) 

 for (i=0; i<64; i++)

    …



Commonly used clauses on 
teams distribute parallel for simd

• The basic construct* is:

#pragma omp teams distribute parallel for simd [clause[[,]clause]...]

for-loops 

• The most commonly used clauses are:

– private(list)   firstprivate(list)   lastprivate(list)   shared(list) 
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the 

region, not back out “at the end”.

– reduction(reduction-identifier : list) 

– behaves as in the rest of OpenMP … but the variable must appear in a map(tofrom) clause on the associated 

target construct in order to get the value back out at the end (more on this later)

– collapse(n) 

– Combines loops before the distribute directive splits up the iterations between teams

– dist_schedule(kind[, chunk_size]) 

– only supports kind = static. Otherwise works the same as when applied to a for construct.  Note: this applies to the 

operation of the distribute directive and controls distribution of loop iterations onto teams (NOT the distribution of 

loop iterations inside a team).

*We often refer to this as the Big Ugly Directive, or BUD



There is MUCH more … beyond what have time to cover

• Do as much as  you can with a simple loop construct.  It’s portable and as 

compilers improve over time, it will keep up with compiler driven performance 

improvements.

• But sometimes you need more:

– Control over number of teams in a league and the size of the teams

– Explicit scheduling of loop iterations onto the the teams 

– Management of data movement across the memory hierarchy: global vs. shared vs. private …

– Calling optimized math libraries (such as cuBLAS)

– Multi-device programming

– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU 

programming.   But start with loop.  Start with how data on the host maps onto the 

device (i.e. the GPU).   Master that level of GPU programming before worrying 

about the complex stuff.
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This is the end …  well almost the end.  

Let’s wrap up with a few high-level comments 

about the state of GPU programming more 

generally
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SIMT Programming models: it’s more than just OpenMP
• CUDA:

– Released ~2006.   Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.

– Downside: proprietary to NVIDIA

• OpenCL:

– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.

– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.

– Downside: extreme portability means verbose API.  Painfully low level especially for the host-program.

• Sycl:

– C++ abstraction layer implements SIMT model with kernels as lambdas.  Closely aligned with OpenCL.  1st release 2014

– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models: 

– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive 

(rather than prescriptive) semantics.

– Downside: NOT an Open Standard.   Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT.  Semantics are prescriptive which makes it more verbose.  A truly Open 

standard supported by all the key GPU players.   And with the loop construct … its now prescriptive (hence there is no 

longer any reason for OpenACC to exist)

Third party names are the property of their owners

They’ve made it more open, but it still doesn’t add anything you can’t do in OpenMP



Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B

void __global__

vecAdd (float* a, float* b, float* c, int N) {

    int i = blockIdx.x * blockDim.x + threadIdx.x;

    if (i < N) c[i] = a[i] + b[i];

}

int main () {

    int N = ... ;

    float *a, *b, *c;

    cudaMalloc (&a,  sizeof(float) * N);

  // ... allocate other arrays (b and c), fill with data

  // Use thread blocks with 256 threads each

    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

}
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Unified shared 

memory … allocate 

on host, visible on 

device too

CUDA kernel as 

function

Enqueue the kernel 

to execute on the 

Grid



Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B

#include <CL/sycl.hpp>

 

int main () {

    int N = ... ;

    float *a, *b, *c;

   sycl::queue q;

    *a = (float *)sycl::malloc_shared(N * sizeof(float), q);

  // ... allocate other arrays (b and c), fill with data

       q.parallel_for(sycl::range<1>{N},

 [=](sycl::id<1> i) {

 c[i] = a[i] + b[i];

 });

        q.wait();

}
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Create a queue 

for SYCL 

commands

Unified shared 

memory … allocate 

on host, visible on 

device too

Kernel as a C++ 

Lambda function

 [=] means capture external 
variables by value.
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Vector addition with OpenACC

•Let’s add two vectors together …. C = A + B

void vadd(int n, 

         const float *a, 

         const float *b, 

         float *restrict c)

{

  int i;

 #pragma acc parallel loop

  for (i=0; i<n; i++)

    c[i] = a[i] + b[i]; 

}

int main(){

float *a, *b, *c;  int n = 10000;

// allocate and fill a and b

    vadd(n, a, b, c);

}

Assure the 

compiler that c is 

not aliased with 

other pointers

Turn the loop 

into a kernel, 

move data to a 

device, and 

launch the 
kernel.

Host waits here 

until the kernel is 

done.  Then the 

output array c  is 

copied back to 
the host.
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Why so many ways to do the same thing?

• The parallel programming model people have failed you … 

– It’s more fun to create something new in your own closed-community that work across vendors to 

create a portable API

• The hardware vendors have failed you …

– Don’t you love my “walled garden”?   It’s so nice here, programmers, just don’t even think of going 

to some other platform since your code is not portable.

• The standards community has failed you …

– Standards are great, but they move too slow.   OpenACC stabbed OpenMP in the back and I’m 

pissed, but their comments at the time were spot-on (OpenMP was moving so slow … they just 

couldn’t wait).

• The applications community failed themselves …

– If you don’t commit to a standard and use “the next cool thing” you end up with the diversity of 

overlapping options we have today.   Think about what happened with OpenMP and MPI.



Summary

• Application developers … if you respect yourself,  you will only write 
code using a cross-platform, vendor neutral programming model.

• I am not sure how to pull it off … but you need to band together and 
fight back against vendors trying to tie you to their platforms.   I don’t 
know how you can make this work, but its up to you.

• GPU programming is fun.  But the need to optimize power efficiency 
will push us to specialized hardware.   How to support specialized 
hardware while honoring portable parallel programming is unclear.



To learn more about OpenMP
The OpenMP web site has a great deal of material to help you with OpenMP      www.openmp.org
Reading the spec is painful … but each spec has a collection of examples.  Study the examples, don’t try to read the specs

Since the specs are written ONLY for implementors … programmers need the OpenMP Books to master OpenMP.

Start here … learn the basics and 
build a foundation for the future

Learn advanced features in 
OpenMP including tasking and 
GPU programming (up to version 4.5)

Programming your 
GPU with OpenMP

Tom Deakin and Tim Mattson

MIT Press

Learn all the details of GPU 
programming with OpenMP 
(up to version 5.2) 

http://www.openmp.org/
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