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New scientific computing paradigms

● Understanding and improving I/O behavior in novel HPC applications 

and compute frameworks is critical to scientific productivity

● Large-scale MPI applications are still the norm at most HPC centers

● Other non-MPI compute frameworks are gaining traction:

○ AI/ML (TensorFlow, Keras, PyTorch, etc)

○ Data analytics frameworks (Dask, PySpark)

○ Other non-MPI distributed computing frameworks

● Many of these frameworks define their own data models, have their 

own mechanisms for managing distributed tasks, and demonstrate 

unique I/O access patterns
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IS I/O a problem in ML/AI?

● There has been some debate within the HPC community… 

○ “HPC systems often have enough node-local storage to cache the dataset”

○ “Not all HPC systems have large amounts of node local storage”

○ “Datasets used are simply too large to be cached”

○ “Modern PFSs can often become an I/O bottleneck due to random sampling in training”

● … in the end, it depends on the workload:

○ i.e., dataset size, storage capacity, storage system bandwidth, I/O library implementation and their 

configurations, and I/O access patterns of applications
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Data management during the ML Lifecycle

● “I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey”

○ https://doi.org/10.1145/3722215

● A taxonomy of data management during the ML lifecycle:

○ Data Generation

○ Different ways data is collected and the various data/file models used in application domains

○ Dataset Preparation

○ Various operations performed on the data to improve its quality

○ Training, and Inference

○ Commonly used data access patterns and I/O optimizations
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AI data / storage pipeline
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Based on the image adapted by Suren Byna  from Jason Vallery’s talk at SNIA Developer Conference
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often sequentially reads a lot of data, and 
writes back a fewer amount of data
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AI data / storage pipeline
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write frequently, as fast as possible



AI data / storage pipeline
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Based on the image adapted by Suren Byna  from Jason Vallery’s talk at SNIA Developer Conference

for restoring,  intense sequential reads 
for all nodes/GPUs involved



AI data / storage pipeline
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Based on the image adapted by Suren Byna  from Jason Vallery’s talk at SNIA Developer Conference

tends to be I/O bound, meaning GPU is 
often waiting on storage to provide data



Tuning the Storage System

● I/O patterns vary depending on the phase

○ e.g., training uses random sampling

○ e.g. inferences favors contiguous reads

● Optimizations in one phase may not benefit others

○ e.g., caching samples speeds up training

○ e.g., caching may have less effect during inference
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Tuning the Storage System

● Training may involve ranks reading batches of samples followed by rank syncs for model updates

● Training of BERT LLM using DLIO (https://github.com/argonne-lcf/dlio_benchmark) 

○ Each rank reads a batch of samples (red dot), then synchronizes
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https://github.com/argonne-lcf/dlio_benchmark


BENCHMARKING I/O

● DLIO is a benchmark designed to simulate I/O access patterns found in Deep Learning (DL) workloads

○ Released as part of the MLPerf Storage Benchmarks

https://github.com/mlcommons/storage 

○ Selection of interfaces (HDF5, TFRecord, CSV, NPZ), file access patterns (one file per process versus 

shared file per process), data access patterns, I/O types, and transfer buffer sizes

● There are others that touch on I/O aspects, take a look at the paper
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https://github.com/mlcommons/storage


Darshan instrumentation beyond MPI

● Darshan was re-designed to support instrumentation in non-MPI contexts as well:

○ Uses GCC-specific library constructor/destructor attributes to initialize/shutdown Darshan

● To enable non-MPI mode, users must explicitly opt-in by setting the DARSHAN_ENABLE_NONMPI env

○ A unique log will be generated for every process that executes

○ Often best to limit instrumentation scope to the target executable:
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LD_PRELOAD=/path/to/libdarshan.so DARSHAN_ENABLE_NONMPI=1 ./exe <args>



Caveats for instrumenting Python with Darshan

● Darshan initially enabling comprehensive instrumentation of a growing Python ecosystem in HPC:

○ Support for non-MPI, as Python often uses other mechanisms for parallelizing/distributing work

○ Darshan library configuration support for focusing scope of Darshan instrumentation:

● Otherwise, Darshan exhausts its memory and only instruments a portion of the application I/O workload
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LD_PRELOAD=/path/to/libdarshan.so DARSHAN_ENABLE_NONMPI=1 python script.py <args>

# exclude Python compiled code, shared libraries, etc.
NAME_EXCLUDE \.pyc$, \.so$, *

# pre-allocate 5000 POSIX records (default 1024)
MAX_RECORDS 5000 POSIX

# bump up Darshan's default memory usage to 8 MiB
MODMEM 8



Checkpointing

● Model checkpointing is a vital part of large model training

○ Number of model parameters continues to scale

○ Checkpointing is an expensive process 

○ Involves blocking training progress in order to save out the latest model weights

○ Checkpointing commonly done by single rank, which can lead to stragglers

○ PyTorch recently added support for distributed checkpointing

● Asynchronous checkpointing modularizes the checkpointing process into two parts:

○ Copy the data from each GPU/rank from GPU to CPU

○ Asynchronously copy the data from CPU memory to disk to persist the checkpoint

● Once data is copied to CPU in the first phase, the GPU is free to immediately resume training

Reducing Model Checkpointing Times by Over 10x with PyTorch Distributed Asynchronous Checkpointing
By Meta: Lucas Pasqualin, Less Wright, Iris Zhang (PyTorch), Chien-Chin Huang; IBM Research: Swaminathan Sundararaman, Saransh Gupta, Raghu Ganti
https://pytorch.org/blog/reducing-checkpointing-times
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● Try the model training checkpoint examples with PyTorch

○ https://github.com/raxid-io/hands-on/ai-checkpoint

○ Detailed instructions available in the README

● Remember to collect Darshan logs and traces!

● What should I look at?

○ What can you infer about the application I/O behavior from Darshan’s report?

○ What is the I/O bandwidth and time?
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https://github.com/raxid-io/hands-on/ai-checkpoint


● For Aurora, some changes are needed:

○ You will need to use intel_extesion_for_pytorch and oneccl_bindings_for_pytorch
https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch.html#code-changes-to-train-on-multiple-gpus-using-ddp

○ You will also need to set the proxy host to download the model
https://docs.alcf.anl.gov/aurora/getting-started-on-aurora/#proxy 

● Notice that DCP requires a newer version of PyTorch (not in Aurora)
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https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch.html#code-changes-to-train-on-multiple-gpus-using-ddp
https://docs.alcf.anl.gov/aurora/getting-started-on-aurora/#proxy
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