

NEW SCIENTIFIC COMPUTING PARADIGMS

- Understanding and improving I/O behavior in novel HPC applications and compute frameworks is critical to scientific productivity
- Large-scale **MPI** applications are still the **norm** at most HPC centers
- Other non-MPI compute frameworks are gaining traction:
 - AI/ML (TensorFlow, Keras, PyTorch, etc)
 - Data analytics frameworks (Dask, PySpark)
 - Other non-MPI distributed computing frameworks
- Many of these frameworks define their own data models, have their own mechanisms for managing distributed tasks, and demonstrate unique I/O access patterns

• There has been some **debate** within the HPC community...

- There has been some **debate** within the HPC community...
 - "HPC systems often have enough node-local storage to cache the dataset"

- There has been some **debate** within the HPC community...
 - "HPC systems often have enough node-local storage to cache the dataset"
 - "Not all HPC systems have large amounts of node local storage"

- There has been some **debate** within the HPC community...
 - "HPC systems often have enough node-local storage to cache the dataset"
 - "Not all HPC systems have large amounts of node local storage"
 - "Datasets used are simply too large to be cached"

- There has been some **debate** within the HPC community...
 - "HPC systems often have enough node-local storage to cache the dataset"
 - "Not all HPC systems have large amounts of node local storage"
 - "Datasets used are simply too large to be cached"
 - "Modern PFSs can often become an I/O bottleneck due to random sampling in training"

- There has been some **debate** within the HPC community...
 - "HPC systems often have enough node-local storage to cache the dataset"
 - "Not all HPC systems have large amounts of node local storage"
 - "Datasets used are simply too large to be cached"
 - "Modern PFSs can often become an I/O bottleneck due to random sampling in training"
- ... in the end, it **depends** on the workload:
 - i.e., dataset size, storage capacity, storage system bandwidth, I/O library implementation and their configurations, and I/O access patterns of applications

DATA MANAGEMENT DURING THE ML LIFECYCLE

- "I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey"
 - https://doi.org/10.1145/3722215
- A taxonomy of data management during the ML lifecycle:

Data Generation

Different ways data is collected and the various data/file models used in application domains

Dataset Preparation

- Various operations performed on the data to improve its quality
- Training, and Inference
 - Commonly used data access patterns and I/O optimizations

often **sequentially reads** a **lot** of data, and **writes** back a **fewer** amount of data

often read-intensive (and random)

write frequently, as fast as possible

for restoring, **intense sequential reads**for all nodes/GPUs involved

tends to be **I/O bound**, meaning GPU is often waiting on storage to provide data

TUNING THE STORAGE SYSTEM

- I/O patterns vary depending on the phase
 - e.g., training uses random sampling
 - e.g. inferences favors contiguous reads
- Optimizations in one phase may not benefit others
 - e.g., caching samples speeds up training
 - e.g., caching may have less effect during inference

TUNING THE STORAGE SYSTEM

- Training may involve ranks reading batches of samples followed by rank syncs for model updates
- Training of BERT LLM using DLIO (https://github.com/argonne-lcf/dlio_benchmark)
 - Each rank reads a batch of samples (red dot), then synchronizes

BENCHMARKING I/O

- **DLIO** is a benchmark designed to simulate I/O access patterns found in Deep Learning (DL) workloads
 - Released as part of the MLPerf Storage Benchmarks
 https://github.com/mlcommons/storage
 - Selection of interfaces (HDF5, TFRecord, CSV, NPZ), file access patterns (one file per process versus shared file per process), data access patterns, I/O types, and transfer buffer sizes
- There are others that touch on I/O aspects, take a look at the paper

DARSHAN INSTRUMENTATION BEYOND MPI

- Darshan was re-designed to support instrumentation in non-MPI contexts as well:
 - Uses GCC-specific library constructor/destructor attributes to initialize/shutdown Darshan
- To enable non-MPI mode, users must explicitly opt-in by setting the DARSHAN_ENABLE_NONMPI env
 - A unique log will be generated for every process that executes
 - Often best to **limit** instrumentation scope to the target executable:

LD_PRELOAD=/path/to/libdarshan.so DARSHAN_ENABLE_NONMPI=1 ./exe <args>

CAVEATS FOR INSTRUMENTING PYTHON WITH DARSHAN

- Darshan initially enabling comprehensive instrumentation of a growing Python ecosystem in HPC:
 - Support for **non-MPI**, as **Python** often uses other mechanisms for parallelizing/distributing work

```
LD_PRELOAD=/path/to/libdarshan.so DARSHAN_ENABLE_NONMPI=1 python script.py <args>
```

Darshan library configuration support for focusing scope of Darshan instrumentation:

```
# exclude Python compiled code, shared libraries, etc.
NAME_EXCLUDE \.pyc$, \.so$, *

# pre-allocate 5000 POSIX records (default 1024)
MAX_RECORDS 5000 POSIX

# bump up Darshan's default memory usage to 8 MiB
MODMEM 8
```

• Otherwise, Darshan exhausts its memory and only instruments a portion of the application I/O workload

CHECKPOINTING

- Model checkpointing is a vital part of large model training
 - Number of model parameters continues to scale
 - Checkpointing is an **expensive** process
 - Involves blocking training progress in order to save out the latest model weights
 - Checkpointing commonly done by single rank, which can lead to stragglers
 - PyTorch recently added support for distributed checkpointing
- Asynchronous checkpointing modularizes the checkpointing process into two parts:
 - Copy the data from each GPU/rank from GPU to CPU
 - Asynchronously copy the data from CPU memory to disk to persist the checkpoint
- Once data is copied to CPU in the first phase, the GPU is free to immediately resume training

By Meta: Lucas Pasqualin, Less Wright, Iris Zhang (PyTorch), Chien-Chin Huang; IBM Research: Swaminathan Sundararaman, Saransh Gupta, Raghu Ganti https://pytorch.org/blog/reducing-checkpointing-times

- Try the model training checkpoint examples with PyTorch
 - https://github.com/raxid-io/hands-on/ai-checkpoint
 - Detailed instructions available in the README
- Remember to collect Darshan logs and traces!
- What should I look at?
 - What can you infer about the application I/O behavior from Darshan's report?
 - What is the I/O bandwidth and time?

- For **Aurora**, some **changes** are needed:
 - You will **need** to use intel_extesion_for_pytorch and oneccl_bindings_for_pytorch

 https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch.html#code-changes-to-train-on-multiple-gpus-using-ddp
 - You will also need to set the **proxy** host to download the model https://docs.alcf.anl.gov/aurora/getting-started-on-aurora/#proxy
- Notice that DCP requires a newer version of PyTorch (not in Aurora)

